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Abstract 

Background:  Current clinical routines rely more and more on “omics” data such 
as flow cytometry data from host and microbiota. Cohorts variability in addition to 
patients’ heterogeneity and huge dimensions make it difficult to understand underly‑
ing structure of the data and decipher pathologies. Patients stratification and diag‑
nostics from such complex data are extremely challenging. There is an acute need to 
develop novel statistical machine learning methods that are robust with respect to the 
data heterogeneity, efficient from the computational viewpoint, and can be under‑
stood by human experts.

Results:  We propose a novel approach to stratify cell-based observations within a sin‑
gle probabilistic framework, i.e., to extract meaningful phenotypes from both patients 
and cells data simultaneously. We define this problem as a double clustering problem 
that we tackle with the proposed approach. Our method is a practical extension of 
the Latent Dirichlet Allocation and is used for the Double Clustering task (LDA-DC). 
We first validate the method on artificial datasets, then we apply our method to two 
real problems of patients stratification based on cytometry and microbiota data. We 
observe that the LDA-DC returns clusters of patients and also clusters of cells related to 
patients’ conditions. We also construct a graphical representation of the results that can 
be easily understood by humans and are, therefore, of a big help for experts involved in 
pre-clinical research.

Keywords:  Double clustering, Bayesian topic modelling, Latent Dirichlet allocation, 
Precision medicine

Background
Human disorders have a highly multifactorial nature and depend on genetic, behavio-
ral, socio-economic, and environmental factors. There are many examples of such com-
plex diseases: cardiovascular diseases, non-alcoholic liver cirrhosis, type II diabetes, or 
even other pathologies such as autoimmune diseases [1] to name a few. The number of 
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subjects with metabolic diseases, cancers, and autoimmune pathologies has increased 
significantly in recent years, making research in this field a public health priority [2].

In parallel, bioclinical routine datasets have expanded in conjunction with all kind of 
“omics” data, from both the host and microbiota, as well as metabolomic, proteomic, and 
cytometry data [3]. All these types of data have some underlying structure on their own, 
taking values on different scales, with different variability, and are differently distributed. 
In addition, human patients are an equally important source of variability even among 
carefully selected cohorts: phenotypic variability (age, gender, previous conditions), die-
tary habits, bad versus good responders to treatment, etc. As a result, the amount of 
available heterogeneous data has increased exponentially. In particular, cell based tech-
niques such as single cell RNA sequencing (scRNA-seq) revolutionized the field of life 
sciences by bringing an unprecedented resolution to study heterogeneity in cell popula-
tions [4]. So, single-cell transcriptome profiling of pathologic tissue isolates allows the 
characterization of heterogeneous pathologic cells along with neighboring immune cells. 
More precisely, flow cytometry and scRNAseq are cell-level data describing heterogene-
ous cells’ behavior. The most recent results, either take into account the cell heterogene-
ity by itself (e.g., by deriving cell lineage) or compress the information into population 
proportion after a (usually arbitrary) clustering for patient-to-patient analyses that pre-
vents us from simplistic data fusion in order to extract meaningful information.

Flow cytometry workflow, e.g., computes a so-called gating where bi-axial plots are 
used by human experts to distinct cells. This method is often performed by a researcher 
and is, therefore, accurate but expensive. A more computationally efficient way to iden-
tify cell populations are machine learning clustering methods. Among the state-of-the-
art clustering methods for scRNA-seq data for cell-type identification are distance-based 
partitioning, density-based clustering, or graph-based clustering methods [5–8]. One of 
the most widely used exploration method for cell data is the t-SNE [9] which is a prob-
abilistic dimensionality reduction and visualization method. It is not only widely used 
in the single cell analysis but also a number of methods were developed based on the 
t-SNE. So, in ACCENSE [10] and ClusterX [11], the t-SNE is used to estimate the 
density and also to project the data before the cell populations are identified. Another 
approach, viSNE [12], where each cell is a point in high-dimensional space, proposes a 
distributed implementation of the t-SNE. Different combinations of t-SNE and graphi-
cal methods were explored, e.g., PhenoGraph [13], where a nearest-neighbor graph is 
applied to cell data to reveal the partitioning, determines phenotypes in single cell data. 
A similar idea is also considered in Xshift [14]: the k-nearest-neighbor algorithm is 
used to identify connectivity and density peaks in cell data.

