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Abstract 

Background:  Brain tumor segmentation plays a significant role in clinical treatment 
and surgical planning. Recently, several deep convolutional networks have been 
proposed for brain tumor segmentation and have achieved impressive performance. 
However, most state-of-the-art models use 3D convolution networks, which require 
high computational costs. This makes it difficult to apply these models to medical 
equipment in the future. Additionally, due to the large diversity of the brain tumor and 
uncertain boundaries between sub-regions, some models cannot well-segment multi-
ple tumors in the brain at the same time.

Results:  In this paper, we proposed a lightweight hierarchical convolution network, 
called LHC-Net. Our network uses a multi-scale strategy which the common 3D con-
volution is replaced by the hierarchical convolution with residual-like connections. It 
improves the ability of multi-scale feature extraction and greatly reduces parameters 
and computation resources. On the BraTS2020 dataset, LHC-Net achieves the Dice 
scores of 76.38%, 90.01% and 83.32% for ET, WT and TC, respectively, which is better 
than that of 3D U-Net with 73.50%, 89.42% and 81.92%. Especially on the multi-tumor 
set, our model shows significant performance improvement. In addition, LHC-Net has 
1.65M parameters and 35.58G FLOPs, which is two times fewer parameters and three 
times less computation compared with 3D U-Net.

Conclusion:  Our proposed method achieves automatic segmentation of tumor sub-
regions from four-modal brain MRI images. LHC-Net achieves competitive segmenta-
tion performance with fewer parameters and less computation than the state-of-the-
art models. It means that our model can be applied under limited medical computing 
resources. By using the multi-scale strategy on channels, LHC-Net can well-segment 
multiple tumors in the patient’s brain. It has great potential for application to other 
multi-scale segmentation tasks.
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Background
The brain tumor is one of the diseases that seriously threaten human life. According to 
statistics from the World Health Organization, the brain tumor is the second greatest 
cause of death from human diseases. The magnetic resonance image (MRI) has been 
extensively used in brain tumor detection and diagnosis [1]. MRI images have multiple 
modalities such as T1-weighted (T1), T2-weighted (T2), contrast-enhanced T1-weight 
(T1ce) and T2 Fluid Attenuated Inversion Recovery (Flair). These modalities show differ-
ent contrasts for different brain tissues [2]. Accurate clinical brain tumor labels require 
tumor sub-regions including edema, enhancing tumor, necrosis and non-enhancing 
tumor. It is an important step for the treatment of patients [3]. However, manual anno-
tation on each MRI image by doctors is inefficient, time-consuming and non-objective. 
Therefore, the automatic and accurate segmentation method has become the key instru-
ment in clinical diagnosis and treatment.

In recent years, deep learning technology has been extensively studied and practiced 
[4, 5]. Many researchers have proposed some effective methods for medical images 
segmentation based on deep learning [6–8]. For brain tumor segmentation, semantic 
segmentation networks consisting of encoder and decoder are widely adopted. These 
networks are divided into 2D and 3D convolutional neural networks (CNNs).

The 2D network operates over 2D convolutions to perform 3D calculations on feature 
maps. Havaei et  al. used a cascade network and solved the imbalance of brain tumor 
labels through the 2-phase training procedure [9]. Banerjee et  al. combined the Con-
vNets with shortcut connections to improve the performance in locating and recovering 
object details [10]. Jungo et al. improved pooling flow and introduced residual flow in 
U-Net so that the network can combine global and local feature information [11]. These 
networks occupy fewer storage and computing resources. However, they ignore the con-
tinuity between slices, which is limited in extracting 3D spatial information. While the 
three-dimensional feature helps to improve the accuracy of brain tumor segmentation. 
Therefore, some researchers extracted features from different directions of a 3D volume 
[12, 13]. For example, Li et al. proposed a 2D network with three branches processing 
images along three directions: sagittal, coronal and axial views [14].

