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Introduction
It has been discovered that succinylation is a novel protein post-translational modifi-
cation, which is related to a variety of biological processes, including cancer progres-
sion and metastasis, and involves in the life activities such as glucose metabolism and 
amino acid metabolism through regulating the protease activity and gene expression 
[1]. Owing to the binding of lysine residues to succinyl group after succinylation, a 
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series of changes have taken place in the protein structure. Furthermore, succinyla-
tion changes the charge of lysine residues from + 1 to –1, which further changes the 
physico-chemical properties of amino acids and enriches protein function [2]. Many 
related studies have fully displayed that succinylation may regulate multiple meta-
bolic processes of organisms [3, 4], whose abnormalities are closely connected with 
emergence and development of human diseases, which include inflammation, tumors, 
cardiometabolic diseases, and so on [5, 6]. It can be seen that the importance of suc-
cinylation is self-evident, which has also attracted the atteintion of many researchers 
at home and broad [7].

Currently, a variety of biological experimental approaches have been come up with 
identifying succinylation sites, for instance, high-performance liquid chromatography 
assays, mass spectrometry, liquid chromatography-mass spectrometry, and so on [8]. 
In my opinion, these approaches are both costly and inefficient. Therefore, it is urgent 
to solve the shortcomings of biological experimental approaches by exploring a novel 
approach.

In recent years, thanks to the wide application of machine learning, a host of research-
ers have applied it to identify succinylation sites to solve the weakness of biological 
experimental approaches [9, 10]. Hasan et al. reviewed the latest advances regarding the 
current predictors, datasets, and online resources, which provided a useful guideline 
for developing effective succinylation site prediction tools [11]. Tasmia et  al. updated 
the predictors, datasets, and online resources metioned in this review according to the 
development in recent years [12]. Xu et al. [13] built a succinylated site predictor based 
on SVM called iSuc-PseAAC in 2015, but the true distribution of the dataset is not fully 
taken into account. Jia et al. constructed some predictors including pSuc-Lys [14] and 
iSuc-PseOpt [15] in 2016; however, these classifiers ignored some important sequence 
information. Hasan et al. [16] built a predictor called SuccinSite based on the random 
forest (RF). In 2018, Dehzangi et  al. [17] constructed the SSEvol-Suc predictor, which 
combined PSSM and the secondary structure with the AdaBoost by graph double-byte 
mapping, which is remarkably superior to previous predictors. Hasan et  al. [18] con-
structed GPSuc by using logical regression (LR) combined with the output of different 
RF scores. Yosvany et  al. [19] proposed a SVM-based predictor named Success with 
combining the structure and evolution information of amino acids with double-stranded 
maps. Zhu et al. [20] developed a RF-based predictor named Inspector combined with 
some sequence feature encoding schemes in 2020. To reduce the computational com-
plexity, Zeng et al. [21] proposed a computational method named iSuc-ChiDT in 2022. 
Obviously, these approaches adopt manual feature selection, but it is difficult to find use-
ful potential information [22]. Therefore, it is very necessary to explore a novel predictor 
which can automatically learn features to predict succinylation sites.

Along with the deepening of study, we found that deep learning (DL) can effectively 
overcome the shortcomings of the above problems, and can automatically learn use-
ful features from the dataset. In 2020, Ning et al. [23] constructed the predictor named 
HybridSucc integrating a variety of information features, and adopts the penalized logis-
tic regression algorithm and deep neural network (DNN) to make the model optimized. 
Thapa et al. [24] created a DL-based predictor called DeepSuccinylSite. Huang et al. [25] 
introduced long short-term memory (LSTM) and convolution neural network (CNN) 
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into DL methods in 2021. These predictors enrich the applications of DL in succinyla-
tion site prediction.

