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Abstract 

Distinct gene expression patterns within cells are foundational for the diversity of 
functions and unique characteristics observed in specific contexts, such as human 
tissues and cell types. Though some biological processes commonly occur across 
contexts, by harnessing the vast amounts of available gene expression data, we can 
decipher the processes that are unique to a specific context. Therefore, with the goal of 
developing a portrait of context-specific patterns to better elucidate how they govern 
distinct biological processes, this work presents a large-scale exploration of transcrip‑
tomic signatures across three different contexts (i.e., tissues, cell types, and cell lines) 
by leveraging over 600 gene expression datasets categorized into 98 subcontexts. 
The strongest pairwise correlations between genes from these subcontexts are used 
for the construction of co-expression networks. Using a network-based approach, we 
then pinpoint patterns that are unique and common across these subcontexts. First, 
we focused on patterns at the level of individual nodes and evaluated their functional 
roles using a human protein–protein interactome as a referential network. Next, within 
each context, we systematically overlaid the co-expression networks to identify specific 
and shared correlations as well as relations already described in scientific literature. 
Additionally, in a pathway-level analysis, we overlaid node and edge sets from co-
expression networks against pathway knowledge to identify biological processes that 
are related to specific subcontexts or groups of them. Finally, we have released our data 
and scripts at https://​zenodo.​org/​record/​58317​86 and https://​github.​com/​ContN​eXt/, 
respectively and developed ContNeXt (https://​contn​ext.​scai.​fraun​hofer.​de/), a web 
application to explore the networks generated in this work.
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Introduction
While gene expression profiling has markedly improved our understanding of the molec-
ular underpinnings of biological processes, the knowledge we acquire from a particu-
lar study performed within a given context may not generalize to another. For instance, 
accumulating evidence shows that average gene expression varies extensively across cell 
lines or tissues of the same organism [38, 43] as well as across species [32]. Context-
specificity has also been noted when investigating the reproducibility of protein–protein 
interactions (PPIs) across conditions in literature-curated PPI databases in Stacey et al. 
[39], finding no evidence for the occurrence of anywhere from 19 to 55% of interactions 
reported in these databases. These findings, however, are not altogether surprising given 
that PPI databases often store interactions that occur across various experimental condi-
tions and contexts which may fail to be observed if either of these were to vary. Crucially, 
it is often these context-specific differences which are responsible for the variability of 
functions and unique characteristics of diverse cell types and tissues and their investiga-
tion is thus fundamental in understanding human biology.

Gene expression patterns that are specific to certain cell types or tissues can help us 
to better understand normal human physiology (e.g., which biological processes occur 
in specific cell types or tissues) as well as development biology (e.g., which genes are 
expressed in specific cell types or tissues at various developmental stages), and several 
studies have investigated differences in these two contexts. Specifically, Pierson et  al. 
[30] and Dobrin et al. [5] analyzed gene expression patterns at the tissue-level, revealing 
function-specific patterns and subnetworks associated with obesity. Similarly, McKenzie 
et al. [24] analyzed co-expression changes in different cell types of the brain, discover-
ing significant cell type-specific expression signatures, while also finding well-known cell 
type marker genes among the most enriched genes across cell types.

Another relevant context is cell line information, as these are widely used for the study 
of biological processes. In particular, cancer cell lines, such as HeLa, are frequently 
employed, having had many interactions characterized on them and representing the 
foremost models for the study of cancer biology as well as numerous other disease and 
normal conditions. Nonetheless, even cell lines classified to the same tissue can exhibit 
significant differences in gene expression [19]. For example, a study by Yu et  al. [46] 
found that certain cell lines may not resemble the primary cells from which they origi-
nated. The discrepancies in regulation patterns across specific cell lines deem it neces-
sary to employ tools such as the CellExpress system (developed by Lee et al. [19] which 
enables the analysis of over 4000 cancer cell lines for differences in gene expression lev-
els) and resources such as the TCGA-110-CL cell line panel [46] to identify which cell 
lines are more suitable for a given study.

Biological networks of different types can be used to represent patterns characteris-
tic to a particular context. These context-specific networks can be categorized based on 
whether they are directly derived from knowledge or data. Rachlin et al. [31] and Stacey 
et  al. [39] are two illustrations of knowledge-driven approaches where authors gener-
ated context-specific PPI networks by leveraging information about biological processes 
from GO (The Gene Ontology Consortium et  al. [41]) and co-occurrence literature, 
respectively. Similarly, the analysis of transcriptomic data through the construction of 
gene co-expression networks (Langfelder et al. [18]) can also serve to better understand 
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context-specific patterns within datasets [28]. Finally, hybrid approaches, as demon-
strated by Kitsak et al. [16], have leveraged gene expression data from 64 different tissues 
and mapped genes expressed in specific tissues to a protein–protein interactome, reveal-
ing that these disease context-specific genes tend to be located in close proximity within 
the interactome. It is important to note that while transcriptomic experiments are often 
used as a proxy to reflect protein expression, the correlation between the two is often 
below 0.5 on average [26, 40]. Nevertheless, correlations between genes whose mRNA is 
differentially expressed and their protein products have been shown to be significantly 
higher than genes whose mRNA is not differentially expressed, lending support to the 
use of differential mRNA expression to infer changes at the protein level [17].

One of the challenges in conducting these hybrid approaches (i.e., approaches that 
combine data- and knowledge- derived networks) is the limited availability of context-
specific resources on a large-scale (e.g., hundreds of experiments conducted within the 
same or similar conditions or context-specific interactomes). While there are several co-
expression databases dedicated to storing context-specific information, such as species 
[27] and [20], the vast majority of transcriptomic datasets are not annotated with con-
text information and thus, cannot be systematically leveraged to conduct contextualized 
analyses on a large-scale. Nonetheless, the Gemma system [21] has been made available 
to provide thousands of curated datasets,thus, more easily enabling data reuse and sec-
ondary analyses.