Dimensionality reduction is a natural way to process the single cell data. So, FlowSOM 
[15] is a cell clustering technique based on Self-Organising Maps (SOM), where the 
result of stratification is a grid of cell clusters, and it can be visualized by showing the 
average marker values of each identified cluster. Some practical packages, e.g., CITRUS 
[16] which relies on hierarchical clustering, were proposed. Their goal is to apply some 
standard robust clustering methods to the single cell data.

Currently, research is focused on the development of graph-based clustering methods. 
Indeed, in [17], the authors compare different graph clustering methods for community 
identification. These methods can take into account a single network (i.e., co-expression, 
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protein-protein interaction) or aggregate information of several networks. Among the 
most efficient methods are kernel clustering, modularity optimization, random-walk-
based methods and local methods allowing to identify communities related to particular 
pathologies. In parallel, [18] have developed a layer specific module in multi-layer net-
work based on non-negative matrix factorization (LSNMF). In this approach, LSNMF 
learns latent features of vertices and decomposes them into two types of features: com-
mon and specific ones, where the specificity of features for vertices is explicitly meas-
ured, thereby improving the accuracy of algorithms. As a result of different experiments, 
the features identified in these modules appeared to accurately characterize different 
modules. Moreover, the attention of the community has been extended to the clustering 
of scRNA-seq data, through the use of network-based methods. Indeed, [19] has devel-
oped a network-based structural learning non-negative matrix factorization algorithm 
(SLNMF) for cell type identification. The authors show that their approach based on the 
topology of the reconstructed from data network, is much more efficient and accurate 
for cell types identification than standard approaches based on expression data.

Recently, the attention of the systems biology community was drawn by Bayesian 
probabilistic methods. The intuition behind these approaches in relation to the biologi-
cal tasks is to model individuals who belong to multiple populations. For example, [20] 
proposes a method based on a Dirichlet mixture model to cluster single cell transcrip-
tomic data, pointing out that model-based (probabilistic) methods are underexplored for 
single cell data analysis. The estimation of the model is done using the Expectation-Max-
imisation (EM) algorithm.

Some attempts to adopt the Latent Dirichlet Allocation (LDA) to the single cell data 
were recently made. So, [21] applied the LDA to a database with approximately 50 
human tissues to discover similarities between them; the LDA was also tested on sin-
gle cell mouse data to discover variations in early embryonic development stages. An 
important characteristic of the single-cell data is that the data is structured; [22] states 
that any clustering method for the single-cell data should account for the hierarchical 
structure of cell types, and proposes new metrics to evaluate clustering performance. 
To construct tree structures which reflect the hierarchical nature of single cell data, [23] 
explore a hierarchical extension of the LDA to identify clusters of cells. Cellular LDA 
(Celda) was introduced by [24] to perform bi-clustering of co-expressed genes and also 
of cells into subpopulations. The Celda takes into account the hierarchical relationships 
in data.

Recently, the Latent Dirichlet Allocation (LDA) was considered to partition the single-
cell data [25, 26]: the LDA was applied to binary data, where each cell was treated as a 
document, and each chromatin site (chromatic contact) was considered as a word. So, 
[25] proposed a Bayesian topic modeling framework called cisTopic for robust iden-
tification of cell types. In [26], the LDA is tested on the extremely sparse data to capture 
cell type differences.

From the analytical viewpoint, the single cell data are huge-dimensional matrices 
produced for each subject. The data dimension, i.e., the number of cells, vary from one 
individual to another, and note that cell types, as well as the correspondence between 
the cell populations of the subjects, has to be identified before applying any statistical 
machine learning method. We refer to the challenge we introduce and consider here as 
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to a double clustering problem, where the aim is to simultaneously, purely from observa-
tions without any prior knowledge determine cell types, as well as stratify patients in 
order to study mechanisms of pathologies explained by particular cell subpopulations.

In this contribution, we propose the Latent Dirichlet Allocation for Double Clustering 
(LDA-DC) which is a novel method to identify cell types from flow cytometry data, and 
cluster patients in the same flow. We discuss the advantages coming from the Bayesian 
probabilistic nature of our approach, and we illustrate its strengths on real benchmarks.

