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Abstract 

Extracting knowledge from heterogeneous data sources is fundamental for the 
construction of structured biomedical knowledge graphs (BKGs), where entities and 
relations are represented as nodes and edges in the graphs, respectively. Previous 
biomedical knowledge extraction methods simply considered limited entity types and 
relations by using a task-specific training set, which is insufficient for large-scale BKGs 
development and downstream task applications in different scenarios. To alleviate this 
issue, we propose a joint continual learning biomedical information extraction (JCBIE) 
network to extract entities and relations from different biomedical information data-
sets. By empirically studying different joint learning and continual learning strategies, 
the proposed JCBIE can learn and expand different types of entities and relations from 
different datasets. JCBIE uses two separated encoders in joint-feature extraction, hence 
can effectively avoid the feature confusion problem comparing with using one hard-
parameter sharing encoder. Specifically, it allows us to adopt entity augmented inputs 
to establish the interaction between named entity recognition and relation extraction. 
Finally, a novel evaluation mechanism is proposed for measuring cross-corpus generali-
zation errors, which was ignored by traditional evaluation methods. Our empirical stud-
ies show that JCBIE achieves promising performance when continual learning strategy 
is adopted with multiple corpora.
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Introduction
The rapid increasing of biomedical knowledge from biomedical experiments and clini-
cal practice provides considerable resources for biomedical information extraction [1–
3]. Biomedical knowledge graphs (BKGs) organize biomedical entities and relations in 
the form of nodes and edges. Extracting entities, such as chemical/drug, protein/gene, 
and phenotype/disease, and their relations from unstructured text data is the foundation 
of developing large-scale biomedical BKGs [4–7]. In this work, we study Named Entity 
Recognition (NER) [8] and Relation Extraction (RE) [9] techniques to extract biomedical 
information. We further divide NER as entity span detection (SP) and entity type detec-
tion (ET) sub-tasks in our experiments for gaining better results in the RE task.
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Typical biomedical NER and RE tasks include the detecting of drug–drug interaction 
(DDI) [10, 11], adverse drug events (ADE) [12], chemical protein reaction (CPR) [13], 
protein–protein interaction (PPI) [14, 15], and mutation mining [16]. Each dataset only 
contains limited entity types and relation types, hence cannot support the understand-
ing and inferring of entities and relations across tasks. For example, the ADE corpus only 
annotated drugs, diseases, and their interactions, and the CPR corpus only annotated 
the reaction relations and the entities of chemicals and proteins. However, sometimes 
we may require knowledge from both ADE and CPR to establish semantic interconnec-
tions between diseases of ADE and proteins of CPR by drug entities. Thus, traditional 
practices [17–19] developed multi-models to obtain knowledge from different datasets 
and learning tasks (see Fig. 1a). The limit of using multi-models is that the learning of 
common entity types (e.g., both ADE and CPR contain drug entities) cannot be shared 
across tasks and models. Besides, given a new corpus, extracting knowledge with multi-
models is computationally expensive. In real-world practices, it is common to expand 
the size of an existing dataset, or learn new types of entities and relations from a new 
dataset over time. It is inconvenient to train a new model and maintain previous multi-
ple trained models with every dataset update.

To solve the above problems, we propose a Joint Continual Learning Biomedical 
Information Extraction (JCBIE) network to jointly extract biomedical entities and rela-
tions based on a continual multi-corpora learning framework (see Fig. 1b). In order to 
learn new entity types and relation types over time by only one model, we use multi-
head binary classifiers instead of a typical multi-class single-head classifier for ET and 

Fig. 1  The difference between multiple-model learning and continual learning in biomedical information 
extraction. a Multi-models for extracting knowledge from multi-corpora. b A continual learning model. The 
input subscript with different numbers denotes different subsets in b. ADE, adverse drug events; DDI, drug–
drug interaction; CPR, chemical protein reaction; KNWL, knowledge
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RE tasks. Thus, the size of pre-defined label set of entities and relations can be expanded 
by continually learning new datasets. Our method aims to support the constructions of 
extensible biomedical knowledge graphs with an extraction neural model.

We compare JCBIE (no-parameter sharing, multi-head classifier) with a traditional 
hard parameter-sharing and single-head classification method that was commonly used 
in current works [20–23], based on the same multi-corpora learning paradigm. JCBIE 
achieves an average gain of 2.77% micro-F1 scores over four different dataset fusion set-
ups. We also examine the generalization abilities of traditional continual learning, multi-
corpora learning, and our proposed continual multi-corpora learning approaches, based 
on different dataset feeding order setups and a different testing set. Our proposed learn-
ing paradigm yields average gains of 2.39% and 1.89% micro-F1 scores in a novel corpus-
adaptation evaluation task over the two baseline learning paradigms, respectively.

We conduct systematic empirical studies for analyzing different variations in parame-
ter-sharing mechanisms (Sect. 5.2), feature augmentation methods (Sect. 5.3), learning 
paradigms (Sect. 5.4), output-side classifier head types (Sect. 5.5), to answer the follow-
ing questions: (1) What encoder parameter-sharing method is more suitable for learning 
SP, ET, and RE, simultaneously? (2) What feature augmentation method is more sup-
portive for the RE task after identifying ET and SP of the NER task? (3) What is the 
difference between continual learning, multi-corpora learning, and continual multi-cor-
pora learning? (4) Does a multi-class classifier (single-head) on the output side surpasses 
multiple binary classifiers (multi-head) in identifying multiple relation classes?