In this work, we apply a network-based approach to investigate transcriptomic pat-
terns observed in a variety of subcontexts classified under three major biological con-
texts (i.e., tissues, cell types, and cell lines) by leveraging over 600 gene expression 
datasets (Fig. 1A). To do so, we first construct co-expression networks that capture the 
strongest gene expression correlations observed in each subcontext (Fig.  1B). Subse-
quently, a series of network-based analyses are conducted to enable the exploration of 
the similarities and differences across co-expression networks and provide insights on 
gene co-expression patterns across contexts (Fig. 1C). Furthermore, we study the con-
sensus between patterns identified in the co-expression network and a human protein–
protein interactome as well as pathways knowledge. Finally, we present ContNeXt, a web 
application we have developed to enable researchers to explore and reuse our work.

Methodology
Gene expression datasets

We identified publicly available transcriptomic datasets from each of the three contexts 
evaluated (i.e., tissues, cell types, and cell lines) using Gemma, a manually curated data-
base containing metadata for over 10,000 datasets [21, 48] (Fig.  1A). This metadata is 
programmatically accessible through Gemma’s API (https://​gemma.​msl.​ubc.​ca/​resou​
rces/​resta​pidocs) and is annotated using different ontologies. Specifically, for each of the 
three contexts of interest, the following ontologies were used: (i) UBERON for tissues 
[25], (ii) Cell Ontology (CL) for cell types [4], and (iii) Cell Line Ontology (CLO) for cell 
lines [34].

Leveraging the metadata from Gemma, we were able to classify the samples from each 
dataset to their corresponding context(s). To guarantee the quality of the annotations, 
we conducted an additional manual curation step where we confirmed that the Gemma 

https://gemma.msl.ubc.ca/resources/restapidocs
https://gemma.msl.ubc.ca/resources/restapidocs
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sample annotations matched an ontology term for the given context present in the meta-
data, if available. Additionally, we filtered out samples that were not control or reference 
samples as our work focuses on comparing a normal physiological state in a variety of 
contexts. Finally, Gemma also includes annotations on dataset quality and samples that 
were annotated as unusable were excluded from our study.

After the initial annotation and curation steps, we implemented scripts for the down-
loading and processing of datasets found in Gene Expression Omnibus (GEO) [6]. While 
GEO incorporates several platforms, each measures different transcripts and requires a 

Fig. 1  Conceptualization of the presented study. A Over 600 context-specific transcriptomic datasets are 
collected and classified into 98 subcontexts (e.g., heart, astrocyte, and HeLa cell) under 3 major contexts 
(i.e., tissues, cell types, and cell lines), leveraging the Gemma database [21, 48] B Co-expression networks 
comprising the most strongly correlated edges observed in each subcontext are generated. C Network 
analyses provide insights on both common and unique patterns across the multiple contexts studied
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dedicated pipeline, and merging data from several platforms is a complicated task which 
can introduce biases from probe sequences, arrays, or laboratory effects. Furthermore, 
conducting analyses combining raw data from multiple platforms can also introduce 
biases [33]. Thus, our work focuses on the most commonly used platform for humans, 
the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array platform (accession on 
GEO: GPL570). Out of 10,388 datasets in Gemma as of 22/04/2021, 9778 were filtered 
out while 610 remained for any one of the three contexts. In total, the tissue context was 
divided into 46 subcontexts, while the cell line and cell type contexts each contained 22 
and 30 subcontexts, respectively (see Additional file 1: Tables S1–S3).

Generating co‑expression networks from gene expression data

Co-expression networks were constructed using the WGCNA package in R (Langfelder 
et al. [18]). We followed the same procedure outlined in our previous work [9] to define 
the co-expression networks (Fig.  1B). This procedure focuses on the 1% highest simi-
larity in the topological overlap matrix (TOM) to define the co-expression network for 
each subcontext; thus, facilitating the comparison of networks of the same size using a 
conservative cut-off in benchmark studies [29]. Given the platform used in this study, 
the most similar 1% in the TOM corresponds to 2,036,667 edges. We would like to note 
that the 1% cut-off is required as otherwise the networks would be fully connected, while 
we intend to focus only on the edges representing the most relevant transcriptomic pat-
terns observed within each context. As edges representing a high topological overlap are 
also highly correlated in the TOM, we interchangeably refer to these edges as correla-
tions for simplicity. Although this is not precise, the TOM value is based on the signed 
correlation but also takes the connectedness of nodes into account.

To run WGCNA, we used the raw expression data in the form of.CEL-files. Each data-
set was individually pre-processed with the RMA function of the oligo R package to con-
duct background subtraction and quantile normalization. Next, we merged all samples 
from different datasets that belong to the same subcontext and applied batch correction 
using ComBat [14]. Regarding the mapping of the probes to genes, if there were multiple 
probes mapping to the same gene, we kept the most variable probe.

Protein—protein interaction network

We built a human protein–protein interactome as described in our previous work [9] 
as a knowledge template to compare against the co-expression networks generated. The 
interactome comprises interactions from well-established databases, including KEGG 
[15] and Reactome [13]. This network aims at representing the set of interactions that 
can occur in a physiological context, though it is worth mentioning that each of these 
interactions may not necessarily be occurring in a particular context at any given time.