Methods
Latent Dirichlet allocation for double clustering

Latent Dirichlet Allocation (LDA) [27] was originally proposed as a probabilistic topic 
modeling method. It is a Bayesian approach which was developed to identify topics given 
a corpus of documents, where the topics are not known in advance. Note that the stand-
ard LDA considers discrete (counts) data. The LDA is based on several assumptions. First, 
each document can be represented by a mixture of topics (Fig. 1). Second, as a result of 
the learning procedure, one learns not only the topic distribution representing each docu-
ment, but also the distribution of words associated with each topic. The word distribution 
is helpful to interpret the topics. The main goal of the LDA learning procedure is to esti-
mate the model parameters θ (words distribution describing topics) and φ (topics distri-
bution describing documents). The Latent Dirichlet Allocation framework is formalised 
as follows. The topics are distributed according to a Dirichlet distribution:
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where α is a hyper-parameter. The distribution of words is also modeled by the Dirichlet:

where β is another hyper-parameter of the LDA model to control the topic-words 
distribution.

To estimate the parameters of the model and to perform clustering, we are particu-
larly interested in the following conditional probability computed from two Dirichlet 
distributions. The conditional probability of assigning ith token to cluster j is given:

where D is the number of documents, W is the number of words, K is the number of 
clusters (topics), CWK  is the word-topic matrix, 

∑W
w=1 C

WK
wj  is the total number of words 

in each topic, CDK  is the document-topic matrix, CDK
dk  is the total number of words in a 

document; z−i is the topic assignments for all other topics.
The intuition behind the hyper-parameters is as follows. The higher α , the more 

likely a document is described by more topics. The higher β , the more likely each 
topic is described by more words. As in the majority of clustering methods, the num-
ber of topics (clusters) has to be fixed.

Although a number of optimization approaches were proposed to estimate the 
parameters of the LDA framework, we use the standard Gibbs sampling [28] in our 
numerical experiments.

The originality of our approach is the extension of the LDA to the double cluster-
ing framework. The complete learning procedure, called Latent Dirichlet Allocation 
for Double Clustering (LDA-DC) is drafted as Algorithm  1. The algorithm takes the 
patients data matrices, where the number of lines p is the number of cells, and N 
is the number of columns (fluorescence markers) (Fig. 1). Note that cells are differ-
ent across patients, and a straightforward application of any state-of-the-art machine 
learning method such as Support Vector Machines or Random Forests, is not possi-
ble. The first step of the double clustering is the identification of the cell types. Using 
the (topic modeling) LDA terminology, the cell identification is the identification of 
words (note that in the standard LDA the words are well-defined and provided).

Taking into consideration that our algorithm was developed with the single cell data 
in mind, where the form of the distribution is supposed to be known, i.e., Gaussian, the 
words (cell types) identification is done using the K-means clustering which is known to 
be more robust compared to the Expectation-Maximisation algorithm that is sensitive to 
its initialization.

Once the cell types are fixed, the LDA can be efficiently used to estimate both the 
probabilities of a phenotype given a patient, and the probability of a cell type given a 
phenotype. Thus in addition to provide a topic for each patient, our method provides a 
topic for each cell phenotype.

(1)θ ∼ Dirichlet(α),

(2)φ ∼ Dirichlet(β),

(3)
P(zi = j|z−i,wi, di) ∝

CWK
wj + β

∑W
w=1 C

WK
wj + Wβ

︸ ︷︷ ︸

φ

×
CDK
dk + α

∑K
k=1 C

DK
dk + Kα

︸ ︷︷ ︸

θ

,
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Simulated data

Cell generation: We constructed an artificial dataset to validate the proposed method. In 
order to mimic real flow cytometry datasets, our main hypothesis for the data generation 
is that the underlying distribution of fluorescent data can be efficiently approximated 
by (multivariate) Gaussian distributions. So, each marker can be seen as a mixture of 
two Gaussians with different means: one is associated with positive subsets (high mean), 
and the second one is associated with negative subsets (low mean). In order to test for 
robustness we can vary the standard deviation (std) of the distribution with high stand-
ard deviation making more difficult to separate low from high. Therefore, the phenotype 
of a cell is a real vector of dimension N (think of N as the number of fluorescent marker 
under consideration). To these continuous vectors we have associated the binary vector 
of dimension N with highs and lows describing the cell’s phenotype. There are therefore 
2N possible cell phenotypes.