Based on the above review, we proposed a novel predictor using ensemble dense 
blocks and an attention module, called as pSuc-EDBAM. pSuc-EDBAM used one hot 
encoding to extract the initial protein sequence feature maps, and generated the low-
level feature maps through 1-D CNN. Afterward, ensemble dense blocks [26] were 
adopted to capture the advanced features from the initial features. In addition, an atten-
tion module was used to evaluate the importance degrees of different protein sequence 
features, make every feature map weighted, and then improve the network abstraction 
ability to predict potential succinylation sites. The features were then matched with the 
softmax classifier to go on succinylation site prediction. To further illustrate the perfor-
mance of pSuc-EDBAM, we performed ten-fold cross-validation on the training data-
set and independent test on the testing dataset. According to experimental results, our 
model has yielded promising results and is superior to the existing predictors. The pre-
diction and potential succinylation sites further show that pSuc-EDBAM is a powerful 
predictor for predicting unknown succinylation sites.

The main contributions of the paper are summarized below: (1) An effective and novel 
predictor was proposed based on ensemble dense blocks and an attention module for 
succinylation sites prediction, called as pSuc-EDBAM. (2) An improved attention mod-
ule was introduced into the prediction of succinylation sites, which improved the pre-
diction ability of succinylation sites. (3) In this paper, our model is simple and easy to 
use, and features are automatically learned on the basis of feature map extracted by one 
hot encoding, which greatly improves the ability of succinylation site prediction. (4) The 
model built in this paper can broaden the thinking of other researchers and do better 
research. (5) A web-server has been provided at http://​bioin​fo.​wugen​qiang.​top/​pSuc-​
EDBAM/, by which the desired results may be easily obtained.

Materials and methods
In binary classification-based lysine succinylation site prediction studies, we labeled 
each potential site as a succinylated site or a non-succinylated site [27]. In particular, we 
extracted a protein sequence with length L = 2r + 1 with lysine (K) as the center, where r 
represents amino acid residues on each side. Firstly, we converted the input into numeri-
cal vectors by an encoding method, and then we trained pSuc-EDBAM based on the 
benchmark training dataset. Finally, its performance was evaluated by comparing it with 
other existing predictors.

Benchmark dataset

The benchmark dataset was gathered from the UniProtKB/Swiss-Prot database [28] and 
NCBI protein sequence database from Ning et  al. [29]. In order to reduce the model 
deviations owing to the sequence homology, we used CD-HIT [30] to remove redun-
dant sequences, and set the threshold to 0.3. Finally, 2322 proteins were retained as our 
final benchmark dataset, containing 5009 experimentally verified succinylation sites 
and 53,542 non-succinylation sites. To conveniently compare with other existing meth-
ods, 124 proteins were randomly separated from 2322 proteins as an independent test-
ing dataset, and the remaining proteins were used as a training dataset. Table 1 lists the 

http://bioinfo.wugenqiang.top/pSuc-EDBAM/
http://bioinfo.wugenqiang.top/pSuc-EDBAM/
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specifies of the benchmark dataset. In order to facilitate further research by research-
ers, the benchmark dataset can be easily obtained from https://​github.​com/​wugen​qiang/​
pSuc-​EBDAM/​tree/​main/​datas​et.

We adopted Chou’s peptide formulation [31], each protein sequence can be defined as 
Eq. (1).

where K denotes the lysine and δ denotes an integer, R−δ denotes the δth amino acid 
residue to the left of K, and R+δ denotes the δth amino acid residue to the right of K, so 
that Pδ(K ) can define each protein sequence as two classes as shown in Eq. (2).

It is not difficult to find that some protein sequences have some non-standard resi-
dues, such as "X", we adopted a better approach from Jia’s paper [14], which made this 
part of amino acid residues filled via mirroring image, as defined in Eqs. (3) and (4).

(A)	The mirror image of carbon-terminus

(B)	 The mirror image of nitrogen-terminus

The mirror image of carbon-terminus is on the left of " ⇔ " in Eq. (3), and the mirror 
image of nitrogen-terminus is on the right of " ⇔ " in Eq. (4); while the original sequence 
is on the other side, with " ⇔ " indicating the mirror image and K representing the lysine.

Sequence feature extraction via one hot encoding

One hot encoding is a common feature extraction method to reflect the types and posi-
tions of amino acid residues directly, which has been maturely applied to the process of 
protein feature extraction [32]. In this study, we applied this method to obtain feature 
maps from the protein sequences for further research. We listed the 20 amino acid resi-
dues in alphabetical sequence as ACDEFGHIKLMNPQRSTVWY and enforced the fol-
lowing rule: the ith amino acid residue was labeled as 1 in the ith position and 0 in the 
other positions, such as amino acid residue D was coded as 00100000000000000000, and 
then the protein sequence of length L can be converted into L× 20 dimensional feature 
vector.