Analyses

Controllability analysis

One of the more advanced techniques in analyzing networks is examining its controllabil-
ity. We employed an algorithm developed by Liu et al. [22] which explores control theory 
to study the controllability of a directed network and thus identify driver nodes (i.e., the set 
of nodes that can offer control over the whole network) in order to classify each node and 
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edge in a network as indispensable, dispensable, or neutral. Ideally, minimizing the number 
of driver nodes offers adequate control over the network regarding the given biological sys-
tem’s dynamics. Using this algorithm, both nodes and edges can be classified as indispensa-
ble, dispensable, or neutral if their removal creates the need to increase, decrease, or cause 
no change in the number of driver nodes, respectively, so that controllability is maintained.

Pairwise co‑expression network similarity

To evaluate similarity across co-expression networks, we calculated the overlap of edges 
across each pair of co-expression networks within a given context. Since all co-expression 
networks have the same number of edges, the number of shared edges between networks is 
readily comparable without the need to normalize values.

Similarity between co‑expression networks and the interactome

We assessed the similarity of each co-expression network to the human interactome by cal-
culating the number of shared edges. Here, it is important to note that edge directional-
ity is ignored in the interactome since co-expression networks are inherently undirected. 
Furthermore, we evaluated the significance of the overlap by comparing the interactome to 
1000 permuted co-expression networks. Permuted versions of the co-expression networks 
were created using the XSwap algorithm [12] (source code available at https://​github.​com/​
hetio/​xswap), which ensures that the permuted versions preserve the structure of the origi-
nal network (i.e., all edges are shuffled while maintaining the degree of each node).

Pathway—co‑expression network similarity

To investigate the correspondence of transcriptomic signatures from co-expression net-
works with pathway knowledge, each of the context-specific co-expression networks were 
overlaid with pathways from KEGG [15]. The KEGG database was exclusively employed as 
it contains a feasible number of pathways for analysis (i.e., less than 350). For each gene set 
of a given pathway P from KEGG, we calculate every pairwise combination of nodes ( Cn

) in P to determine the fraction of node combination pairs in Cn that exist as an edge in a 
given co-expression network N =

(

n′,EN
)

 where n’ is the set of nodes in the co-expression 
network and EN is the set of edges which connect the nodes n’. We term this the edge over-
lap, where edge overlap =

∣

∣

{

∀eu,vs.t.(u, v) ∈ Cn ∧ u, v ∈ n′ ∧ eu,v ∈ EN
}∣

∣ . The proportion 
of Cn that is in the edge overlap is the pathway-network similarity (Eq. 1). Using the path-
way-network similarity, we create a similarity matrix with each network of a given context 
against every pathway from KEGG. This matrix is subsequently used to create a heatmap 
and hierarchical clustering of the co-expression networks is performed using Euclidean dis-
tances of their similarities to pathways.

Similarity between a pathway and co-expression network.

Implementation

Scripts to retrieve and process the datasets as well as to deploy the web application 
are available at https://​github.​com/​ContN​eXt. We have also provided comprehensive 

(1)pathway− network similarity (P,N ) =
edge overlap

|Cn|

https://github.com/hetio/xswap
https://github.com/hetio/xswap
https://github.com/ContNeXt
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documentation to modify the filtering steps and add extensions to the scripts. For net-
work analysis and visualizations, we used the Python NetworkX library [11] (https://​
netwo​rkx.​github.​io/), and Matplotlib, and seaborn, respectively. The processed data used 
in this work is available at Zenodo at https://​zenodo.​org/​record/​58317​86.

Results
In “Overview of co-expression networks and interactome” section, we provide an over-
view of the co-expression and PPI networks, while in "Analyses at the protein-level", 
"Analyses at the network-level" and "Mapping co-expression networks to pathway knowl-
edge" sections, we outline each of the analyses conducted, specifically at the protein-, 
network-, and pathway- levels (Fig. 2). Finally, “ContNeXt—a web application to explore 
gene expression patterns across contexts” section presents ContNeXt, a web application 
developed to explore the results of this work.

Overview of co‑expression networks and interactome

From 364, 222, and 103 (at times overlapping) datasets that were categorized into 46 
distinct tissues, 30 distinct cell types, 22 distinct cell lines, respectively, we systematically 
constructed co-expression networks corresponding to each of these contexts. The exact 
breakdown of the number of datasets and samples for each subcontext can be found in 
Additional file 1: Tables S1–S3. Figure 3 summarizes the size of each corresponding co-
expression network. We find that across different contexts, the collected data, which 
depends on the study objectives, is biased towards certain groups of related subcontexts. 
For instance, in the tissue context, a large number of subcontexts belong to tissues of the 
nervous system, while in the cell type context, the majority of subcontexts are related 
to the immune system. This bias can especially be seen in the cell line context, where 
nearly all cell lines are derived from cancer cells. Finally, we investigated the correlation 
between the number of samples or datasets used to generate the co-expression networks 
and the size of the networks as a potential source of bias. We found no such dependency 

Fig. 2  Overview of analyses conducted across all subcontexts in three different contexts (i.e., tissues, cell 
lines, and cell types). At the protein-level, patterns surrounding each single node are investigated ("Analyses 
at the protein-level" section). The network-level analysis focuses on the relations between nodes (or node 
pairs) ("Analyses at the network-level" section) and the pathway-level analysis leverages defined node and 
edge sets to gain insights on context-specific co-expression networks ("Mapping co-expression networks to 
pathway knowledge" section) 

https://networkx.github.io/
https://networkx.github.io/
https://zenodo.org/record/5831786
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between the number of samples or datasets and the network size (Additional file 2: Fig. 
S1).