The contribution of this work can be summarized as twofold:

(1)	 We propose a continual multi-corpora learning paradigm and an associated model 
with multi-head classifiers for ET and RE. The multi-head classifiers allow the 
model to expand the label vocabulary of entity types and relation types over time by 
feeding new datasets and introducing new label-oriented heads.

(2)	 We conduct systematic empirical studies for analyzing different variations in model 
framework, feature augmentation methods, and learning paradigms. The results 
demonstrate the efficiency of the proposed method under different conditions.

Related work
Joint extraction is a popular solution to biomedical datasets in DDI, ADE, CPR, and 
PPI [11–13, 15]. The basic assumption of joint extraction is that joint models can 
enhance the interactions between NER and RE [24], and alleviating the error propa-
gation problem through sharing a common encoder [25–27]. Miwa and Bansal [20] 
firstly utilized a shared Bi-LSTM layer to encode input tokens, passing the word rep-
resentations into NER and RE classifiers with dependency parsing features. Sun et al. 
[22] developed a joint extraction model based on a common graph convolutional net-
work (GCN) encoder to perform a joint inference on entity types and relation types. 
These works are based on the assumption that the trained model is dataset-specific, 
which only needs to deal with the biomedical entity and relation types that have been 
defined in advance in a dataset. However, the data used to learn the same types of 
entities and relations are possibly supplemented over time in real-world practices. 
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New entity types and relations are also gradually introduced in the biomedical 
research domain. Then, those dataset-specific models have to be retrained with new 
data and labels. Thus, a robust continual learning model is more fitting for the real-
world applications.

The recent novel joint extraction research can be grouped into three sets. (1) The 
table filling strategy extracts information by labeling input tokens in a table. Miwa 
and Sasaki [28] utilized token lists of sentences to form rows and columns. Then, 
they extracted entities using the diagonal elements and classified relations with a 
lower triangular matrix of the table. Zhang et  al. [29] integrated a global optimiza-
tion technique and syntax information into the table-filling strategy to jointly train 
NER and RE. (2) Tagging scheme based methods jointly train NER and RE by design-
ing customized tagging schemes. Zheng et  al. [30] firstly proposed a novel tagging 
scheme that converts joint extraction to a tagging task. Yu et  al. [31] decomposed 
the joint extraction into two sub-tasks. They first distinguished all head-entities, and 
then identifying tail-entities and relations jointly. (3) Seq2seq based methods regard 
NER and RE as a seq2seq generating task. Zeng et al. [32] proposed a CopyRE model, 
firstly introducing a Seq2Seq model for jointly extracting entities and relations to 
overcome the overlapped relation issue. Following, Zeng et  al. [33] pointed out the 
CopyRE model could not distinguish head and tail entities. Then, they upgraded it to 
a CopyMTL model by adding a non-linear layer.

However, nearly all the above studies typically hypothesize that sharing parameters 
can provide better representations for joint NER and RE, failing to account for the dif-
ferences between the two tasks. By utilizing different language models (LMs), model 
structures, and extraction strategies, these studies obtained state-of-the-art results. 
However, these methods did not properly control necessary variables for benchmark-
ing. For example, a recent study [34] indicated that most joint extraction studies did 
not compare their joint methods with pipeline-based methods (e.g., comparing NER 
performance first, then RE) and compare different joint extraction methods with 
different pre-trained LMs. In such a condition, it is unsure whether empirical gains 
mainly come from joint model structures or different pre-trained LMs. Thus, we are 
motivated to conduct a systematic empirical study to demonstrate the utilities of dif-
ferent components of a typical NER and RE jointly learning model.

For continual learning, the main problem is catastrophic forgetting [35], which means 
a model forgets learnt knowledge after learning a new task. To alleviate this problem, 
ExtendNER [36] took the advantage of knowledge distillation to achieve continual NER 
tasks by transferring old knowledge in a teacher model to a new student model when 
new types occurred. Based on ExtendNER, L&R [37] supplemented synthetic samples 
which contained old type information to the knowledge distillation process, and found 
that such data replay process can boost performance for NER tasks. The research of 
[38] proposed a novel experimental framework that incorporated multiple tasks with-
out explicit task identifiers. Also, this study proposed a benchmark and a new metric 
for continual learning, and concluded that replay models are better than memory-based 
solutions in a general continual learning setup. Different from the previous studies [36, 
37], JCBIE only adopts a data replay method combined with multi-head classifiers to 
achieve continual learning and obtains satisfying results.
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Methodology
The learning target is formalized as joint NER and RE under continual learning setups. 
Unlike traditional approaches that consider NER as a single task in biomedical informa-
tion extraction [23, 39], we divide the NER task as SP and ET tasks, respectively (seen 
Table 1). The SP task employs BIOES tagging scheme [30], where B, I, O, E, and S denote 
beginning, inside, outside, end, and single, respectively. Our JCBIE model continually 
learns SP, ET, and RE labels on token-level over different entity types and relation types 
from different datasets (ADE, DDI, and CPR).

We demonstrate the overall framework of JCBIE in Sect. 3.1. Our proposed method 
means to address the following challenges: Sect. 3.2. Efficient encoding for learning NER 
and RE tasks, simultaneously; Sect. 3.3. Efficient hidden state augmentation for learn-
ing RE; Sect. 3.4. A scalable classifier for continually learning new labels; Sect. 3.5. An 
efficient continual learning paradigm for learning dataset pipelines. To sum up, JCBIE 
employs non-parameter sharing encoders, entity marker augmented RE hidden state 
representations, multi-head classifiers, and a continual multi-corpora learning paradigm 
to fit the context of continual learning biomedical information extraction. The details of 
our proposed techniques (marked as ⋆ in Sects. 3.2–3.5) and alternatives are shown in 
the following subsections.