Simulated patients: In order to create patients, we construct probability distribution 
vectors of cell type density that differ according to patients’ phenotype, i.e., different 
classes of patients will have different cells’ type distribution. Here, we tested two cases: 
two classes of patients and four classes of patients with prescribed cell’s type distribu-
tion for these 2 or 4 classes. We can simulate the patients by choosing their cell’s type 
distribution and compute the cell’s fluorescent values according to the current cell type. 
Note that at this point we also fix the standard deviation. Thus, an artificial patient is 
represented by a random subset of cells whose number is pcell from which we derive the 
cell type according to the phenotype distribution. We can compute real values for the 
cell according to its type. The distributions are chosen using a simple parameter that can 
vary the distance between classes.

Real benchmarks

To illustrate the efficiency of the proposed method, we selected two real annotated 
benchmarks.

AML (Acute Myeloid Leukemia) dataset: This dataset [29] has 2872 samples of flow 
cytometry standards collected from 359 AML (n=43) and non-AML (n=316) individu-
als. It contains results from 8 experiments corresponding to different tubes with differ-
ent markers (note that tube 1 is an isotope control, and tube 8 is unstained).

Cytometry and genus data The dataset we use contains FACS cytometry and 16rRNA 
sequencing data coming from two studies: [30] and [31] respectively. Note that the origi-
nal cytometry data comes from [31] and are paired with the 16rRNA data. However, we 
use the data from [30], since this data set is pre-processed (noise reduction using various 
transformations and algorithmic methods, see Analysis part in [30] for more details). 
So, we have a cohort composed of patients diagnosed with Crohn’s disease (CD, n = 29 ) 
and healthy subjects (HC, n = 66 ). The cohort of patients having the Crohn’s disease is 
described in details in [32], and the samples of HC patients come from the Flemish Gut 
Flora Project [33].
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The double clustering workflow

Here we provide the details of the proposed approach. We discuss its application to our 
artificial dataset, where we generate both, cells populations and patients in a controlled 
manner and compare it with the ground truth for both the cell’s type and patient’s phe-
notype. For the subsequent real datasets the method is strictly identical.

Cells clustering: We generate according to the method described above about 50 sub-
jects per phenotype (note that cell type density distribution is a vector of size 2N ). As 
already mentioned, we focus on a setting with 2 and with 4 phenotypes; 50 patients 
per phenotype. Per one patient, we generate a matrix of 104 cells measurements. These 
measurements can be encoded as continuous and binary (low/high) values. We perform 
the following pre-processing: we concatenate all patients and apply the Z-score on all 
patients. Then, we apply a K-means on the concatenated observations. Note that the 
number of clusters (cells types) is fixed to 2N . As a result of the cells clustering, each cell 
(of each patient) is assigned to a cluster, and we can consider the counts of cells in each 
cluster.

Patients clustering: In the previous step (cells clustering), we obtained the matrix of 
cells types counts per patient, where a cell type corresponds to the class assigned to the 
cell by the clustering method. The Latent Dirichlet Allocation (LDA) can be directly 
applied to the count matrix. Using the topic modeling terminology, we can imagine that 
the patients are considered as documents, and words are considered as cell types. The 
LDA model gives us the probability for each patient to be assigned to each cluster. Note 
that the number of phenotypes is also fixed in advance. The resulting conditional prob-
ability can be used in various ways. Traditionally, it is used to cluster observations based 
on the maximal probability value. Alternatively, we can apply a hierarchical clustering, 
e.g., with a tree cut to visualize and to explore the results.

Fig. 1  The proposed pipeline to perform the double clustering: from the observations (where one patient 
is represented by a matrix) to the conditional probability distributions of clusters given patients and cellular 
types given clusters. N is the number of fluorescent markers, K is the number of clusters, W is the number of 
words
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Results
Validation of the proposed method on simulated data

We tested the double clustering approach on different scenarios. We tested 2 and 4 phe-
notypes, and we varied the distance between the probability vectors to vary the difficulty 
of the clustering problem. If the Euclidean distance between the phenotype probability 
vectors is small, the clusters are not well-separable, there is a significant overlap between 
the groups. If the Euclidean distance between the probability vectors associated with the 
phenotypes is big, the clusters are easily separable, and we can expect a reasonable per-
formance. The overlap between the clusters can be controlled by the variance.