The human interactome we employed (see Methods “Protein—protein interaction 
network” section), generated in our earlier work [9], contains 8601 nodes and 199,535 
edges. These numbers place our interactome on the same scale as other, recently pub-
lished human interactomes [23], Vinayagam et al. [42]. Nonetheless the size of the inter-
actome, with regard to the number of nodes (proteins), is less than half of the largest 
co-expression network. This was to be expected, as the majority of proteins measured 
in transcriptomic experiments have not yet been investigated in the literature and lit-
tle is known of their functionality. Nodes of the interactome can be visualized in the 
web application (see “ContNeXt—a web application to explore gene expression patterns 
across contexts” section) along with their neighbors, betweenness centrality, degree cen-
trality, controllability classification, and information on whether the node is a house-
keeping gene.

In order to discern unique features of context-specific co-expression networks which 
could be of biological significance, we first sought to identify genes known to arise from 
generic processes whose patterns are more likely to be stable and unaffected by any 
given context or condition. In particular, we investigated the presence of these, so called, 
housekeeping genes in each of the co-expression networks, noting that these genes are 
indicative of shared biology given their role in cell maintenance, and therefore, exhibit 
constant expression levels across all cells and conditions (Eisenberg and Levanon [7]). 
Thus, by better understanding which genes have critical roles in basic cell maintenance, 

Fig. 3  Distribution of network size for each of the three contexts. Distributions of network size are given as 
the number of nodes in each subcontext. In the tissue context, the cortex of cerebral lobe network had the 
fewest number of nodes (i.e., 6514), while the placenta network had the largest number of nodes (i.e., 20,171) 
across not only all networks of the tissue context, but also across all other contexts. In the cell type context, 
the fibroblast network had the least number of nodes (i.e., 7767), while the stem cell network had the highest 
number of nodes (i.e., 20,158). In the cell line context, the HepG2 cell line network had the least number 
of nodes (i.e., 6460), while the Huv-ec-c cell line network had the largest number of nodes (i.e., 18,758). 
Generally, the networks within each context tended to vary greatly in size. For example, the tissue context 
includes networks ranging in size from 6514 to 20,171 nodes
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we could better direct our focus in determining genes of interest. The housekeeping 
genes dataset made available from Eisenberg and Levanon [7] consisted of 3804 genes 
(Additional file 1: Table S4), 1723 of which were present in the interactome (20% of the 
overall interactome).

To analyze the structural properties of the interactome, we employed an algorithm 
(see Method) that has been applied to identify the importance of nodes and edges in 
biological networks (Additional file 2: Text S1). The results of the controllability analy-
sis indicate that the interactome has 1233 driver nodes with which the network can be 
controlled. Overall, 74.6% of the nodes were classified as neutral, 16.17% dispensable, 
and 9.2% indispensable. A list of the full classifications can be seen in Additional file 1: 
Table S5, with the indispensable nodes listed in Additional file 1: Table S6, and a sum-
mary of these nodes can be seen in Table 1. We observed that the indispensable nodes 
were highly connected, as expected, had the highest average betweenness centrality, 
and a significant portion (i.e., ~ 25%) were housekeeping genes. By comparison, neutral 
nodes were found to have half as many connections and an average betweenness central-
ity 10 times lower than indispensable nodes. However, the proportion of neutral nodes 
that were housekeeping genes were comparable to that of the indispensable nodes. By 
contrast, differences between the dispensable and indispensable nodes were far more 
pronounced; the average degree of dispensable nodes was only ~ 6, compared to ~ 107 
for indispensable nodes, while the average betweenness centrality was more than 1000 
times lower. Additionally, only ~ 8% of dispensable nodes were housekeeping genes, 
compared to roughly a quarter for both indispensable and neutral nodes.

Analyses at the protein‑level

We begin by exploring general trends for all co-expression networks of each context 
at the protein-level by focusing on the most and least common proteins (i.e., present 
in all or exactly one network within a context). We first used the results of the previ-
ously-mentioned controllability analysis of the interactome as well as housekeeping 

Table 1  Regarding the interactome controllability, 6417 of the total nodes (74.6%) were classified 
as neutral; i.e., removing them will have no effect on the number of driver nodes in the network, 
representing the largest proportion of nodes in the interactome. 1391 (16.17% of the interactome) 
nodes were dispensable, meaning their removal would decrease the number of driver nodes in 
the network. Lastly, 793 nodes (9.2% of the interactome) were determined to be indispensable, 
which caused an increase in the need for driver nodes at their removal. In all three categories (i.e., 
betweenness centrality, degree, and housekeeping gene proportion), indispensable nodes had the 
highest value, followed by neutral, and dispensable with the lowest values

The indispensable nodes are listed in Additional file 1: Table S6. Betweenness centrality scores were scaled between 0 and 1 
to facilitate comparability

Total 
number

Scaled 
betweenness 
centrality 
mean

Scaled 
betweenness 
centrality 
median

Scaled 
betweenness 
centrality 
mode

Degree 
mean

Degree 
median

Degree 
mode

Proportion 
housekeeping 
gene (%)

Indis‑
pensa‑
ble

793 0.024519 0.006825 0.002642 107.08 60 29 24.59

Dispen‑
sable

1391 0.000019 0.00000 0.00000 6.44 4 1 7.84

Neutral 6417 0.004090 0.001101 0.00000 47.56 31 13 22.11
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genes and overlapped them with the most and least common proteins in each context, 
shown in Additional file 1: Table S7. As summarized in Table 2, of the most common 
nodes (i.e., proteins that could be found in each network within a given context), we 
found that the cell type context had the largest number of proteins across all networks 
(301 proteins), while the tissue network had the fewest (22 proteins). Among the most 
common nodes, the ratio of housekeeping genes was greater than the proportion of 
housekeeping genes present in the interactome (i.e., 20%), comprising nearly 50% of 
the most common nodes in each of the contexts.