JCBIE

As seen in Fig.  2a, JCBIE includes five technical components, namely Bio-BERT [40] 
based NER and RE encoders, SP, ET, and RE classifiers. In the training process, SP, ET, 
and RE are trained, simultaneously. In the inferring process, ET prediction is condi-
tioned on SP results, and the relation prediction of two entities (RE) is conditioned on 
SP and ET results.

Given an input sentence sent = {x1, x2, ...xi, ...xn} , where sent is randomly sampled 
from a used dataset, xi ( 1 ≤ i ≤ n ) is a natural language token, and n is the length of sent, 
JCBIE employs two Bio-BERT encoders for NER and RE, respectively. The output hid-
den states of each encoder are given by

Table 1  The example labels for exacting information from ADE, DDI and CPR

SP denotes entity spans, employing BIOES tagging scheme (Beginning-Inside-Outside-End-Single). ET, entity type; RE, 
relation extraction

ADE Input: Two cases of mequitazine induced photosensitivity reactions

SP: O O O S O B E O

ET: Drug Disease Disease

RE: ADE ADE ADE

DDI Input: Thyroid may potentiate toxic effects of digitalis

SP: S O O O O O S O

ET: Drug Drug

RE: DDI DDI

CPR Input: … methyl rosmarinate activities against matrix metalloproteinase-1 …

SP: B E O O O S

ET: Chemical Chemical Gene

RE: CPR CPR CPR
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Noticeably, hNERi ∈ R
1×d is used for learning SP and ET labels for each token in a sent. 

hREi  has the same shape with hNERi  . d is the dimension of hidden states. Next, we employ 
three two-layer feed-forward networks as the classifiers ( TSP(·),TET (·),TRE(·) ) upon the 
encoders, where a predicted SP label ( ̂ySPi  ) is given by Eq. (3). Y SP ( ySPi ∈ Y SP ) denotes 
the ground-truth span of multiple entity mentions ( [e1, e2, ..., ej , ..., ek , ...] ) in a sentence. 
We define the span of an entity mention ej covers the token indices from ξj to ǫj.

Then, the ET prediction of ej ( ̂yETej  , where ŷETej ∈ Ŷ ET ) is given by

The predicted RE label ( ̂yREej ,ek , where ŷREej ,ek ∈ Ŷ RE ) of two random paired entities ( ej and 
ek ) is given by

(1)hNERi = EncoderNER(xi)

(2)hREi = EncoderRE(xi).

(3)ŷSPi = TSP(hNERi ).

(4)ŷETej = TET

ǫj

i=ξj

hNERi .

(5)ŷREej ,ek = TRE
(

vREej ,ek

)

.

Fig. 2  The framework and component variations for jointly learning NER and RE. a The overall framework. 
b Single-head classifier. c Multi-head classifier. d Hard-parameter sharing encoder. e Soft-parameter sharing 
encoder. f no-parameter sharing encoder. g Continual learning multi-datasets. h Multi-corpora learning. 
i Continual multi-corpora learning. Figure indices with ⋆ (c, f, i) denote the proposed methods in JCBIE. 
The same components have the same color. SP denotes entity span; ET denotes entity type; CLS denotes 
classifier; ADE, DDI, and CPR denote different datasets, containing different entity types and relation types
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vREej ,ek denotes the joint vector representation of RE hidden states, co-responding to ej and 
ek . We will show the details of vREej ,ek later (the proposed vREej ,ek is given by Eq.  (11) in 
Sect. 3.3).

Parameter sharing in encoding

Previous studies claimed that information extraction models can benefit from a sharing 
encoder, because common parameters can enhance interactions between NER and RE 
[23, 30]. These methods can be categorized as hard parameter sharing and soft param-
eter sharing. Besides, we propose a no parameter sharing method.

Hard parameter sharing As shown in Fig. 2d, NER and RE use a sharing encoder. The 
encoder learns the hidden states (parameters) for both NER and RE tasks across layers.

Soft parameter sharing As shown in Fig. 2e, NER and RE have their private encoders, 
while the parameters of the last layer (L) of the NER encoder are shared for the learn-
ing of RE encoder layers. We employ a cross-attention mechanism [41] to constrain the 
parameter sharing. The post-fusion hidden states ( H ) of layer l in the RE encoder are 
given by

where HNER ∈ R
n×d and HRE ∈ R

n×d are representations of a sent, which come from 
their private encoders.
⋆ No parameter sharing As shown in Fig. 2f, it employs two separated encoders for 

NER and RE. There is no interaction between NER and RE, which is the proposed 
encoding method in JCBIE.

RE hidden state augmentation

We develop four augmentation methods, fusing the output hidden states ( vREej ,ek , men-
tioned in Eq. (5)) of RE encoders with NER features to enhance the learning of RE.

Vanilla augmentation A vanilla RE hidden state augmentation method is to concat-
enate ([; ]) the sum of NER and RE hidden states, corresponding to the same entity men-
tions, e.g., ej and ek.

where vREej ,ek ∈ R
1×2d , ξj and ǫj denote the start and the end indices of ej , respectively; ξk 

and ǫk denote the start and the end indices of ek.
Additional entity type embedding augmentation We employ an linear embedding 

layer ( Linear(·) ) to learn the embedding representations (emb) of entity types as the 
additional RE hidden state augmentation, where embej = Linear(yETej ) ; 
embek = Linear(yETek ) . In the RE training process, we use the true label ( yETej  ) of an 
entity type that corresponds to the entity span ej . In the RE inferring process, we use 

(6)H
RE
l = Softmax

(

HRE
l ·HNER

L
T

√
d

)

HNER
L ·HRE

l .