The 3D network operates over 3D convolutions to perform 4D calculations on feature 
maps. The spatial context information can be better combined by 3D input to improve 
the accuracy of segmentation. Isensee et al. achieved a competitive result by using nnU-
Net trained on various types of medical images [15]. Myronenko et al. introduced a vari-
ational auto-encoder branch regularizing the encoder to reconstruct the MRI images for 
segmentation [16]. Xu et al. proposed DCAN with multiple branches, and each branch 
is responsible for a single target segmentation through a shared feature extractor [17]. 
Guan et al. proposed a combined segmentation network based on VNet, in which the 
Squeeze and Excite (SE) module is added to each encoder and the Attention Guide Filter 
(AG) module is added to each decoder [18]. Huang et  al. proposed a deep multi-task 
learning framework which added a distance transform decoder based on the V-Net to 
improve the segmentation contour and reduce the generation of rough boundaries [19]. 
Zhang et al. reduced the difficulty of feature extraction by using multiple encoders, and 
they introduced a new loss function to solve the voxel imbalance problem [20]. Although 
the 3D network has higher segmentation accuracy than the 2D network, the 3D network 
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is more complex than the 2D network. The parameters and the amount of calculation 
are greatly increased due to the additional dimension of expensive 3D convolutions. 
This makes it difficult to apply these models to medical equipment in the future. In addi-
tion, the 3D networks require a large scale of training data to prevent overfitting, while 
the amount of tumor image data with annotation is small due to the privacy of patients 
and the high cost of tumor image annotation [21]. Therefore, research for lightweight 
3D networks is necessary for clinical applications to achieve high segmentation accuracy 
under limited medical computing resources.

Researchers have proposed many methods to reduce the model size. Chollet et  al. 
designed the depthwise separable convolution operation [22]. Xie et  al. [23], Szegedy 
et al. [24] and Gao et al. [25] introduced different grouped convolutions. Larsson et al. 
proposed the FractalNet with interacting subpaths of different lengths which achieved 
the effect of in-depth supervision [26]. These theories are applied to brain tumor seg-
mentation networks. Nuechterlein et  al. proposed the 3D ESP-Net with pyramidal 
refinement [27]. Chen et  al. designed the S3D convolution module with three parallel 
branches to reduce the model parameters [28].

The above methods have good results on the BraTS2020 datasets. However, these 
networks still need some improvement in their number of parameters and the 
amount of computation. We adopted the classic lightweight strategy of replacing 
standard convolutions with grouped convolutions. In addition, we counted the size of 
the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET), shown 
in Fig.  1a. We can see that the tumor size varies widely among patients. There are 
multiple tumors in the patient’s brain, as shown in Fig.  1b. Multi-scale feature rep-
resentations of CNNs are of great importance for semantic segmentation [29]. The 
features of brain tumors of different sizes cannot be obtained simultaneously by using 
a single-scale CNN. Because if a single-scale CNN obtains a larger receptive field, it 
helps to extract the features of the whole tumor, while it will lose the information of 
the small-sized enhancing tumor and complex tumor borders. Likewise, if the recep-
tive field is small, it is beneficial to extract the features of the tumor borders, while it 
is not conducive to the segmentation of the tumor as a whole. Therefore, we adopted 
a multi-scale strategy to extract brain tumor features. However, the classic multi-scale 
branching structure of Inception requires manual design and has large computation 

Fig. 1  Distribution of brain tumor
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[29]. We decided to use Res2Net with hierarchical convolutions and residual-like con-
nections [25]. The Res2Net adopts the group convolution strategy, which the different 
groups can get different receptive fields. It is beneficial to segment tumors of different 
sizes. Compared with other methods, our method achieves competitive segmentation 
performance with fewer parameters and less amount of computation.

The main contributions of this paper are as follows:

1.	 We designed a 3D RHC module, which can prevent the network from focusing too 
much on high-level features resulting in low segmentation accuracy.

2.	 We combined 3D U-Net, 3D Res2Net and 3D RHC to propose a lightweight hierar-
chical convolution network (LHC-Net) which can well-segment multiple tumors in 
the patient’s brain.

3.	 Our model is evaluated on the BraTS2020 and BraTS2018 public datasets, which 
shows that the model achieves the competitive segmentation results and has fewer 
parameters and less amount of computation than the state-of-the-art models.