(1)Pδ(K ) = R−δR−(δ−1) · · ·R−2R−1KR+1R+2 · · ·R+(δ−1)R+δ

(2)Pδ(K ) ∈ P+
δ (K ), if the center is a succinylation site

P−
δ (K ), otherwise

(3)R+δR+(δ−1) · · ·R+2R+1 ⇐⇒
K

R+1R+2 · · ·R+(δ−1)R+δ

(4)R−δR−(δ−1) · · ·R−2R−1 ⇐⇒
K

R−1R−2 · · ·R−(δ−1)R−δ

Table 1  The specifies of the benchmark dataset

Original dataset Number of proteins Positive site Negative site

Training dataset 2198 4755 50,549

Testing dataset 124 254 2977

https://github.com/wugenqiang/pSuc-EBDAM/tree/main/dataset
https://github.com/wugenqiang/pSuc-EBDAM/tree/main/dataset


Page 5 of 16Jia et al. BMC Bioinformatics          (2022) 23:450 	

Model construction

We constructed a model to learn the deeply hidden features of succinylation sites effi-
ciently in this study, called as pSuc-EDBAM. In this pSuc-EDBAM model, ensemble 
dense blocks [26] were adopted to obtain the advanced features. Afterward, we intro-
duced an attention module to evaluate feature importance degrees. Eventually, the 
advanced features were input into the softmax classifier to predict succinylation sites. 
The framework of pSuc-EDBAM is shown in Fig. 1.

1‑D CNN

The convolution neural network (CNN) is a common feed-forward network, which 
was proposed by LeCun et  al. [33, 34] and has some notable advantages such as 
parameter sharing and local connectivity. In 1-D CNN, the CNN kernel moves in 
one direction to extract the protein sequence features, and the dimensions of input 
and output data are both two-dimensional, mainly used for sequence model, while in 
2-D CNN, the CNN kernel moves in two directions to extract the protein sequence 
features, and the dimensions of input and output data are both three-dimensional, 
mainly used for image data [35].

Here, we used 1-D CNN to extract low-level features. Suppose a discrete sequence 
is α = [α1,α2, . . . ,αn] , and the convolution kernel is β = [β1,β2, . . . ,βm] . The 1-D 
CNN of α and β is expressed as Eq. (5).

where d represents the stride of convolution and k indicates the length of the output 
sequence features, which is the most integer less than or equal to (n−m)

d
+ 1.

After adopting one hot encoding to extract the feature map, we generated the low-
level feature map through 1-D CNN, as shown in Eq. (6).

where I denotes the feature map extracted from one hot encoding, W  denotes the weight 
matrix, b is used to denote the bias term, σ is used to denote the exponential linear unit 
(ELU) activation function [36], and X0 denotes the low-level feature map generated by 
the 1-D CNN.

(5)α ∗ β =

[

m
∑

i=1

αjd+i−1bi

]

, j = 1, 2, . . . , k

(6)X0 = σ(I ∗W + b)

Fig. 1  The framework of the pSuc-EDBAM model
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Ensemble dense blocks for further feature extraction

For the sake of extracting the advanced features of succinylation sites, we introduced 
the ensemble dense blocks, which have been shown to perform higher than traditional 
CNN. The structure of a dense block is expressed as Fig. 2.

The advanced feature representation of the low-level feature map was extracted by the 
dense block, which is expressed as Eq. (7).

where Xl−1 represents the feature map generated by the (l − 1)th convolutional layer 
within the dense block. W ′ represents the weight matrix, b′ denotes the bias term. The 
output value of the dense block is the concatenation of X0 , X1 , . . . , and Xl.

The next step was to build the transition layer, which is expressed as Eq. (8).

 where W ′′ denotes the weight matrix, b′′ represents the bias term, and X refers to the 
output value of the transition layer. Afterward, the average pooling was performed on X 
to reduce the risk of overfitting.