(7)vREej ,ek =





ǫj
�

i=ξj

hREi ;
ǫk
�

i′=ξk

hREi′



,
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the predicted entity type label ( ̂yETej  ). Then, the augmented RE hidden states are given 
by the concatenation of entity type embeddings and the vanilla hidden state 
augmentation

where embe ∈ R
1×50 and vREej ,ek ∈ R

1×(2∗d+2∗50).
Additional entity type prototype augmentation An entity-type prototype representa-

tion is given by the original Bio-BERT encoder ( BioBERT (·) ) output before training. We 
first collect all entity mentions from the training set, and categorize the entity mentions 
according to their entity types. The set of entity mentions ( S ) with a specific entity type 
( yET ) is defined as SyET = [XyET

1 ,X
yET

2 , ...,X
yET

t ] , where X is a token of the entity men-
tions. Totally, t tokens in S . Then, the prototype representation (proto) of an entity type 
( yET ) is given by

where protoyET ∈ R
1×50 . In the RE training process, we look up to the prototype repre-

sentations ( protoy
ET
ej  and protoy

ET
ek  ) of a pair of entity mentions ( ej and ek ), based on their 

true entity type labels ( yETej  and yETek  ). The augmented RE hidden states are given by

In the RE inferring process, we use the predicted entity type labels ( ̂yETej  and ŷETek  ) to 
obtain prototype representations of ej and ek , instead of gold labels ( yETej  and yETek ).
⋆ Entity marker augmentation Inspired by a recent mask language model [42] and the 

work of [43], we augment the raw input sentence with extra special tokens (entity mark-
ers) to highlight the positions of entities and the entity types. For each entity mention 
( ej ) in type yETej  , a start marker [yETej_start ] and an end marker [yETej_end] are introduced into 

the raw sentence before and after the mention ej . The example of an augmented sentence 
is “ [Drug_start ] Pravastatin [Drug_end] is associated with [Disease_start ] myotonia 
[Disease_end] in animals”. We concatenate the RE encoder output hidden states of start 
markers of two entity mentions ( ej and ek ) as the RE hidden state augmentation

where vREej ,ek ∈ R
1×2d . In the training process, NER encoder that is used for SP and ET 

learning takes an original raw sentence as input. The RE encoder takes the sequence with 
markers as input, where the entity spans and types are obtained, based on their true labels. 
In the inferring process, we predict entity spans (SP) and types (ET) with a raw sentence 
first, then insert the markers according to the SP and ET predictions for RE predictions.

(8)vREej ,ek =





ǫj
�

i=ξj

hREi ; embej ;
ǫk
�

i′=ξk

hREi′ ; embek



,

(9)protoy
ET = 1

t

t
∑

q=1

Maxpooling(BioBERT (Xq)),

(10)vREej ,ek =





ǫj
�

i=ξj

hREi ; protoy
ET
ej ;

ǫk
�

i′=ξk

hREi′ ; protoy
ET
ek



.

(11)vREej ,ek =
[

hREejmarker; hREekmarker

]

,
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Single‑head and multi‑head classifiers

Single-head classifier As shown in Fig. 2b (the ET and RE classifiers are in grey and pink, 
respectively), single-head classifiers have two separated classifiers to predict multi-
ple classes for ET and RE, respectively. In ET classification, e.g., a single-head classifier 
projects the prediction space into the vocabulary size (M classes) of all ET in a dataset. 
Then, the loss ( Ltotal

s  ) of a sing-head (s) based model is the weighted sum of the cross-
entropy losses of SP, ET, and RE

where αSP,αET , and αRE are hyperparameters. The limit of using single-head classifier is 
that the vocabulary of predicted labels cannot be expand after training.
⋆ Multi-head classifier Inspired by prompt learning that uses multiple prompts to 

infer labels for different tasks [44], JCBIE employs multi-head classifiers for ET and 
RE to fit the context of continual learning that entity types (ET) and relations (RE) can 
be expanded over time. The SP of JCBIE still uses a single-head classifier, because the 
vocabulary of SP labels is defined by the BIOES tagging scheme, regardless of dataset 
domains. As seen in Fig.  2c, ET and RE have M and N binary classifiers, learning M 
entity types and N relations, respectively. In ET classification, e.g., each binary classifier 
classifies whether an entity mention belongs to a specific type. Thus, JCBIE can expand 
the vocabulary of predicted labels over time by learning new datasets with new binary 
classifiers. The loss ( Ltotal

m  ) of a multi-head classifier (m) based model is given by

where the binary classifiers employ cross-entropy losses. If there are more than two 
binary classifiers that predict positive, JCBIE will take the result from the most confident 
classifier as the final prediction.

Continual multi‑corpora learning paradigm

Continual learning In order to extract different knowledge from different corpora to 
develop large-scale BKGs, continual learning was commonly used by recent works [45, 
46]. The corpora are organized as a pipeline style for model learning sequentially (see 
Fig. 2g). When learning a new corpus, the parameters of a continual learning model are 
initialized as the parameters that were given by the learning of the last corpus. Thus, the 
initialized model is supposed to have remembered previous knowledge. However, [47] 
argued that such a continual learning method may result in the catastrophic forgetting 
of previously learnt knowledge. We will verify this in the later experiments.