Methods
An overview of our proposed method is shown in Fig. 2. Firstly, the clipping window 
and N4ITK algorithms are used to process original images [30]. For the processed 
images, most of the non-brain parts are cropped, and each modality is normalized 
using the zero-mean and unit-variance. Then, we designed a lightweight network 
based on the 3D U-Net. Our network uses multi-scale strategy to improve tumor seg-
mentation performance and reduce parameters and computation. Finally, we adopted 
the sliding window and patches fusion to obtain a complete predicted probability 
map. The probability map is converted to the expected tumor sub-region label by 
threshold and label transformation.

Original Images

Clipping 
Window

N4ITK

Cropping

Normalization

LHC-Net

Threshold

Label 
Transformation

Patches Fusion

Sliding Window

ET WT TC

T1

T1ceT2

Flair

Fig. 2  Overview of our proposed methods
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Preprocessing

The preprocessing process for MRI images is shown in Fig. 3. MRI images often show 
intensity non-uniformities due to variations in the magnetic field. As a result, there 
are some highly biased pixel values in the MRI images, and parts of the image may 
appear brighter or darker when visualized, simply because of variations in the mag-
netic field. The map of these variations is usually called the bias field. The bias field 
can cause problems for the segmentation performance of the model, as the variations 
in signal intensity are not due to any anatomical differences. Therefore, we clipped all 
brain voxel intensities with a window of [0.5–99.5%]. Specifically, the maximum and 
minimum values are computed by using the 99.5% and 0.5% percentiles based on the 
histogram, and these values are used to remove the large biased pixel values. Then we 
adopted N4ITK to correct the bias field [30].

The brain tumor semantic segmentation is a classification task for each pixel. In 
every sample, the brain volume is 10–20% of the entire sample volume and the whole 
tumor volume is less than 5%. To reduce the impact of class imbalance and the train-
ing scale, we processed each MRI sequence independently, in which most of the non-
brain parts are cropped to obtain a small complete brain patch. Finally, the cropped 
brain patch is normalized by zero-mean and unit-variance normalization on each 
modality.

3D Res2Net module

Res2Net is a layer-wise CNN module that captures rich multi-scale features [25]. To 
obtain rich spatial information, we proposed 3D Res2Net module by adding a dimen-
sion to Res2Net module, as shown in Fig.  4. The common N-channel convolution 
filter within the residual block is divided into s W-channel filters ( N = s ×W  ), and 
the hierarchical residual-like connections are built within the module. The specific 
workflow of the 3D Res2Net module is that the input feature channels are increased 
through a 1 × 1 × 1 convolution filter. Then, the feature maps are equally divided into s 
groups along the channel dimension and sent to 3 × 3 × 3 convolution filters. A group 
of input feature maps is processed through a filter. Another group of feature maps is 
concatenated with the output feature maps of the previous filter to be sent to the next 
filter. This process is repeated many times until all groups of input feature maps have 
been processed. Finally, the outputs of all filters are concatenated and sent to the sec-
ond 1 × 1 × 1 convolution to fuse the feature maps. The operation equation is:

Original image Remove large 
biased pixel values

Correct the bias field Crop most of the 
non-brain parts

Fig. 3  The preprocessing process for MRI images
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where s is the number of filters, xi is the i-th group of feature maps, Ki is the convolu-
tion calculation and yi is the output of the filter. In the 3D Res2Net module, the feature 
maps are increased and decreased through two 1 × 1 × 1 convolutions, which improves 
the expression ability of feature information. The feature maps are divided into multiple 
groups and are processed by the hierarchical convolution, which reduce the amount of 
calculation. The hierarchical residual connection between the filters is beneficial to the 
network to extract multi-scale features.

3D RHC module

The study has shown that the first few layers of the network are more sensitive to noise 
[31]. The 3D Res2Net module extracts more complex features than common 3D convo-
lutions under the same number of hidden units, which may lead to a decline in the abil-
ity to extract shallow features in the first few layers due to noise. Therefore, we designed 
the 3D residual hierarchical convolution (RHC) module, as shown in Fig. 5. The RHC 
module retains the hierarchical convolution and residual connection between input and 
output, and the hierarchical residual-like connections are removed in 3D Res2Net mod-
ule. This change prevents the network from focusing too much on high-level features.