Overlap of co‑expression networks with the interactome

While only considering the proteins present in the interactome as well as at least one 
co-expression network, we conducted an in-depth investigation of whether proteins 
in the co-expression networks of a given context could consistently be identified in 
the human interactome network. We first noted trends at the protein-level by com-
paring the most and least common proteins across co-expression networks within a 
context against the most and least connected proteins of the interactome. As the co-
expression network and interactome sizes vastly differed, we studied this overlap con-
sidering the top or bottom most proteins in proportions roughly equivalent in size. 
We selected various cut-offs for each context, corresponding to the number of co-
expression networks (see Additional file 2: Text S2 for details on the cut-offs for each 
context). This ensured the inclusion of either the maximal or minimal possible over-
lap of the common proteins of the co-expression networks and connected proteins of 
the interactome, depending on whether our investigation focused on the most com-
monly or most uniquely occurring proteins, respectively. A detailed list of the result-
ing overlaps can be seen in Additional file 1: Table S8.

Table 2  Most and least common proteins per context. The most and least common proteins of the 
co-expression networks (i.e., in all or exactly one network within a context) were overlapped with 
proteins given distinct classifications from the controllability analysis of the interactome as well as 
with housekeeping genes. 22 proteins were identified as the most common proteins, that is, found 
in all 46 co-expression networks of the tissue context. Of the 30 co-expression networks of the cell 
type context, 301 proteins were found in all of them, while among 22 co-expression networks in 
the cell line context, 185 proteins were identified in each network By comparison, no proteins were 
found to be unique to a single co-expression network in the tissue context, while only one was 
found in the cell type context belonging to the stem cell co-expression network. On the other hand, 
106 least common proteins were found in the cell line context, only one of which is a housekeeping 
gene and none of which are indispensable

A full list of the proteins found in all or in a single network per context can be seen in Additional file 1: Table S7

Tissue context Cell type context Cell line context

Proteins in all 
co-expression 
networks

22 2 indispensable
11 housekeeping

301 21 indispensable
180 housekeeping

185 15 indispensable
81 housekeeping

Proteins unique to 
one co-expression 
network

0 0 indispensable
0 housekeeping

1 0 indispensable
0 housekeeping

106 0 indispensable
1 housekeeping
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Most common proteins

First, we focus on the most common proteins. Among the most commonly occurring 
proteins in the tissue context that overlapped with proteins from the interactome, a 
number of proteins belonged to the MAPK protein family (Additional file 1: Table S8). 
Proteins in this family are instrumental in transduction of extracellular signals to cellular 
responses and complex cellular processes such as apoptosis, development, differentia-
tion, proliferation, and transformation [47]. While only the larger two comparisons in 
the tissue context (Additional file 2: Fig. S2; lower two diagrams) resulted in an overlap, 
a significant portion of these overlapping proteins were also indispensable, or house-
keeping. Within the large overlaps between the common cell type proteins and most 
connected interactome proteins (Additional file 2: Fig. S3), a larger proportion of house-
keeping genes was found than in any of the contexts studied, with more than half of 
each overlap being a housekeeping gene (i.e., 50–67%), and more of the proteins are also 
indispensable.

In cell lines, we observed a substantial overlap of most common proteins that are also 
found in the interactome overall, including when using the strictest cut-offs, however, 
significantly less were found to be indispensable or housekeeping than in the tissue and 
cell type contexts (Additional file 2: Fig. S4). We select a proportional set from each con-
text (400 of the most common proteins per context) to compare their overlaps with the 
interactome (Additional file 1: Table S9A). The overlaps all had a similar number of pro-
teins in them, between 30 and 37 proteins. Across contexts, there was a similar propor-
tion of the overlap which are indispensable nodes of the interactome (~ 32% in tissues, 
40% in cell types, and ~ 43% in cell lines). On the other hand, the proportion of house-
keeping genes varied more, with 43% of the proteins from the cell line overlap, while 
tissues and cell types both had more than 60%. Overall, housekeeping genes seem to be 
best represented in the co-expression networks. We observed a number of proteins in 
all of the context’s overlaps belonging to the Ribosomal protein (RP) family (Additional 
file 1: Table S9A), from both small and large subunits. RPs are essential in protein syn-
thesis [45]. The tissue overlap had one from large and one from small subunit, the cell 
type overlap had four from large and one from small subunit, and the cell line overlap 
had one small subunit RP. We also found that the average number of relations for the 
proteins in the interactome that overlapped with the approximately top 400 most com-
mon proteins in the tissue and cell line networks (~ 73 and ~ 72 relations, respectively), 
was much higher than the average number of relations overall in the interactome (~ 46 
relations). This suggests that the common tissue- and cell line-wide proteins across the 
co-expression networks are better represented in the scientific literature. In the cell type 
networks, this average was less high, ~ 60 relations, but still more than overall in the 
interactome.

Least common proteins

Next, we investigated the least common proteins in the co-expression networks and 
their overlap with the least connected proteins in the interactome. This time, the tissue 
context presented a more consistent overlap while increasing the protein pool, but still a 
minimal overlap (Additional file 2: Fig. S5). The overlap with the interactome and the cell 
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type context was about the same as in the tissue context (Additional file 2: Fig. S6). In the 
cell line context, we found a small, steadily increasing overlap with each interval com-
parison, which was not the case in the most common proteins (Additional file 2: Fig. S7). 
The overlap with the interactome in the larger comparisons was roughly the same as in 
every other context. The minimal overlaps suggest that little is currently known of these 
proteins. Additionally, we also selected proportional sets of the 400 least common pro-
teins in each context, also occurring the interactome overall against the 400 least con-
nected nodes of the interactome (Additional file 1: Table S9B). The sizes of the overlap 
didn’t vary as much as in the most common and connected comparison, with each con-
text having around 30 proteins in the overlap. As expected, with these overlaps, either 
one or no proteins are also indispensable or housekeeping. We observe an overwhelm-
ing number of proteins belonging to the ZNF protein family in each of the overlaps (i.e., 
10/34 (29%) in tissues, 11/33 (33%) in cell types, and 4/27 (15%) in cell lines) (Additional 
file 1: Table S9B). While ZNFs are widely found in the organism, they play critical roles 
in specific tissues, and in the development of many diseases [2].