In the study, we integrated four dense blocks. What’s more, Eq. (8) is not performed 
after the fourth implementation of Eq.  (7) but replaces it with global average pooling. 
Ultimately, the advanced feature X (seq) was extracted after the above process.

An attention module for learning feature importance degrees

From my point of view, different features have different degrees of importance. Conse-
quently, we introduced an attention module to learn feature importance degrees and 
make every feature map weighted. Here, we proposed the channel attention module, 
which is implemented via global average pooling, global max pooling, and two fully con-
nected layers, which adds the global max pooling to increase the receptive field of the 
channel and the importance of learning characteristics more comprehensively based on 
SE [37] module. The structure of the channel attention module is described in Fig. 3.

For the advanced feature X (seq) , the channel attention module used global aver-
age pooling and global max pooling to squeeze the space information of X (seq) into the 

(7)Xl = σ([X0;X1; . . . ;Xl−1] ∗W ′ + b′)

(8)X = σ([X0;X1; . . . ;Xl] ∗W ′′ + b′′)

Fig. 2  The structure of a dense block
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channel z , separately, which respectively used Eq. (9) to get the compressed result zavg 
and zmax.

where w is the width of X (seq) and h is the height of X (seq).
Thereafter, two fully connected layers were adopted to process zavg and zmax respec-

tively to obtain the channel information of X (seq) and learn the weight of X (seq) , as 
described in Eq. (10), and then got savg and smax , respectively.

where s denotes the weight of X (seq) , τ means a rectified linear unit (RELU) function and 
σ represents a sigmoid function. W1 and W2 are the parameter. To make the weight infor-
mation of captured every feature map more comprehensive, we added savg and smax to 
get the specific weight information of every feature map, as described in Eq. (11).

Ultimately, the output value of the attention module can be got by scaling X (seq) with 
the activation described in Eq. (12).

where Fscale(X (seq)
, s) indicates that each specific value of X (seq) is multiplied by the 

weight s.

Softmax classifier

On the basis of the advanced features, the softmax classifier was adopted to predict suc-
cinylation sites in this study, which received the advanced features as input, and then 
weighted summation and activation operations are performed to obtain the predicted 
results of succinylation sites, just as Eq. (13).

where Ws
i  and Ws

j  indicate the weight matrices, bsi and bsj indicate the bias terms, and 
x denotes the samples. P(y = i|x) refers to the probability that x is predicted to be i . 

(9)z = Fsq(X
(seq)) =

1

w × h

h
∑

i=1

w
∑

j=1

X (seq)(i, j)

(10)s = Fex(z,W ) = σ(W2 ∗ τ (W1 ∗ z))

(11)s = savg + smax

(12)X (seq) = Fscale(X
(seq)

, s) = s · X (seq)

(13)P(y = i|x) =
eW

s
i ∗X+bsi

∑

2

j=1
e
Ws

j ∗X+bsj

Fig. 3  The structure of the channel attention module
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Owing to succinylation site prediction may be considered as a problem of the binary 
classification, therefore i = 0 or i = 1.

The decision threshold refers to the decision that converts the prediction probability 
into the target class. In this paper, the threshold we use is the default value, set to 0.5. 
When the prediction probability is higher than 0.5 ( P > 0.5 ), the site is predicted to be 
succinylated, and when the prediction probability is lower than 0.5 ( P < 0.5 ), the site is 
predicted to be non-succinylated.

Model training

The pSuc-EDBAM was carried out based on Keras 2.8 (https://​keras.​io/) in this paper, 
which is a flexible, simple, and Python-based approach. We adopted the cross entropy as 
the loss function, which is shown in Eq. (14).

where n represents the number of training samples, xj indicates jth input, and yj rep-
resents the true label of xj . The loss function was optimized by Adam optimizer [38], 
and the parameters were adjusted by the gradient descent method to minimize the loss 
function.