LHC‑Net

Our proposed LHC-Net is shown in Fig. 6a. We adopted end-to-end multi-label learn-
ing to achieve pixel-level brain tumor segmentation. Images from multiple modalities 
are concatenated as the four-channel input to the network. The three-channel output 
is the predictions of WT, TC and ET, respectively. Because the tumor volume is small, 
especially the necrosis and non-enhancing tumor. Instead of directly predicting the 

(1)yi =
xi, i = 1

Ki(xi), i = 2

Ki(xi + yi−1), 2 < i ≤ s
,

Fig. 4  The view of 3D Res2Net module
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three tumor sub-regions, our network predicts WT, TC and ET, and then these labels are 
translated into sub-regions by post-processing.

The backbone architecture of our network is the 3D U-Net. It consists of the encoder 
and the decoder. In the encoding path, the encoder uses maxpooling as the down-sam-
pling layer. On the one hand, the down-sampling layers reduce the size of input data to 
one-half of the original size which expands receptive field of convolution to extract rich 
semantic features, such as high-level features. On the other hand, the down-sampling 
layers double the number of feature channels to express more semantic feature infor-
mation. In the decoding path, the decoder uses trilinear interpolation as the up-sam-
pling layer which restores the size of feature map to the same size as the expected labels. 

Fig. 5  The view of the 3D RHC module
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Fig. 6  The view of our LHC-Net and its variants
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After up-sampling layers, the feature map is concatenated with the feature map from 
the encoding path through the skip connection. It combines the low-level and high-level 
semantic feature information to improve segmentation performance.

In the 3D U-Net, it is difficult to extract tumor features of different sizes at the same 
time by using common single-scale convolution. Therefore, we replaced the convolu-
tion with 3D Res2Net. The 3D Res2Net uses the multi-scale strategy on the channels 
to improve the multi-scale representation ability at a granular level. It is beneficial for 
the network to segment tumors of different sizes. On the other hand, for convolutional 
networks, the first few convolution layers usually extract low-level features. We usually 
increase the depth of the network to obtain high-level features required for pixel-label 
segmentation tasks. The down-sampling is repeated several times due to the limitation 
of storage capacity so that the resolution of the image is reduced. However, it causes that 
the last few convolution layers, which extract high-level features, are performed on low-
resolution feature maps. By using the hierarchical convolutions and residual-like con-
nections in 3D Res2Net, the feature maps are equally divided into several groups, and 
most of these feature map groups are processed more than once through the hierarchi-
cal convolution filter. Therefore, the first few layers can extract features at a higher level 
from high-resolution images. To prevent the network from focusing too much on high-
level features, we combined 3D RHC and 3D Res2Net.

For ablation experiments, we also proposed two variants of LHC-Net: LHC-Net- and 
LHC-Net+, as shown in Fig. 6b and c, respectively. In the LHC-Net+, all convolutions 
in the 3D U-Net are replaced with 3D Res2Net which the network can extract more 
higher-level features at a fine-grained. In the LHC-Net-, half of the convolutions in each 
layer are replaced by 3D Res2Net.

Complexity analysis

In this section, the complexity of LHC-Net is theoretically compared with 3D U-Net. 
The complexity of the model mainly depends on the number of parameters and floating 
point operations (FLOPs) [23, 24]. In the 3D U-Net, each convolution layer has two con-
volutions, the convolution kernel size is k × k × k, the number of input channels is Cin , 
output feature map size is Hout ×Wout × Dout × Cout . Without considering the bias, the 
number of parameters for each layer is:

In the LHC-Net, two 3D convolutions are replaced by a 3D RHC and a 3D Res2Net 
both with s filters. Assuming that the number of feature map channels does not change 
through two 1 × 1 × 1 convolutions, the number of parameters for each layer is:

If the kernel size is 3 × 3 × 3, the number of input and output channels are both 64, the 
number of filters within 3D RHC and 3D Res2Net are both 4. In the 3D U-Net, the num-
ber of parameters is 221184 in the convolution layer. While the number of parameters is 
57856 in the LHC-Net. The input tensor of a 3D convolution is Cin ×Hin ×Win × Din 

(2)ParamsU−Net = 2 · Cin · k · k · k · Cout .