Analyses at the network‑level

We first focused on analyzing edges of the co-expression networks, including the unique 
and most commonly occurring edges within contexts. Additionally, we leveraged prior 
knowledge from a referential human interactome and studied the correspondence of 
edges from this network against the strongest pairwise correlations of the co-expression 
networks. Subsequently, we validated these findings by conducting an equivalent com-
parison against randomly generated versions of the co-expression networks. Finally, we 
conducted a similarity analysis on the network edges within each context.

Unique and most commonly occurring edges

We first assessed whether there were any edges specific to particular tissue networks, 
identifying 45,963,343 unique edges in total (i.e., 49% of all edges). We also identified 
34,584,720 unique edges in the cell type context (i.e., 57% of all edges) and 31,941,789 
unique edges in the cell line context (i.e., 71% of all edges). These proportions are similar 
to findings by Stacey et al. [39] who found that over half of edges in several PPI databases 
are context-specific. Figure 4 illustrates the frequency of unique and common edges in 
all networks within a context. We find that edges which are common to at least 25% of 
networks within a context are rare (i.e., between 0.07 and 0.16%), while those which are 
in at least 75% of networks are nearly negligible (i.e., 33 edges in total for tissues, 9 for 
cell types, and 4 for cell lines). As only the 1% strongest correlations were selected for 
each network, it was foreseen that a large number of edges in our resulting co-expres-
sion networks would be specific to a single subcontext. Although these unique edges are 
interesting to explore for a given subcontext (green portions in Fig. 4), given the sheer 
volume of unique edges, their investigation was outside of the scope of this work.

We hypothesize that these common edges correspond to basal correlations that are 
not specific as they appear in the majority of networks within one or more contexts. 
Thus, we analyze the most frequently occurring edges in each of the three contexts. 
Unsurprisingly, the two housekeeping genes of the tubulin alpha families (i.e., TUBA1C 
and TUBA1B) are nearly always found to be connected to each other (in 83 out of 98 
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networks), regardless of context. Additionally, IFITM2 and IFITM3, proteins of the 
interferon-induced transmembrane family, which play a key role in immune system 
functions, are also often seen connected to each other in 84 out of 98 networks. Mem-
bers of the human leukocyte antigens (HLA) protein family are also often intercon-
nected across the cell type and cell line contexts. This is in line with Crow et al. [3] who 
found that certain gene modules are predictably found across biological conditions, such 
as those of the immune response. In our previous paper [9], we found that of the most 
common edges among 63 major diseases, members of the Metallothionein (MT) family 
of proteins, were in nearly half of these edges. Similarly, here again we observed that a 
large number of MT proteins share neighbors across networks in every context.

Of the most common edges throughout all contexts (see Additional file  2: Text S3), 
none were indispensable within the interactome. When widening our search to the top 
100,000, we found only seven, three, and one edge in the tissue, cell type, and cell line 
contexts to be indispensable in the interactome, respectively. Next, these most common 
edges found in the majority of networks of a given context were compared to the interac-
tome network to identify concordance between the two. We performed a range of com-
parisons on the most common edges by focusing only on the top 1000 to 10,000 edges, 
in increments of 1000. Then, the most common edges in each co-expression network 
were compared to the interactome. Overall, we found little overlap in the most common 
edges. In the tissue context, we found an overlap of only 5% in the top 1000 most com-
mon edges against the interactome, with this overlap decreasing to 4% when considering 

Fig. 4  Frequency of edge occurrence across networks within a context. Proportions of edges are given as 
those that are unique, or common to varying degrees, in networks within the A tissue, B cell type, and C cell 
line context. From the total set of edges that occur across all networks within each context, the fraction of 
edges that are unique (i.e., appear in at most one network within a given context) are shown in green. From 
this total set of edges, the fraction of those which appear in at least 25% of networks within a given context 
are magnified in a consecutively smaller pie chart (i.e., predominantly in red). Similarly, those which appear in 
at least 50% of networks within a given context are magnified and illustrated in a pie chart predominantly in 
blue. Finally, of this latter group of edges, the fraction of edges that are most common (i.e., appear in at least 
75% of all networks within a given context) are highlighted in purple
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the top 10,000 most common edges. In comparison these proportions ranged from ~ 7 to 
3% in the cell type context between the top 1000 and 10,000 most common edges, and 
4% to 2% in the cell line context.

The strongest correlations tend to correspond with protein–protein interactions more 

than expected by chance

In this section, we investigate whether the strongest correlations present in the co-
expression networks correspond to PPIs more often than what would be expected by 
chance. For this purpose, we permuted each co-expression network for each context 
1000 times while maintaining the original graph structure (see Methods). We next com-
pared the overlap of edges between these permuted co-expression networks with the 
human interactome (the results of the first 100 permutations can be seen in Additional 
file 1: Table S10). Our results show that, on average, the original co-expression networks 
have 1.55 times as many edges in common with the human interactome as compared to 
the permuted networks, which exhibited a comparatively low variability in their over-
lap within a subcontext. Across all contexts, the maximum difference in overlap was for 
the ovary subcontext, where the original ovary co-expression network had 3.3 times as 
many edges in common with the interactome as compared to the permuted versions. 
In comparison, the saliva co-expression network showed the smallest difference in edge 
overlap between the original and permuted co-expression networks, with the overlap of 
the interactome with the original co-expression network having only 1.01 times as many 
edges as the permuted versions on average. Thus, we find that co-expression patterns 
correspond with PPIs more than expected by chance.