Additionally, L2 regularization was adopted to weaken the negative influence of over-
fitting, we also used dropout [39] and early stopping [40] to further avoid overfitting. 
The ratio of positive samples to negative samples in our succinylated dataset is 1:11, 
which is very unbalanced. To weaken the influence of unbalanced dataset, we introduced 
the class weight and set the class weight ratio of positive samples to negative samples to 
11:1. By this means, the pSuc-EDBAM model could improve the influence of positive 
samples, so as to further improve the recognition rate of succinylation sites.

Performance evaluation

Four common metrics were considered to evaluate the performance of pSuc-EDBAM 
reasonably as previously described [41], including sensitivity (Sn), specificity (Sp), accu-
racy (Acc), and Mathews Correlation Coefficient (MCC) [42], which are defined as 
Eq. (15).

where TP, TN, FP, and FN denote true positive samples, true negative samples, false 
positive samples, and false negative samples, respectively. Sn was adopted to measure 
the proportion of predicting succinylation sites correctly, Sp measured the proportion of 
predicting non-succylation sites correctly, and Acc revealed the proportion of predict-
ing sites correctly. When the distributions of samples are very imbalanced, MCC was 
considered to be the more noteworthy measure because it can more accurately reflect 
the quality of the model [43]. In general, the value of MCC is –1, indicating that the 

(14)C = −
1

n

n
∑

j=1

yjlnP(yj = 1|xj)+ (1− yj)lnP(yj = 0|xj)

(15)



















Sp = TN
TN+FP

Sn = TP
TP+FN

Acc = TP+TN
TP+TN+FP+FN

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

https://keras.io/
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prediction of succinylated sites is completely wrong; the value of MCC is 0, indicating 
that the prediction effect of succinylation sites is not better than that of random predic-
tion, and the value of MCC is + 1, meaning that the prediction of succinylation sites is 
completely correct.

What’s more, the receiver operating characteristic (ROC) curve was adopted to reveal 
the performance of the model. On this basis, we introduced the area under the ROC 
curve (AUC) to further intuitively explain the performance of the model. The higher 
the AUC, the better the overall performance of the model. ten-fold cross-validation was 
adopted to evaluate the robustness of pSuc-EDBAM and independent test was used to 
compare the performance of pSuc-EDBAM with the existing predictors.

Results and discussion
Select the best window size of succinylation sites

The size of the protein sequence directly determines the feature representation learned 
by the model, so the selection of its value has an important influence on the succinyla-
tion site prediction. To gain the best window size of the succinylation sites of the pSuc-
EDBAM model, it is especially necessary to make full use of the automatic and efficient 
feature extraction of CNN. Based on the training dataset, we chose 19, 21, 23, 25, 27, 29, 
31, and 33 as the window size, tested each window size by ten-fold cross-validation, and 
then averaged the experimental results. The experimental results are shown in Fig.  4. 
MCC value reaches maximum when the window size is 31, which indicates that 31 is the 
best window size of the succinylation sites of the pSuc-EDBAM model.

Sequence analysis of succinylation sites

This investigation analyzed the frequency of occurrence of 30 amino acid residues sur-
rounding the succinylation site on fragment protein sequences to find the potential con-
sensus motifs. Two Sample Logo [44] is an effective tool to find statistically noteworthy 
differences in position-specific symbol compositions between the succinylated and non-
succinylated sites. To better distinguish succinylation sites and non-succinylation sites 
in the samples, we used Two Sample Logo to analyze the protein sequences and looked 

Fig. 4  The values of MCC under different window sizes are based on the training dataset
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into the frequency and position differences of 20 amino acid residues near the succinyla-
tion sites and non-succinylation sites, as described in Fig. 5.

In this study, the lysine (K) amino acid residue was placed in the middle of the frag-
ment protein sequences, and positions of the flanking amino acid residues were shown 
in the range from 1 to 31. The comparison between 4755 succinylation sites and 50,549 
non-succinylation sites in Fig. 5 demonstrates that the amino acids including alanine (A), 
asparagine (D), leucine (L), arginine (R), and valine (V), had the highest ratios around 
the succinylation site, glutamicacid (E), lysine (K), serine (S) appeared more frequently 
around the non-succinylation site. Therefore, we concluded that the frequencies and 
positions of amino acid residues around the succinylation site and the non-succinylation 
site are different, and the analysis showed that the distance among amino acid charac-
teristics in a sequence plays a vital role in distinguishing between succinylation sites and 
non-succinylation sites.