(3)

ParamsLHC−Net = 2×

[

Cin

s
· k · k · k ·

Cout

s
· (s − 1)+ 2× 1× 1× 1 · Cin · Cout

]

.
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and the output tensor is Cout ×Hout ×Wout × Dout . Without considering the bias, the 
FLOPs of a 3D convolution is:

If the input image size is 4 × 128 × 128 × 128, the 3D U-Net has 148.17G FLOPs while 
the LHC-Net only has 35.58G FLOPs.

Inference and post‑processing

Due to the limited memory, we used a 128 × 128 × 128 sliding window with a 
32 × 32 × 27 sliding step during the inference. Zero padding is used if the input can-
not cover the sliding window. It means that the multimodal image is cropped into many 
patches as input to the network. Because there are many overlapping parts among out-
put prediction patches, in order to obtain a complete three-channel brain tumor seg-
mentation probability map, we used the patches fusion which these overlapping parts 
are averaged. Then, we used a fixed threshold, it is set as 0.5, to binarize the probability 
map so that we obtained the label of WT, TC and ET. Finally, according to these labels, 
we used the label transformation to obtain tumor sub-regions. It follows the rules: (a) the 
edema area is regarded as WT area minus TC area, (b) the necrosis and non-enhancing 
tumor is regarded as TC area minus ET area, and (c) the enhancing tumor is regarded as 
ET.

Experiment settings

We randomly cropped patches of 128 × 128 × 128 from preprocessed images as input 
during the training phase. To improve the generalization ability, these patches are pro-
cessed by online data augmentation including variance shift (− 0.1 to 0.1) with a prob-
ability of 0.2, intensity shift (0.9–1.1) with a probability of 0.2 and mirroring along three 
axes with a probability of 0.5. The training iteration has 450 epochs and the first five 
epochs are linear warmup. We used the Adaptive Moment Estimation (Adam) optimizer 
to train the network [32]. The initial learning rate is 0.001 and gradually decreases by 
(1− epochi/epochN ) . The batch size is four and the beta is (0.9, 0.999). The network is 
implemented in PyTorch 1.8 and is trained on GeForce GTX 3090 GPU.

Evaluation metrics and loss function

The Dice similarity coefficient and the 95% Hausdorff distance (HD95) are used to evalu-
ate the segmentation results which are sensitive to internal padding and borders, respec-
tively. The equation of Dice similarity coefficient is:

where Pt is the positive prediction area of target t , such as PWT , PET or PTC , and Tt is the 
corresponding ground truth. |·| is the volume. The equation of Hausdorff distance is:

(4)FLOPs = (Cin · 2 · k · k · k − 1) ·Hout · Dout ·Wout · Cout .

(5)Dicet =
2|Pt ∩ Tt |

|Pt | + |Tt |
,

(6)

HDt = dH (Pt ,Tt) = max
{

dPtTt , dTtPt

}

= max

{

max
x∈Pt

min
y∈Tt

d
(

x, y
)

, max
y∈Tt

min
x∈Pt

d
(

x, y
)

}

,
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where Pt is the positive prediction area of target t , and Tt is the corresponding ground 
truth. x is a point on the surface Pt and y is a point on the surface Tt . d(x, y) is the dis-
tance between x and y . Because HD is highly susceptible to small outliers [3], we used 
HD95, which is the 95% quantile of HD.

In the training process, for the input with few or no annotated voxels, the small pre-
diction errors may result in large gradients [33]. If the prediction errors are caused by 
under-fitting, the network is trained by these large gradients towards better segmenta-
tion. However, if the prediction errors are caused by imperfect annotations, which often 
occur at the tumor boundary, the network is trained in the wrong direction. In addition, 
these large gradients also cause instability in the training process. Therefore, we calcu-
lated the loss based on the statistics of all samples in a batch. The loss consists of soft 
dice loss and binary cross entropy loss (BCE loss). The equation is:

where a and b are hyper-parameters, here a = 0.2 and b = 0.8 . The equation of soft dice 
loss is:

where M is the number of samples in a batch, Pb,t is the prediction result of target t of 
the b-th sample in a batch and Tb,t is the corresponding ground truth. The equation of 
BCE loss is:

where N  is the number of pixels in a batch, xi is the predicted probability value of the 
i-th pixel and yi is the corresponding true value.