Multi-corpora learning The ideal situation for training a model is to prepare an anno-
tated corpus that contains all domain information. The model can learn the real world 
distribution of data from the omnipotent corpus. However, such a condition does not 
exist. We hypothesize that the collection of our prepared datasets is omnipotent in 
reflecting the real world data distribution; We do not need additional data to process 
ADE, DDI, and CPR datasets in the future (Hypothesis 1). A model trained with the 

(12)L
total
s = αSP

L
SP
s + αET

L
ET
s + αRE

L
RE
s ,

(13)L
total
m = αSP

L
SP
s + αET

M
∑

ι=1

L
ET
m,ι + αRE

N
∑

κ=1

L
RE
m,κ ,



Page 10 of 20He et al. BMC Bioinformatics          (2022) 23:549 

combination of shuffled datasets (see Fig.  2h) shows the upper bond of learning per-
formance, based on Hypothesis 1. We will demonstrate this later in empirical studies 
(Sect. 5.4). We will also show the result when Hypothesis 1 does not hold.
⋆ Continual multi-corpora learning Actually, datasets are continually expending in a 

research domain. For example, ADE1 [48], DDI [49], ADE2 [50], CPR [13], and ADE3 [12] 
were developed in 2012, 2013, 2017, 2017, and 2019, respectively.

We mean to use a continual multi-corpora learning paradigm to mitigate the bias of a 
model continually learning data distribution, improving the corpus-adaption capacity of 
the model (see Sect. 5.4 later). As seen in Fig. 2i, we use the portion of an early dataset, 
e.g., ADE (here, ADE1 and ADE2 are combined, termed ADE) subset 1 ( ADEsub1 ) to train 
the model at Step 1. Then, the combination of ADEsub2 and DDIsub1 is used to continually 
train the model in Step 2. Finally, the rest of ADE and DDI data ( ADEsub3 and DDIsub2 ) 
combines CPR data to continually train the model at Step 3. In our experiments, ADE is 
divided into three equal parts ( ADEsub1 , ADEsub2 , and ADEsub3 ). DDI dataset is divided 
into two equal parts ( DDIsub1 , and DDIsub2).

Experiment
Datasets

Chemical/drug, protein/gene, and phenotype/disease are three fundamental entity type 
classes to form complicated BKGs. We choose four biomedical corpus, including ADE1 
[48], ADE2 [50], DDI [49], and CPR [13] for normal training and testing, and using ADE3 

Table 2  Statistics of the employed datasets

Ch./Dr., chemicals or drug; Ph./Di., phenotype or disease; Pr./Ge., protein or gene

Corpus Sent. count Entity mention counts Relations counts

Ch./Dr. Ph./Di. Pr./Ge. ADE DDI CPR

Training set

ADE1 800 969 1144 – 1171 – –

ADE2 3418 4063 4585 – 5422 – –

DDI 5002 13,276 – – – 3607 –

CPR 8471 11,369 – 12,572 – – 6044

Total 17,691 29,677 5729 12,572 6593 3607 6044

Validation set

ADE1 100 124 129 – 140 – –

ADE2 427 493 592 – 667 – –

DDI 557 1487 – – – 413 –

CPR 1022 1490 – 1385 – – 694

Total 2106 3594 721 1385 807 413 694

Testing set

ADE1 100 115 144 – 142 – –

ADE2 427 506 597 – 732 – –

DDI 543 1480 – – – 475 –

CPR 1117 1715 – 1520 – – 1016

Total 2187 3816 741 1520 874 475 1016

Corpus-adaption evaluation

ADE3 4638 9517 2334 – 4767 – –
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[12] for corpus-adaptation evaluation. These corpora contain compatible definitions for 
the above entity types and relations. Table 2 shows the statistics of each dataset.

For a better compatibility, we normalize the entity types and relations in different 
corpora. E.g., entity type “Drug” in the DDI corpus is described as “any chemical agent 
used in the treatment, cure, prevention, or diagnosis of a disease that has been approved 
for human use”. Another type is “Drug_n” which is defined as “any chemical agent that 
affects living organisms”. However, these two entity types are not differentiated in the 
CPR corpus. Thus, we normalized “Drug_n” as “Drug”. For relation normalization, the 
original DDI corpus varies four fine-grained DDI relations. We normalize them as the 
same one. Finally, the employed entity type labels are chemical/drug, protein/gene, and 
phenotype/disease. Three relation labels are ADE, DDI, and CPR.

Evaluation and measure

The reported testing results are given by the model and the training epoch, which yields 
the best performance on the associated validation sets. All results are reported by a five-
time running averaged micro-F1 measure, where RE results are the main measure. SP 
is regarded as a sequence-labeling task, in which all tokens are labeled for calculating 
micro-F1 (see Table 1). The performance of ET depends on the predictions of SP. Recog-
nized entities from ET are counted as true-positive (TP), if both its boundary (from SP) 
and type are correct. If a gold entity is missing, it will be counted as a false-negative (FN) 
instance. If an entity with wrong boundary or type, it is counted as one false-positive 
(FP) instance. RE task depends on the SP and ET results, because the errors of SP and 
ET are propagated to the RE model. Only if two entities and related relation types are 
the exact same as gold labels is counted as TP in RE. Missing triples are counted as FN 
instances. If RE predicts a relation label that is not the same as the gold label, it is FP. 
When it comes to multi-corpus learning, we regard all data as one corpus for the meas-
ure of micro F1.