Performance of pSuc‑EDBAM on the training dataset

To analyze the performance of pSuc-EDBAM, we conducted ten-fold cross-validation 
on the training dataset shown in Table 1. As described in Table 2, we find that the values 
of Sn, Sp, Acc, and MCC on the training dataset are very stable, and the fluctuation is 
relatively small, indicating that our proposed model has a certain stability, and effectively 
avoids the problem of overfitting. Therefore, the pSuc-EDBAM model has good perfor-
mance on the training dataset.

Figure 6 shows the ROC curve of the pSuc-EDBAM on the training dataset, and the 
mean of AUC is 0.8295. The result indicates that our proposed pSuc-EDBAM has nota-
ble advantages including better stability.

Comparison with the existing predictors

To certify the effectiveness of our predictor named pSuc-EDBAM, we conducted 
independent test on the same independent testing dataset to objectively compare 

Fig. 5  A two-sample logo of succinylation sites against non-succinylation sites with L = 31
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pSuc-EDBAM with existing predictors. Eight existing predictors were considered, 
including SuccinSite [16], SuccinSite2.0 [45], Success [19], pSuccE [29], GPSuc [18], 
Inspector [20], iSuc-ChiDT [21], and iSuccLys-BLS [46]. The details are shown in 
Table 3. SuccinSite was established based on RF which was trained with three combined 
encodings. SuccinSite2.0 was also constructed through RF, but it took the composition 
of profile-based amino acid and orthogonal binary features as the training data. Success 
was constructed by using the structural and evolutionary information of amino acids to 
extract protein features. PSuccE was another classifier combining multiple features with 
a feature selection scheme. GPSuc was established based on RF. iSuc-ChiDT was pro-
posed to identify succinylation sites using statistical difference table encoding and the 
chi-square decision table classifier. iSuccLys-BLS was constructed using a broad learning 
system (BLS), which optimized the imbalanced training dataset using randomly labeling 
samples. The novel deep learning-based predictor pSuc-EDBAM was proposed in this 

Table 2  Performance of pSuc-EDBAM on the training dataset

Fold times Sn (%) Sp (%) Acc (%) MCC

1 77.10 73.16 73.49 0.3043

2 76.68 74.44 74.63 0.3130

3 81.30 72.01 72.81 0.3190

4 76.26 72.36 72.70 0.2928

5 77.52 73.17 73.54 0.3069

6 73.89 72.74 72.84 0.2819

7 75.16 76.48 76.37 0.3224

8 79.79 69.73 70.60 0.2919

9 79.16 71.41 72.08 0.3015

10 72.21 77.25 76.82 0.3122

Mean ± STD 76.91 ± 2.60 73.28 ± 2.15 73.59 ± 1.80 0.3046 ± 0.0122

Fig. 6  The receiver operating characteristics (ROC) curve for pSuc-EDBAM on the training dataset. AUC 
denotes the area under the ROC curve
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paper based on ensemble dense blocks and an attention module, which adopted one hot 
encoding to capture the protein sequence feature.

The ratio of positive samples to negative samples in the independent testing dataset 
studied in this paper is about 1:11, and the dataset is extremely unbalanced. In the study 
of this kind of unbalanced data, Sn and MCC are the main indicators to consider, and 
the improvement of these two indicators is particularly important. As can be seen in 
Table 3, based on the independent testing dataset, the pSuc-EDBAM gained higher val-
ues of Sn, which is 3.29% higher than the current best predictor named iSuccLys-BLS 
[45]. We know that Sn means the proportion of all positive samples that are correctly 
predicted as positive samples, and then evaluates the predictor’s performance in predict-
ing positive samples. Therefore, the novel predictor pSuc-EDBAM with the higher Sn 
value is more significant and practical for predicting succinylation sites. We find that 
the earliest predictors have high Sp and low Sn, such as SuccinSite, SuccinSite2.0, Suc-
cess, pSuccE, and GPSuc. This is because these predictors did not take into account the 
imbalance of the data or find a reliable method to solve the problem of unbalanced data, 
which caused the recognition of these predictors to the positive samples was not obvi-
ous. When noticing the unbalanced distribution of the dataset, the values of Sn and Sp 
would tend to be balanced. It means that the predictor taking into account the data dis-
tribution is of more practical significance, such as Inspector, iSuc-ChiDT, iSuccLys-BLS, 
and our proposed predictor called pSuc-EDBAM. It is found that our predictor is signifi-
cantly superior to Inspector, iSuc-ChiDT, and iSuccLys-BLS in all metrics.