Results
Datasets

The datasets we used are BraTS2020 and BraTS2018 datasets which are collected by 
using different clinical protocols and various scanning instruments from 19 institutions 
[34–36]. BraTS2020 consists of a training set (369 samples), including 293 samples from 
glioblastoma (GBM/HGG) and 76 samples from lower-grade glioma (LGG), and a vali-
dation set (125 samples). BraTS2018 consists of 285 training samples and 66 validation 
samples. The datasets contain four modalities: T1, T2, T1ce and Flair. Each sample has 
a volume of 240 × 240 × 155. The brain tumor label consists of non-enhancing tumor 
and necrosis (NET/NCR-label 1), edema (ED-label 2) and enhancing tumor (ET-label 4).

According to the brain tumor label, we made the label of WT, TC and ET. ET is 
enhancing tumor. WT consists of NET/NCR, ED and ET. TC consists of NET/NCR and 
ET. These three labels, WT, TC and ET, are used for loss function and network evalu-
ation. In the BraTS2020 training dataset, 20% (75 samples) of 369 samples are used as 
the test set and the remainder (294 samples) are used as the training set. The model was 
compared with others on BraTS2020 and BraTS2018 datasets.

(7)Loss = a · Soft dice loss + b · BCE loss, a+ b = 1,

(8)Sof dice loss =
1

3M

M
∑

b=1

3
∑

t=1

(

1−
2
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∣Pb,t ∩ Tb,t

∣

∣+ 1
∣

∣Pb,t
∣

∣+
∣

∣Tb,t

∣

∣+ 1

)

,

(9)BCE loss = −
1

N

N
∑

i=1

yi · ln xi + (1− yi) · ln(1− xi), yi = 0 or 1,
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Comparison of LHC‑Net with different hyper‑parameters

LHC-Net uses the multi-scale strategy on the channels. This not only reduces the model 
parameters and computation, but also helps to extract the multi-scale features at a gran-
ular level. The more s is, the more groups there are. It is beneficial for LHC-Net to obtain 
multi-scale receptive fields, while it weakens the connection between different feature 
groups. In order to ensure that each feature map input to the filter has the same number 
of channels. The values of s are set to [1, 2, 4, 8]. The results are presented in Table 1. 
The ET Dice scores of s > 1 are significantly higher than s = 1 . It means that the multi-
scale strategy on the channels improves the multi-scale representation ability at a granu-
lar level. The LHC-Net with using s = 4 achieves the best Dice scores of 76.35%, 89.96% 
and 83.35% for ET, WT and TC, respectively. Therefore, we used s = 4 in the following 
experiments.

Ablation of LHC‑Net

An ablation study of LHC-Net on the BraTS2020 test set is presented in Table  2. 
There is a residual connection between each input feature and output feature in 3D 
Res2Net. Therefore, we investigated whether the residual connections alone improve 
segmentation performance. Compared with Res U-Net, LHC-Net- and LHC-Net+ 
both achieve performance improvement for ET by using the 3D Res2Net module. It 
shows that the segmentation performance is improved by hierarchical convolutions 
and residual-like connections, not just residual connections, especially for smaller 
targets. LHC-Net+ , which all standard convolutions are replaced by 3D Res2Net, 
achieves the highest Dice for ET while it gets a performance degradation for WT. 
It shows that LHC-Net+ pays too much attention to high-dimensional information. 
In addition, since the features with noise from the encoder or irrelevant features are 

Table 1  Comparison of LHC-Net with different s on the BraTS2020 test set

Bold indicates the best result for each evaluation metric

Methods Dice (%)

ET WT TC

LHC-Net ( s = 1) 73.12 89.13 81.52

LHC-Net ( s = 2) 75.04 89.75 82.12

LHC-Net ( s = 4) 76.35 89.96 83.35
LHC-Net ( s = 8) 76.16 88.53 82.42

Table 2  Ablation study of LHC-Net on the BraTS2020 test set

Bold indicates the best result for each evaluation metric

Methods Dice (%)

ET WT TC

3D U-Net 73.50 89.42 81.92

Res U-Net 73.87 89.53 82.23

LHC-Net- (Conv3D + 3D Res2Net) 75.76 89.75 82.87

LHC-Net+ (3D Res2Net + 3D Res2Net) 76.43 89.36 82.20

LHC-Net (3D RHC + 3D Res2Net) 76.41 90.05 83.34
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directly processed by the 3D Res2Net in the decoder, it affects the performance of 
decoding at a fine-grained level. The LHC-Net achieves the best Dice scores for WT 
and TC while keeping segmentation performance for ET. It shows that 3D RHC mod-
ule alleviates the difference in features between the encoder and the decoder.