Additionally, we introduce a corpus-adaptation evolution task, which evaluates the 
generalization of a model in the continual learning context. ADE3 is used to evaluate 
JCBIE after training on ADE1 , ADE2 , DDI and CPR. Noticeably, There are deviations 
in the annotation guidelines of these corpora. Their data sources are also different. 
Although a model has been well-trained by the corpora ADE1 and ADE2 , e.g., its per-
formance may drop in ADE3 . This evaluation aims at simulating real application scenar-
ios. When a neural network tries to learn similar concepts with no exact definition (the 
problem also may be introduced by the different understanding from different annota-
tors), how does the model perform with such huge noised data. The following results 
demonstrate that JCBIE can effectively alleviate the problem.

Baseline

(1)  ExtendNER [36] is a knowledge distillation-based framework, which transfers old 
knowledge from a teacher encoder into a new student encoder with an extended lin-
ear classifier. When ExtendNER needs to recognize new entity types, the parameters of 
teacher encoder layers are copied to initialize the new student encoder, and the linear 
classifier built on the top of the student encoder is expanded with the additional dimen-
sions for the new entity types.
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(2) L &R [37] is a two-stage framework, which consists of a learning stage and a 
reviewing stage. At the learning stage, L&R follows ExtendNER to distill old knowledge 
from a teacher model into a student model. At the reviewing stage, L&R generates syn-
thetic samples with old entity types for jointly training, aiming to alleviate the inter-type 
confusion [51].

The original ExtendNER and L&R were designed only for NER, and we re-implement 
the methods for joint SP, ET, and RE tasks. When only ADE1 is employed, ExtendNER, 
L&R, and Typical Joint Extraction are equal, because they do not start to distill at the 
first step. For L&R, it should notice that we randomly sample 20 instances rather than 
generating synthesized data in the reviewing stage. The reason is the reviewing stage of 
L&R was designed for only one NER task, and it is hard to ensure generate appropriate 
instances for joint SP, ET, and RE tasks.

(3) Typical joint extraction The above two studies are knowledge distill-based meth-
ods. Considering JCBIE are data replay-based method, we design another replay-based 
method named Typical Joint Extraction for more comprehensive comparison. Accord-
ing to the most recent works [20–23], a common practice about jointly extracting entity 
spans, entity types and the relations between two entities is based on a hard-parameter 
sharing encoder (Fig.  2d) and a single-head classifier (Fig.  2b). We compare our pro-
posed no-parameter sharing (Fig. 2f ) and multi-head classifier (Fig. 2c) with this baseline 
method. For a fair comparison, other variables e.g., pre-trained language models (Bio-
BERT), multi-corpora learning learning paradigms (Fig. 2h), and datasets are controlled.

Hyper‑parameter setups

For all experiments, batch size is 8. Learning rate is 5e−4 for AdamW optimizer [52]. 
αSP ,αET ,αRE in Eqs. (12) and (13) are 0.4, 0.25, and 0.35, respectively. The dimension of 
emb is 50 in Eq. (8). The max pooling size of proto is also set to 50 in Eq. (10). We employ 
Bio-BERT-base.

Results
In this section, we first demonstrate the improvements of JCBIE compared with a typi-
cal parameter sharing based joint extraction model and two other related baselines, then 
conducting empirical studies by comparing different encoding methods, RE hidden state 
augmentations, learning paradigms, classifiers, and finally discussing the NER tagging 
schemes and bottleneck factors in jointly learning NER and RE. 

Proposed method versus baseline methods

In Table 3, all the compared models employ multi-corpora learning that shuffles data of 
all employed corpora as input. Compared with knowledge distillation-based ExtendNER 
and L&R, data replay-based methods (JCBIE and typical joint model) perform better. 
Besides, JCBIE performs better than the typical joint model in all four RE evaluations by 
different dataset combinations, yielding an average gain of 2.27%. JCBIE also achieves 
better performance on SP and ET tasks, yielding averaged gains of 1.75% and 1.45%, 
respectively. It shows the efficiency of JCBIE in a conventional multi-corpora learning 
paradigm overall.
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Different parameter sharing methods

Three types of encoding methods, including hard-parameter, soft-parameter, and no-
parameter sharing are compared on ET and RE tasks in Fig. 3. For controlling vari-
ables, all compared models adopt multi-head classifiers (Fig.  2c) and multi-corpora 
learning (Fig. 2h). The results show that the soft-parameter sharing method is gener-
ally worse than the other two in RE task when more datasets, e.g., ADE, DDI + ADE, 
ADE +  DDI +  CPR are used for learning. Namely, the last hidden state of NER is 
not helpful for RE by cross-attention. This is probably because the ET information 
may mess up the RE learning when more labels are incorporated. By comparing 
hard-parameter sharing and no-parameter sharing setups, we find that no-parame-
ter sharing outperforms hard-parameter sharing by 5.72% micro-F1 on ADE1 , while 
the performance of the two methods are close in the rest of dataset combinations. 
It shows that no-parameter sharing is particularly effective in single-corpus learning 
with the limited number of entities and relations. By comparing ET and RE, generally, 
RE task is more difficult because RE labels are more than that of ET.

Different augmentation methods

Four different RE hidden state augmentation methods are compared in Table 4. All the 
results are given by a model armed with multi-head classifier (Fig.  2c), no-parameter 
sharing encoders (Fig. 2f ), and multi-corpora learning (Fig. 2h). Apart from the ADE1 
evaluation task, adding entity markers is the optimal augmentation method for RE learn-
ing (76.95% micro-F1 on average). It helps a model to learn more diverse RE labels and 
tasks. For limited RE label learning in ADE1 , the vanilla augmentation method is slightly 
better. Establishing interactions between NER and RE from the input side (entity mark-
ers) is more useful than the fusing of hidden states on the encoder output side (other 
augmentation methods), because the Bio-BERT encoder delivers additional information 
fusion ability in modeling the interactions of two different tasks.