When AUC is nearer 1, the performance of predictor is better. Figure  7 shows the 
ROC curve of the pSuc-EDBAM on the independent testing dataset, and AUC is 0.8201. 
The result indicates that our proposed novel predictor has more advantages and better 
stability. Therefore, it is expected that pSuc-EDBAM may be a more representative and 
meaningful tool in succinylation site prediction.

Implementation of the pSuc‑EDBAM predictor and user guide

An effective predictor can be beneficial for researchers to study the protein succinyla-
tion sites. In this study, an open online web-based predictor named pSuc-EDBAM 
is designed to analyze protein succinylation sites efficiently, which can be accessed 

Table 3  Performance comparison of pSuc-EDBAM with other existing predictors on the 
independent testing dataset

Predictor Sn (%) Sp (%) Acc (%) MCC

SuccinSite 37.10 88.20 84.20 0.1990

SuccinSite2.0 45.40 88.20 84.80 0.2610

Success 14.20 86.80 81.10 0.0700

PSuccE 37.50 88.60 84.50 0.2040

GPSuc 49.90 88.30 85.30 0.2960

Inspector 69.30 71.70 71.50 0.2380

iSuc-ChiDT 70.47 66.27 68.30 0.2050

iSuccLys-BLS 72.30 68.90 69.20 0.2340

pSuc-EDBAM 75.59 74.13 74.25 0.2927
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at http://​bioin​fo.​wugen​qiang.​top/​pSuc-​EDBAM/. To make the convenience of most 
researchers, we supply a user guide below:

Step 1: Open the homepage of the pSuc-EDBAM predictor as described in Fig. 8. 
You can click on the web page button such as "Help" or "More info…" to look up 
the profile of the pSuc-EDBAM web server.
Step 2: Enter a single protein sequence according to the prompt, which is required 
to be in FASTA format. Click on "example" button and you can see the example of 
a protein sequence in FASTA format.
Step 3: Click on "Submit" button after inputing the protein sequence and you can 
obtain the predicted results of the succinylation sites.
Step 4: The users of the pSuc-EDBAM predictor can upload files by the "Browse" 
button and these files must be in FASTA format. Then you need to leave the pro-
ject name and your email address so that we can send the predicted results of the 
succinylation sites to you in a timely manner.

Conclusion
In this paper, we proposed a novel predictor called pSuc-EDBAM for succinylation 
site prediction, which used ensemble dense blocks and an atteintion module. The 
efficiency of the pSuc-EDBAM was demonstrated by ten-fold cross-validation on the 
training dataset and independent test on the testing dataset.

Although pSuc-EDBAM has shown strong robustness in predicting succinyla-
tion sites, it still has some weakness. In the course of continuous learning, we have 
learned that the deep learning is regarded as a black box, which may not be explained 
in biological processes [47]. In the following work, we will take biological interpre-
tation into consideration and apply more effective attention modules including the 

Fig. 7  The receiver operating characteristics (ROC) curve for pSuc-EDBAM on the independent testing 
dataset. AUC denotes the area under the ROC curve

http://bioinfo.wugenqiang.top/pSuc-EDBAM/
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convolutional block attention module (CBAM) [48], external attention (EA) [49], and 
so on, through which will have more meaningful gains in the following experiments.

Considering these together, although further improvement should be conducted 
as new dataset are available, the pSuc-EDBAM will provide useful information for 
further experimental manipulation. With the upgrading of technology and the rapid 
development of proteomics research technology, new research approaches emerge in 
endlessly, which will bring great convenience to the medical field. It is helpful to fur-
ther reveal the regulation mechanism of succinylation and provide new ideas for the 
biomedical research.
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