Comparison with 3D U‑Net and classic improved 3D U‑Net

We trained the 3D U-Net and classic improved 3D U-Net under the same settings to 
evaluate our LHC-Net on the BraTS2020 test set. The results are presented in Table 3. 
The LHC-Net achieves the highest Dice scores for ET and TC. In particular, our model 
achieves significant performance on segmentation for ET, it shows that LHC-Net has 
a strong ability to extract fine-grained features. In addition, our model obtains a per-
formance of 90.01% for WT, which is only 0.19% lower than 3D U-Net++. Compared 
with other networks, LHC-Net has fewer parameters and FLOPs, which is beneficial 
for application to medical equipment in the future.

We visualized the segmentation results that are predicted by the 3D U-Net and 
LHC-Net on the BraTS2020 test set, shown in Fig.  7. Since the brain tumor varies 
widely among patients and there are multiple tumors in some patient’s brain, some 
methods cannot well-segment the tumors at the same time. LHC-Net can segment 
the tumors that are not segmented by 3D U-Net, and LHC-Net achieves better seg-
mentation performance on ET and TC. In particular, LHC-Net can completely seg-
ment multiple tumors in a patient’s brain. It shows that LHC-Net has a better ability 
to extract multiple tumor features.

In addition, we divided the test set into a single tumor set (66 samples) and a multi-
tumor set (9 samples) according to the number of tumors in the brain. In the multi-
tumor set, each sample has at least two whole tumors or tumor cores in the brain. The 
comparison of segmentation results on these two sets is presented in Table 4. Due to 
false positive and false negative predictions for ET (see below for more detailed dis-
cussion), the Dice of ET is lower on the single tumor set than on the multi-tumor set. 
The Dice scores of TC and WT are lower on the multi-tumor set, which shows that it 
is difficult to segment multiple tumors at the same time. Compared with 3D U-Net, 
LHC-Net achieves Dice scores of 78.14%, 87.73% and 81.41% for ET, WT and TC in 
the multi-tumor set, which is the significant improvement. It shows that LHC-Net 
has good generalization performance.

Table 3  Comparison with 3D U-Net and classic improved 3D U-Net on the BraTS2020 test set

Bold indicates the best result for each evaluation metric

Methods Dice (%) HD95 (mm) Params (M) FLOPs (G)

ET WT TC ET WT TC

3D U-Net 73.50 89.42 81.92 35.68 6.85 11.54 5.89 148.17

Res 3D U-Net 73.87 89.53 82.23 33.41 6.19 10.23 6.70 187.86

3D U-Net++ 73.94 89.35 82.57 32.65 7.30 9.58 6.84 508.46

Attention 3D U-Net 74.42 90.25 82.86 30.24 6.72 9.35 6.47 151.51

LHC-Net (Ours) 76.38 90.01 83.32 30.09 6.96 6.30 1.65 35.58
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Comparison with the state‑of‑the‑art methods

We compared the state-of-the-art methods for brain tumor segmentation on the 
BraTS2018 validation dataset, shown in Table 5. For LHC-Net, the Dice scores for ET, 
WT and TC are 76.82%, 90.21% and 83.79%, respectively. The Dice score for TC is high-
est, and the Dice scores for ET and WT are higher than most other methods significantly. 