Figure  2 illustrates the results on the synthetic dataset. The subplots A and B show 
our results for the case with 2 phenotypes, andC and D illustrate the setting with 4 phe-
notypes. The subplots A and C report the results for the problem with a lower dimen-
sion (4), and the subplots B and D show the accuracy for the case with more features 
(16). Thus, when two groups of patients (Fig. 2A and B) have the phenotype probabil-
ity vectors that are difficult to distinguish (Euclidean distance is lower than 0.25 in the 
experiments), the accuracy is close to 50%, which is what is expected. If the number of 
dimensions increases (the size of vocabulary in the LDA increases), the accuracy does 

Fig. 2  Mean accuracy for the simulated scenarios with 2 and 4 phenotypes. We vary the distance between 
the phenotype vectors, standard deviation (std), and the number of clusters (k), ncell = 10000 . A Mean 
accuracy for 2 phenotypes, N = 2 , W = 4 . B Mean accuracy for 2 phenotypes, N = 4 , W = 16 . C Mean 
accuracy for 4 phenotypes, N = 2 , W = 4 . D Mean accuracy for 4 phenotypes, N = 4 , W = 16
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not seem to degrade (Fig. 2A and B). We obtain similar results for the setting with 4 phe-
notypes (Fig. 2C and D). If the clusters are hardly separable (generated with a Euclidean 
distance lower than 0.25), the accuracy is close to 30%. Increasing the dimensionality of 
the problem does not alter the performance significantly.

Real high‑dimensional datasets

Acute myeloid leukemia: AML dataset

The AML benchmark dataset is an unbalanced dataset of individuals with AML syn-
drome and healthy subjects. This dataset includes flow cytometry measurements for 
several batches (tubes) of different biomarkers sets. In order to balance the learning 
procedure, for each tube, we selected the same number of AML and non-AML patients 
excluding several non-AML patients. First, we applied the K-means with 2D clusters, 
where D is the number of markers in a tube. Then, we annotate each cell according to 
its origin (patient) and its cluster. For each patient, we obtain a list of cell types. We 
also define the vocabulary equivalent to the number of clusters of the K-means as well 
as the number of topics (here 2, since there are 2 conditions: AML and non-AML). At 
this point, each patient (observation) is a list of cell types, and we apply the LDA on the 
count data. In each experiment corresponding to each tube, we assign each patient to 
a cluster. We have the ground truth for all observations, however, since we consider a 
clustering task, we face the label switching problem. So, to cope with the label switch-
ing problem, we applied the majority vote to the obtained clusters. We compared the 
final clustering to the real classes (AML and non-AML). The accuracy is shown on Fig. 3. 
Note that some tubes are more predictive than others, due to different biomarkers used 
in the experiments.

We run a cross validation (number of folds is equal to 20 in our experiments). It is 
important to perform the cross-validation here, since the number of ill and healthy indi-
viduals is unbalanced, at each run we sample (uniformly) the same number of observa-
tions from both classes.

To compare with a baseline approach, we tested the standard K-means instead of the 
LDA approach to identify the clusters of subjects, and we found out that there is not 

Fig. 3  The accuracy of the double clustering method on the 8 tubes of the AML dataset
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any advantage in terms of predictive performance of the K-means over the LDA. We 
observed that our method is less efficient on the data of tube 6 (adjusted p-value = 0.002 
for tube 4 and adjusted p-value = 0.001 for tube 6; the results of the t-test and false dis-
covery rate adjustment are provided in Additional file  1:  Supplementary Informations 
Table S1). However, the LDA-DC provides us with some additional information. Indeed, 
we are able to extract the probability distribution of cell types related to each phenotype. 
So, we can detect which cell phenotypes drive the clustering and explain the disease.