Table 3  Comparison between typical joint extraction and JCBIE, based on a multi-corpora learning 
paradigm

The bold means the best results

The results are measured by micro-F1. NB: Without a subscript specification, ADE is the combination of ADE1 and ADE2 . 
When only ADE1 is employed, ExtendNER, L&R, and Typical Joint Extraction are equal, because they do not start to distill at 
the first step

Method\Dataset ADE1 ADE DDI + ADE ADE + DDI + CPR Avg.

ExtendNER SP 82.56 86.64 88.24 86.35 85.95

ET 84.79 87.99 89.85 84.45 86.77

RE 68.70 76.94 77.50 68.20 72.84

L &R SP 82.56 89.07 90.04 90.58 88.06

ET 84.79 90.02 93.25 89.64 89.43

RE 68.70 81.12 79.12 70.01 74.74

Typical joint extraction SP 82.56 88.77 92.41 89.35 88.27

ET 84.79 89.13 92.09 88.05 88.52

RE 68.70 79.53 78.32 70.16 74.18

JCBIE SP 87.80 89.17 91.98 91.12 90.02
ET 87.77 89.65 92.07 90.38 89.97
RE 74.18 80.56 80.09 72.97 76.95
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Different training paradigms

We compare different learning paradigms, e.g., continual learning, multi-corpora learn-
ing and continual multi-corpora learning in two scenarios: (1) The testing and training 
sets are from the same corpora (within-corpora); (2) The testing and training sets are 
from different corpora (cross-corpora). The within-corpora evaluation analyses the ideal 
learning situation based on Hypothesis 1 (see Sect. 3.5). The cross-corpora evaluation is 
more close to the real-world situation, where Hypothesis 1 does not hold. The within-
corpora evaluation is based on a model that has single-head classifiers (Fig.  2b), no-
parameter sharing encoders (Fig. 2f ) and entity marker augmentation methods. In the 
cross-domain evaluation task, we control encoder and augmentation methods, compar-
ing classifier types (single-head and multi-head) and different learning paradigms. The 
dataset feeding pipeline in continual learning and continual multi-corpora learning is 
ordered. The datasets in multi-corpora learning is disordered, because all the datasets 
are combined as a whole dataset for training and testing.

As seen in Table 5, the three data learning paradigms yield similar performance, based 
on Hypothesis 1 and within-corpora evaluation. The multi-corpora learning achieves 
the highest micro-F1 across the four dataset setups, because it uses all datasets at once, 
learning the data distribution globally. The average gap between multi-corpora and con-
tinual multi-corpora learning paradigms is just 0.41%. It shows that continual multi-cor-
pora learning also achieves comparable performance, based on Hypothesis 1.

In Table 6, we use an independent evaluation dataset ( ADE3 ) for the cross-corpora 
evaluation to evaluate the corpus-adaptation ability of different learning paradigms 
and classifier types when Hypothesis 1 does not hold. By comparing different learning 

Table 4  Comparison between different RE hidden state augmentations

The bold means the best results

The results are measured by RE micro-F1

Corpus Vanilla Entity marker Entity type 
embedding

Entity type 
prototype

ADE1 74.61 74.18 72.78 74.69
ADE 79.37 80.56 80.25 79.66

DDI + ADE 79.58 80.09 79.88 78.57

ADE + DDI + CPR 71.83 72.97 71.51 71.43

Avg. 76.35 76.95 76.10 76.09

Table 5  Within-corpora evaluation by different learning paradigms

The bold means the best results

The results are measured by RE micro-F1

Corpus Continual Multi-corpora Conti. 
multi-
corp.

ADE 79.91 80.56 80.40

ADE-DDI 80.32 80.09 80.01

DDI-CPR-ADE 72.18 72.97 72.58

ADE-DDI-CPR 70.78 72.97 71.93

Avg. 75.80 76.65 76.23
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paradigms, multi-head classifier-based continual multi-corpora learning achieves the 
highest micro-F1 on average (31.63%), outperforming other learning paradigms by at 
least 1.9%. This shows that our proposed continual multi-corpora learning method 
tasks the complementary strength of continual learning and multi-corpora learning in 
cross-corpora evaluation. In contrast, continual learning models suffer catastrophic 
forgetting and tend to fit the last feeding corpus. E.g., when models are evaluated by 
ADE3 , they always perform better, if ADE is trained lastly (see the results in DDI-ADE 
vs. ADE-DDI; DDI-CPR-ADE vs. ADE-DDI-CPR). This observed phenomena is con-
sistent with the study of [53].

Noticeably, micro-F1 values in cross-corpora evaluation in Table  6 are lower than 
within-corpora evaluation in Table  5. We list two major reasons here. Firstly, the 
boundaries between biomedical entities and other tokens are indistinguishable. E.g., 
“3-[(2-methyl-1, 3-thiazol-4-yl) ethynyl] pyridine” and “1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine” are two drug entities in our data. Recognizing such entities without 

Table 6  Cross-corpora evaluation by continual learning (CL), multi-corpora learning (ML), and 
continual multi-corpora learning (CML), single-head classifier (S), and multi-head classifier (M)

The bold means the best results

The performance is measured by RE micro-F1 on ADE3 corpus

Training 
methods

CLS ADE DDI- ADE DDI- CPR- ADE ADE- DDI ADE- DDI- CPR Avg.