T1ce T2 Ground Truth U-Net LHC-Net

Edema

Necrosis and non-enhancing tumor

Enhancing tumor

Fig. 7  Predictions of LHC-Net and 3D U-Net on the BraTS2020 dataset

Table 4  Comparison with 3D U-Net on the single tumor set and the multi-tumor set

Bold indicates the best result for each evaluation metric

Methods Dice (%) the single tumor set (66) Dice (%) The multi-tumor set (9)

ET WT TC ET WT TC

LHC-Net 76.14 90.32 83.58 78.14 87.73 81.41
3D U-Net 73.30 90.31 82.41 75.00 82.92 78.33

Table 5  Comparison with the state-of-the-art methods on the BraTS2018 validation dataset

Bold indicates the best result for each evaluation metric

Methods Dice (%) HD95 (mm) Params (M) FLOPs (G)

ET WT TC ET WT TC

Kao et al. [37] 78.75 90.47 81.35 3.81 4.32 7.56 9.45 203.96

3D U-Net 75.26 88.69 80.55 4.51 11.34 8.07 5.89 148.17

S3D- UNet [28] 74.93 89.35 83.09 4.43 4.72 7.75 3.32 75.20

3D-ESPNet [27] 73.70 88.30 81.40 5.30 5.46 7.85 3.63 76.51

LHC-Net (Ours) 76.82 90.21 83.79 4.36 5.56 6.79 1.65 35.58
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It indicates that our methods can replace the manual segmentation of brain tumor. In 
addition, LHC-Net has 1.65M parameters and 35.58 FOLPs. It means that our methods 
are less demanding on hardware.

Discussion
In the segmentation results predicted by LHC-Net, there are seven cases with a Dice 
score of 0 for ET. Three of them are caused by false negative predictions, which ET is not 
found by the network, as shown in Fig. 8a. Four cases are caused by false positive pre-
dictions, which ET is incorrectly predicted, as shown in Fig. 8b. These seven cases show 
three characteristics: (a) the brain tumors are at the top of the brain, (b) ET is small or 
non-existent, (c) a greater proportion of NET/NCR in WT. We inferred that the cause of 
0 Dice score for ET is sulcus. The sulcus shows a shadow on the image and is a relatively 
larger part at the top of the brain than other regions so that it is difficult to segment the 
small ET near the sulcus. These outlier segmentation results have a great influence on 
the scores of evaluation metrics. Therefore, in some studies [33, 38], in order to maxi-
mize the mean Dice score, a post-processing method is used, which enhancing tumor is 
entirely replaced by necrosis if the predicted volume is less than a certain threshold. It 
means that the correct prediction for the small enhancing tumor will be removed by the 
post-processing. We did not adopt this method because it ignores true positive predic-
tions and increases false negative predictions which are more harmful to patients.

This study has some potential limitations. To improve the generalization ability, we 
used online data augmentation including variance shift (− 0.1 to 0.1) with a probabil-
ity of 0.2, intensity shift (0.9–1.1) with a probability of 0.2 and mirroring along three 
axes with a probability of 0.5. However, the method may not be the best way to improve 
the generalization ability, and may not be ideal for all datasets. The data augmentation 
should be investigated further. In addition, for the proposed method, there should be 
no significant differences between training data and test data. The problem is common 
when applying deep learning methods to clinical medical practice. Moreover, the train-
ing data relies on a large number of 3D MRI images with pixel-level annotations. In the 
future, we will adopt a semi-supervised framework to reduce the manual annotation 
workload.

Necrosis and non-enhancing tumor
Enhancing tumor
Edema

(a)

(b)

T1 T2 Flair T1ce Prediction Ground Truth

Fig. 8  The two examples from outlier segmentation results with a Dice score of 0 for ET. a False positive 
prediction; b False negative prediction
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Conclusion
Since the spatial information is very important for accurate brain tumor segmentation and 
most 3D networks are complex, we proposed a highlight brain tumor segmentation net-
work based on 3D CNN. Because the size of the brain tumor is great difference and there 
are multiple tumors in some patient’s brain. To solve this problem, we used 3D Res2Net, 
which uses a multi-scale convolution strategy on the channels to obtain multi-scale recep-
tive fields. It is beneficial for the network to well-segment tumors of different sizes. In 
addition, because the hierarchical residual-like connections in 3D Res2Net may cause the 
network to pay too much attention to high-dimensional information, we designed the 3D 
RHC. Finally, we combined 3D Res2Net, 3D RHC and 3D U-Net to propose LHC-Net. 
According to the experiment results on BraTS2020 and BraTS2018 datasets, our network 
has a better brain tumor segmentation performance than 3D U-Net, especially for multi-
tumor. Compared to the state-of-the-art methods, LHC-Net has less parameters and less 
FLOPs while keeping competitive performance.
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