Figure 4 illustrates our findings obtained with the LDA-DC. Panel A shows the topic 
density for each cell type. Although some cells are present in both, it is clear that some 
cell populations are associated with high probability, with the patient’s phenotypes. 
Visualizing the cells with the Uniform Manifold Approximation and Projection for 
Dimension Reduction (UMAP) [34] methods (panels B, C, D), we color-coded the cells 
according to: (1) appearance in a cell population (subplot B), (2) cells associated with 
disease/healthy estimated clusters (subplot C), and (3) cells colored according to the true 
clinical condition (panel D). In the last panel, we quantified the number of cells assigned 
to Topics 0 and 1 from AML and non-AML patients (see Additional file 1: Figure S1 and 
Additional file 1: Table S2), and tested the differences using Chi-squared test. We found 
out that the p-value < 2.2e−16, indicating that there is a significant difference in the dis-
tribution of the cells between AML and non-AML individuals within the two topics. 

Fig. 4  A Conditional probabilities of cell types given the topics. B Cells projection (UMAP), the cells plotted 
are ones whose probability of assignment to the clusters is bigger than 90%; C the cells are colored according 
to the topic (ill/healthy); D the cells are colored according to the true label (phenotype)
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Thus, the last panel is an indication that the cell populations we found are clearly associ-
ated with the disease. Our numerical results confirm that the double clustering predicts 
the clinical conditions with the unsupervised method and provides new information 
which allow us to relate the disease (or its absence) with cell subpopulations.

Cytometry and genus data: Crohn Disease Prediction

Nowadays, the number of studies dedicated to the human microbiota, increases steadily. 
We focused on the problem described in [31], where there two phenotypes: Crohn dis-
ease (CD) and healthy subjects. Our goal is to apply the LDA-DC to stratify the patients 
efficiently based on their cytometry as well as sequencing data. First, we selected all 
the data coming from [30] and selected 4 markers identified in the paper as markers 
of membrane bacteria. We tested a setting with two topics to separate the patients into 
two groups. However, the markers used were not adapted and we could not stratify the 
patients into two groups correctly. We arbitrarily fixed the number of topics to 8 (we also 
tested several values using the grid search), and applied our double clustering workflow.

To stratify the patients and see whether the result is consistent, we repeated the train-
ing procedure 40 times, and we count the number of times each patient is associated 
with a particular cluster. We considered a diagonal matrix, where patients are in col-
umns and rows, showing how many times the patients are clustered together, and we 
normalized these values by the number of experiments. Also, we applied an arbitrary 
threshold of 30%, and removed the links between patients that occur less than 30% of 
experiments. This matrix can be considered as one describing connectivity in the data, 
and we visualise a network where nodes are patients, edges are the connections between 
the patients, and edge weights are the connection frequencies. The obtained networks 
are shown on Fig. 5. Adding more information to such a graph, we modify the size of the 
nodes so that it reflects the connectivity (the bigger node degree, the bigger the node). 
The patients are colored according to their clinical condition (CD or Healthy), or to their 
enterotypes which are also provided with the dataset.

So, a network generated from the cytometry data, can separate patients into 3 groups: 
one group with data of sick patients only, and two other groups containing both sick 
and healthy subjects (Fig. 5B). However, one of these mixed groups contains significantly 
more ill patients.

Applying the same approach to the genus data, we observe that patients are well clus-
tered by the double clustering method. On the left (orange nodes) we have a cluster 
of mainly sick patients, and on the right healthy ones (Fig. 5A). Then we consider the 
patients enterotypes (provided with the data and identified by [31]), and we notice that 
the patients from left to right form a continuum of enterotypes; and are all well sepa-
rated too.

Subsequently, we decided to set the number of clusters—as done previously—(topics 
in the LDA terminology) to 2, and to stratify patients into two groups according to their 
conditions. Our aim here is to identify bacteria related to the disease. Indeed, we identi-
fied some bacteria that are linked to specific cell phenotypes and to conditions. Thus, we 
are able to find bacteria related to Crohn disease, and by extension, cells that drive the 
phenotypes. They are shown on Fig. 5, subplot D.
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Discussion
In this article, we proposed a simple method to obtain clusters of cells and patients 
simultaneously in the context of bioclinical datasets such as flow cytometry. We first 
validated our approach on simulated data: we noticed that it separates patients with a 
reasonable accuracy which depends on the difficulty of the clustering problem. We also 
showed how robust this method is according to noise (embodied as the standard devia-
tion of the Gaussian). This result is a simple proof of concept of the method for cytome-
try-like data.