Edge‑based similarity across co‑expression networks

Next, we investigated edge similarity across networks within a given context. By compar-
ing the co-expression networks to each other rather than just the interactome, we could 
identify the networks that were most similar edgewise. In the tissue context, two pairs of 
networks displayed the highest degree of similarity, namely the brain and the cortex of 
the cerebral lobe, and the colon and the rectum (Fig. 5A). This finding was not surpris-
ing given that these pairs of tissues are anatomically related (i.e., both are of the brain or 
the colorectum). The cell line context had a few standout pairs of networks which had 
the highest degree of similarity (Fig. 5B). Specifically, the highest similarity was between 
two different human breast cancer cell lines: MDA-MB-231 and MCF7. Additionally, the 
MCF7 cell line again had a high similarity with a human colon cancer cell line, HCT 116. 
On the other hand, in the cell type context, rather than specific pairs showing the high-
est similarity with each other, a few selected subcontexts had a high similarity with most 
of the other networks overall (Fig. 5C). In particular, the peripheral blood mononuclear 
cell network showed high similarity with its more specific cell type networks, including 
monocytes, T cells, and lymphocytes. Overall, these results lend support to how net-
work similarity can reflect similarity across related cell types, tissues, or cell lines.

Mapping co‑expression networks to pathway knowledge

Lastly, we attempted to establish patterns across co-expression networks at a pathway-
level by overlaying pathway knowledge with the co-expression networks. If a given 
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Fig. 5  Pairwise co-expression network similarity across contexts. For each pair of co-expression networks 
within a given context, edge overlap was calculated as a measure of similarity between networks for the A 
tissue, B cell line, and C cell type contexts. A high quality version of the figure is  available at https://​github.​
com/​ContN​eXt/​scrip​ts/​blob/​main/​figur​es/​figur​e5.​pdf

https://github.com/ContNeXt/scripts/blob/main/figures/figure5.pdf
https://github.com/ContNeXt/scripts/blob/main/figures/figure5.pdf
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pathway is related to a specific network (e.g., fatty acid metabolism pathway and the 
liver co-expression network), we would expect that the proteins in the pathway would be 
strongly correlated in the co-expression network. Furthermore, we assume that, given a 
set of highly co-expressed genes of which a majority are involved in a particular pathway, 
the remaining genes may be functionally relevant to the pathway as well. We therefore 
seek to identify the pathways associated with networks from each of the investigated 
contexts. Using the KEGG database [15], we mapped pathway knowledge to co-expres-
sion networks according to Eq. 1 (see Methods).

We found several groups of tissues that had high similarities with pathways related to 
the given tissues (Fig.  6). For instance, the two tissue networks corresponding to cor-
tex of cerebral lobe and brain shared a large group of pathways exhibiting a high degree 
of similarity, including nine synaptic pathways (Fig.  6; green oval) (Additional file  1: 
Table S11). Furthermore, the three networks for liver, cortex of kidney, and kidney also 
had the highest level of similarity with numerous pathways, including eight involving the 
regulation of fatty acids as well as 11 involving amino acid metabolism and degradation 
(Fig. 6; red oval) (Additional file 1: Table S12). Not surprisingly, the adipose tissue net-
work also showed the highest similarity with adipose-related pathways, such as adipocy-
tokine signaling pathway and regulation of lipolysis in adipocytes pathway.

In the cell type context, while no groups of network shared distinct pathways among 
them, we found three cell types having distinct groups of pathways with very high simi-
larity unique to a single network. For example, a number of pathways showed a high 
degree of similarity to the neutrophil co-expression network (Additional file 2: Fig. S8; 
red oval), namely, 11 that regulate the immune response (Additional file 1: Table S13). 
Additionally, the co-expression network for hepatocytes, the primary cell type of the 
liver, had the highest level of similarity with many pathways (Additional file 2: Fig. S8; 
yellow oval), including six involving basic liver function as well as many metabolic path-
ways, particularly 10 pertaining to amino acids metabolism and seven for other specific 
molecules (Additional file 1: Table S14). Lastly, we found an additional group of path-
ways that were exclusively similar to one network, namely the neuron (Additional file 2: 
Fig. S8; green oval). Specifically, this included five pathways related to neurotransmit-
ter systems, long-term depression, and pathways related to addiction (Additional file 1: 
Table S15).