CL S 29.99 33.69 31.95 1.04 0.01 19.34

M 30.06 34.13 32.04 26.73 23.21 29.23

ML S 29.41 28.88 25.62 28.88 25.62 27.68

M 30.76 32.29 26.66 32.29 26.66 29.73

CML S 25.21 36.46 27.08 20.13 22.51 26.28

M 28.16 38.95 33.83 28.01 29.18 31.63
Avg. S 28.20 33.01 28.22 16.68 16.05 24.43

M 29.66 35.12 30.84 29.01 26.35 30.20

Fig. 3  Comparison between different encoder parameter sharing methods. The performance is measured by 
micro-F1 on ET and RE tasks
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special training data is challenging. Secondly, certain annotation deviations exist in dif-
ferent corpora due to different annotation guidelines. For example, all kinds of inhibi-
tors are regarded as Drug entity in ADE3 , but not in ADE1 and ADE2 . Different genres 
can also lead to different performance for a supervised learning model [54].

Single‑head versus multi‑head classifiers

We demonstrate the advantage of using multi-head classifiers based on different learn-
ing paradigms. As seen in Table 6, a multi-head classifier brings extra gains across all 
learning paradigms. This clearly demonstrates that a multi-head classifier surpasses a 
single-head classifier in cross-corpora evaluation. Multi-head classifiers also mitigate the 
impact of dataset-stream orders, reducing the gap between “DDI-CPR-ADE” (S: 28.22%, 
M: 30.84%) and “ADE-DDI-CPR” (S: 16.05%, M: 26.35%), e.g., from 12.17% to 4.49% on 
average. Thus, multi-head classifiers are more fitting for continual learning than single-
head classifiers in robustness.

Discussion
In this section, we discuss (1) the impact of different NER annotation methods (united 
and separated tags), and (2) the impact of SP and ET errors on RE (bottleneck factors). 
We train JCBIE on ADE1 , ADE2 , DDI, and CPR datasets, individually. The JCBIE model 
is based on multi-head classifiers (Fig. 2c), no-parameter sharing encoders (Fig. 2f ), and 
entity marker augmentation. The experiments do not involve continual learning and 
multi-corpora learning.

Traditional NER tagging scheme denotes both entity position and type information 
with a united label, such as “B_location, I_location, and E_location” [55, 56]. In contrast, 
we divide the NER label system as two separated SP and ET labels (see Table 1 for exam-
ples). In the inferring process, the ET prediction is conditioned on the SP results, which 
introduces an additional inference step. However, such a modification can reduce the 
label types in each task, improving model performance. Additionally, accurate predic-
tions of SP and ET can improve the final predictions of RE, because the positions of 
entity markers are given by SP. The types of entity markers are given by ET. As seen in 
Table 7, by comparing ET and NER columns, JCBIE yields better performance in iden-
tifying entity types and positions based on SP-ET separated tagging scheme (90.87% 
micro-F1 on average) than the model trained with the traditional NER united tagging 
scheme (90.32%).

Table 7  Model performance on each corpus, measured by micro-F1

NB: NER means SP and ET labels are combined as a single label. ET and ET+ denote the ET predictions depending on 
SP-predicted labels and gold labels, respectively. RE and RE+ denote the RE predictions depending on SP and ET predicted 
labels and gold labels, respectively

Corpus NER SP ET ET
+ RE RE

+

ADE1 86.58 88.40 87.16 99.82 72.14 91.75

ADE2 90.66 92.18 90.72 99.81 83.37 98.64

DDI 95.48 96.74 96.42 100 80.00 84.26

CPR 88.58 90.59 89.19 97.97 65.36 74.27

Avg. 90.32 91.98 90.87 99.40 75.22 87.23
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On the other hand, the errors introduced in SP and ET finally lower the RE perfor-
mance. We first evaluate the error impacts of SP on ET. The ET+ column in Table  7 
shows the ET performance based on gold SP labels. By comparing ET and ET+ , we 
observe a drop of 8.53% in micro-F1 on average. ET+ yielding 99.4% average micro-F1 
highlights that the SP task performance is the bottleneck factor in NER task. We will 
explore a more accurate method for SP learning in the future. By using gold SP and gold 
ET labels, we observe RE+ achieves 87.23%, exceeding RE by 12.01% on average. It shows 
that RE task is difficult. Although entity types and spans can be perfectly identified, there 
is still a huge space for improving RE performance. Thus, we will fuse additional knowl-
edge for improving RE identification upon SP and ET in future work.

Conclusion and future work
This paper explores JCBIE, jointly and continually learning biomedical information 
extraction from different corpora. We aim at establishing a more general biomedical 
information extraction neural network with continual learning ability. The ultimate goal 
is to get rid of limited entity types and relations to extract more knowledge, improv-
ing the generalization ability of a model. There are three summing-ups: Firstly, using 
two separated encoders without parameter sharing is better than using a hard-param-
eter sharing encoder or soft-parameter sharing encoders in learning NER and RE tasks; 
Secondly, apart from the ability of continually learning new entity types and relations, 
multi-head classifiers can also deliver better generalization on a new dataset; Finally, the 
dataset feeding orders have impacts on a cross-corpora inferring model. Using continual 
multi-corpora learning paradigm can somewhat mitigate the impacts, yielding robust 
performance.

In the future, we would further explore how to enhance the ability to continual learn-
ing. For example, utilizing a distillation-based method [36, 37] to transfer knowledge 
or using fuzzy clustering [57, 58] to filter features are both promising technologies to 
improve model performance. Besides, data replay-based continual learning is limited 
when previous data cannot access. We also try to explore methods that totally need no 
previous data while still can keep promising performance.
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