We then applied our approach on two publicly available datasets: For the AML study, 
our method correctly predicted patients status but also provided cell phenotypes associ-
ated to this status. Indeed, we isolated some cellular phenotypes associated with AML. 
This phenotypes are identified by specifics fluorescence values and biological markers 
that can be investigated further. Therefore, one of our main results is shown on Fig. 4, 
panel D: the identified cell populations are well distinguished according to the clinical 
condition (AML versus non-AML).

Finally, we applied our approach to microbiota data where we have access to two data 
types: cytometry data and bacterial abundance. The cytometry dataset is mainly target-
ing bacterial membrane proteins. Wehereas, the second one is a count matrix for each 
patient, where each bacteria is identified (genus data). Our main result on the cytometry 
dataset is the patients’ stratification according to their clinical status using two topics, 
the separation is reasonable but not perfect. The error rate in this experiment can be 
explained either by the heterogeneity of bacteria in their membrane protein composi-
tion, or by the fact that the type of targeted membrane proteins are not specific to one 

Fig. 5  A Networks of patients constructed from 40 LDA-DC runs from the genus data; B Networks from the 
cytometry data; C Network of patients based on the genus data, where the colour of the node represents 
patients enterotypes; D Conditional probability distributions of bacteria given a cluster (here 2 clusters 
considered: CD and Healthy)
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type or sub-types of bacteria and are, therefore, not very good predictors of the Crohn 
disease. Even if these markers are not strong predictors, the clustering results are still 
reasonable (accuracy ≈ 70% ). On the other hand, using the genus data, we are able to 
separate correctly the patients into two distinct groups. As for the AML experiement, 
we were able to pinpoint actual bacteria species/genus directly associated with Crohn 
disease and these can be further investigated.

Indeed, on Fig.  5 it is easy to see the patients partitioning based on their entero-
types (subplot C). On subplot D, we show the bacteria which are related to the disease. 
For cluster 0, which corresponds to the Crohn’s disease, we identified the following 
bacteria: Fusobacteriacceae whose abundance increases in Crohn’s disease [35–37], 
Enterobacteriacean and Veillonella reported by [35] to be increased with the Crohn’s 
disease. [37] also state that the abundance of Haemophilus increases with the Crohn’s 
condition. Topic 1 (Fig. 5, subplot D) is associated with the healthy individuals, and we 
identified different bacteria known to reflect the healthy condition. So, [38] states that 
Faecalibacterium, Clostridium IV, Roseburia, Ruminococcus are decreased in patients 
with the Crohn’s disease compared to healthy subjects. In addition, [37] states that 
Blautia, Coprococcus (identified in topic 1) are less abundant in Crohn’s patients com-
pared to healthy subjects. In this regard, we confirm that bacteria identified in topic 0 
are markers of the Crohn’s disease, while those identified in topic 1 are markers of the 
healthy condition.

Conclusions
In this paper, we introduce a new method called Latent Dirichlet Allocation for Double 
Clustering (LDA-DC) to cluster features (e.g., cells) and patients from high dimensional 
data. Globally speaking, this method unifies clustering methods within one Bayesian 
framework to group cells into different cellular phenotypes from quantitative data, and 
stratify patients based on the clustered cells. We validated the method, and illustrated 
that it performs both, cells and patients partitioning reasonably well (we considered 
accuracy, since the ground truth was provided for the cohorts). This method allows us 
to stratify patients and cells simultaneously. In addition, it allows us to identify relation-
ships between cells phenotypes and patients clusters. Thus, we obtain more information 
compared to the majority of the state-of-the-art clustering methods.

Currently we are working on a hierarchical version of the proposed LDA-DC which 
is in some sense similar to the hLDA actively used by the topic modeling community. 
A particular interest to develop this direction is a hierarchical nature of the cells data. 
Another avenue of research is to propose novel methods based on soft clustering of the 
cells: note that the Expectation-Maximization method can be considered as a baseline 
method only, due to its known drawbacks such as initialization and scalability issues. 
An important question to consider is also cost-sensitive clustering, since real data are 
often extremely unbalanced. We would also like to go further into the graphical repre-
sentations of the results, since such a visual clustering showing more refined phenotypes 
could be an avenue for the development of methods of personalized medicine.
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