Fig. 6  Similarity between tissue-specific co-expression networks and KEGG pathways. The similarity between 
a particular pathway and a co-expression network is defined as the percentage of pairwise combinations 
of proteins of a given KEGG pathway that can be found in a co-expression network as edges. Light blue 
corresponds to a lower similarity, while dark blue corresponds to a high similarity. A high quality version of 
this figure is  available at https://​github.​com/​ContN​eXt/​scrip​ts/​blob/​main/​figur​es/​figur​e6_​highq​uality.​pdf 
and can also be visualized in the web application

https://github.com/ContNeXt/scripts/blob/main/figures/figure6_highquality.pdf
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Analogous to the cell type context, while related groups of networks from the cell line 
context were not found to be similar to related groups of pathways (Additional file  2: 
Fig. S9), several individual cell lines were observed to be highly similar to a group of 
pathways. However, these pathways were not necessarily unique to the cell line, show-
ing some similarity with other cell lines as well. Interestingly, we found a large group 
of pathways (i.e., 70 in total) with consistently high similarity with nearly all cell lines, 
with the exception of the THP-1 cell line (Additional file  2: Fig. S9; green rectangle). 
These include 24 different signaling pathways and 16 different cancer pathways (Addi-
tional file 1: Table S16). Notably, we found a group of pathways that were distinctly simi-
lar to two cell lines (i.e., A549 and TK6). Specifically, 14 pathways showed a high degree 
of similarity to the A549 cell line co-expression network (Additional file 2: Fig. S9; yel-
low oval). This cell line originated from adenocarcinomic human alveolar basal epithelial 
cells from lung cancer and is used as a model for drug metabolism [10]. Of these 14 
pathways that, on average, showed the highest similarity to this cell line relative to the 
others, eight were pathways involving metabolism and three were pathways related to 
compound biosynthesis (Additional file  1: Table  S17). Similarly, we identified a group 
of pathways which showed a higher similarity to the TK6 cell line, originating from a 
human B lymphoblastoid cell [36], over all other cell lines (Additional file 2: Fig. S9; red 
oval), including five signaling pathways (Additional file 1: Table S18).

ContNeXt—a web application to explore gene expression patterns across contexts

To provide access to the co-expression networks and analyses presented in this work, 
we have developed ContNeXt, a web application that facilitates the large-scale explora-
tion and analysis of transcriptomic patterns across multiple contexts. The main page of 
the web application allows users to search co-expression patterns for a given node in a 
particular context or browse and query specific nodes in a certain subcontext (Fig. 7A). 
With interactive network visualizations, users can explore these patterns and employ 
functionalities such as filtering or search boxes (Fig.  7B). Similarly, the heatmaps pre-
sented in this work can be interactively explored through the web application (Fig. 7C). 
Finally, both the processed data and networks can be downloaded directly from the web 
application.

Discussion
We have presented a large-scale network-based approach that aims at revealing common 
and specific biological processes and mechanisms across contexts by identifying tran-
scriptional patterns that are unique to various cell types, tissues, and cell lines, as well as 
patterns which are consistent across them. In order to do so, we constructed co-expres-
sion networks to capture the strongest correlations observed in 98 specific subcontexts 
belonging to these three biological contexts (i.e., tissues, cell types, and cell lines) and 
conducted a series of analyses at the protein, network, and pathway levels. Finally, we 
developed a web application to enable users to query and display these networks and 
ultimately, explore shared and distinct co-expression patterns for multiple contexts.

We believe that one strength of our work is its robustness, as we have systematically 
leveraged hundreds of curated datasets, thereby ensuring a diverse sample of experi-
ments conducted in similar settings whilst applying a common preprocessing and 
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Fig. 7  ContNeXt web application. A Main page. Users can query for specific genes or directly explore 
the networks of a given context. B Network page. Users can explore and navigate through the neighbors 
of a specific gene for each network. C Heatmap visualization. Heatmaps presented in this work can 
be interactively viewed to investigate pairwise co-expression network -based similarity as well as 
pathway- co-expression network -based similarity
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analysis pipeline. However, although we applied a conservative inclusion/exclusion 
criteria, we cannot assume that every dataset in the same (sub)context is equivalent 
and thus, some of the patterns identified may be dataset-specific. To account for this 
factor and reduce noise and variability across datasets, we focused on the 1% strong-
est correlations, keeping in mind that the choice of cut-off can influence the result-
ing co-expression network [44], and also constrained our analysis to subcontexts with 
a large number of samples. Still, independently of this minimum criteria, there are 
differences in the number of datasets per subcontext that could lead to variability 
for specific subcontexts with a small sample size. Another limitation is that we have 
exclusively relied on the platform with a large number of datasets in the Gemma data-
base. Similarly, we also employed Gemma’s context annotations to classify the data-
sets. While it is technically possible to include more platforms in our analysis as well 
as annotate datasets from other databases, each additional platform would require its 
own independent processing pipeline and a significant curation effort. Furthermore, 
in the cell line context, it is important to note that the majority of cell lines origi-
nate from widely used immortal cancer cell lines, which might differ from the normal 
human cells used for the cell type and tissue contexts. Finally, we would like to remark 
on two other limitations of our analysis. Firstly, while we employed a large and high-
quality version of the protein–protein human interactome, some parts of the graphs 
are more dense than others as some proteins are under-studied [35]. Secondly, some 
of the analyses are influenced by the size of the co-expression networks (Fig. 3), as the 
fewer nodes a network has, the more dense it is due to the larger amount of connec-
tions between its nodes.

Lastly, we would like to mention some of the prospects we foresee for future work. 
Firstly, by further incorporating single-cell experiment datasets, we can potentially iden-
tify more granular patterns. Additional single-cell RNA-seq datasets can be included 
in our work to verify whether the observed tissue-specific transcriptional patterns are 
indeed characteristic to specific tissues, or are influenced by their cellular composition, 
as observed by Farahbod and Pavlidis [8]. While this large-scale exercise is not feasible at 
the moment due to the lack of available data of this kind, we expect that it could be con-
ducted in future. Secondly, disease-specific gene expression datasets can be exploited to 
compare disease-specific signatures with the ones observed in a related normal tissue 
or cell type in order to identify the biological processes and pathways that are dysregu-
lated in the disease context. Thirdly, as demonstrated by Azevedo et al. [1] and Sealfon 
et  al. [37], machine learning models could be trained on the generated co-expression 
networks to classify signatures coming from new samples into a particular context given 
its specific characteristics.
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