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Abstract 

Background:  Drug‒drug interactions (DDIs) are reactions between two or more 
drugs, i.e., possible situations that occur when two or more drugs are used simultane-
ously. DDIs act as an important link in both drug development and clinical treatment. 
Since it is not possible to study the interactions of such a large number of drugs using 
experimental means, a computer-based deep learning solution is always worth inves-
tigating. We propose a deep learning-based model that uses twin convolutional neural 
networks to learn representations from multimodal drug data and to make predictions 
about the possible types of drug effects.

Results:  In this paper, we propose a novel convolutional neural network algorithm 
using a Siamese network architecture called CNN-Siam. CNN-Siam uses a convolutional 
neural network (CNN) as a backbone network in the form of a twin network architec-
ture to learn the feature representation of drug pairs from multimodal data of drugs 
(including chemical substructures, targets and enzymes). Moreover, this network is 
used to predict the types of drug interactions with the best optimization algorithms 
available (RAdam and LookAhead). The experimental data show that the CNN-Siam 
achieves an area under the precision-recall (AUPR) curve score of 0.96 on the bench-
mark dataset and a correct rate of 92%. These results are significant improvements 
compared to the state-of-the-art method (from 86 to 92%) and demonstrate the 
robustness of the CNN-Siam and the superiority of the new optimization algorithm 
through ablation experiments.

Conclusion:  The experimental results show that our multimodal siamese convolu-
tional neural network can accurately predict DDIs, and the Siamese network architec-
ture is able to learn the feature representation of drug pairs better than individual net-
works. CNN-Siam outperforms other state-of-the-art algorithms with the combination 
of data enhancement and better optimizers. But at the same time, CNN-Siam has some 
drawbacks, longer training time, generalization needs to be improved, and poorer clas-
sification results on some classes.
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Background
Drug‒drug interactions (DDIs) are reactions that occur between two or more drugs. 
When two or more drugs are used together, the following three types of drug‒drug 
interactions may occur: co-interaction, antagonism, and no reaction. All these reac-
tions can affect the therapeutic effects of drugs. Therefore, DDIs play an important 
role in both drug development and clinical treatment sessions. The prediction of 
DDIs is a very complex task because drug interactions are determined by a combina-
tion of factors, including the structure, function, and biological activity of the drug. 
Since experiments cannot be used to individually study the interactions of such a 
large number of drug classes, technical solutions based on deep computer learning 
are always worth exploring.

With the rapid increase in the computing power of computer hardware in the last 
decade, the branch of machine learning that focuses on neural network models, such as 
deep learning, has developed rapidly. The emergence of AlexNet [1] initially displayed 
the power of deep neural network models. In recent years, methods using deep learning 
algorithms that predict DDIs have proliferated and have surpassed traditional machine 
learning model-based methods in terms of the performance. For example, DeepDDI [2] 
uses the structural information of drug pairs as the input to deep neural networks to 
predict 86 types of important DDIs. Liu et al. in [3] used a CNN to predict DDIs with 
good results. Some subsequent work using multimodal information has appeared. Lee 
[4] et  al. used a deep autoencoder model to learn structural similarity profiles, gene 
ontology term similarity profiles, and target gene similarity profiles of drug pairs to pre-
dict DDIs. AttentionDDI [5] uses the drug target, pathway, and gene expression profile 
data for the dichotomous task of predicting whether a drug will have an effect or not. 
One of the better methods used for multimodal information is DDIMDL [6], which uses 
multimodal data to predict the types of drug interactions. They extracted the chemical 
structures, targets, enzymes, and pathway information for 572 drugs, 74,528 drug pairs 
from the DrugBank [7] online database of drugs, counted the more common 65 drug 
interaction types, and then used a multilayer perceptron (MLP) as the model architec-
ture. Their approach was to input the single modality information of each drug pair into 
the model, obtain the corresponding prediction output, and finally average the output 
obtained from the four modalities as the final prediction, which achieved good results. 
All the above multimodal related works have achieved more satisfactory results. From 
above and recent reports [8–11] we can conclude that the multimodal direction is an 
important area for future research on DDI prediction methods.

In the open-source implementation of DDIMDL, we found that some improvements 
could be made by inputting the four modal data into the same model instead of four 
separate models. This process does not have a parallel effect, and its efficiency is greatly 
reduced. Moreover, the model architecture of DDIMDL is simpler and cannot fully 
exploit the information of the multimodal data. Some subsequent works improved the 
model architecture of DDIMDL, and their proposed algorithm called CNN-DDI [12] 
replaced the original multilayer perceptron of convolutional neural networks (CNNs) to 
obtain a better performance based on the mechanism of multiple inputs and multiple 
output channels of convolutional neural networks, which input multiple modal informa-
tion at the same time.
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Inspired by the work from Zhang et al. [12], we propose the CNN-Siam in this paper, 
which is a novel algorithm based on a convolutional neural network and Siamese net-
work [13, 14] architecture, to leverage information from multimodal data to predict 
DDI-related events. CNN-Siam regards each drug separately as the input to two CNNs 
of the Siamese network, where the two CNNs share parameters and learn multimodal 
information of a drug individually, and then fuse its feature representations and input 
them into a multilayer perceptron to obtain the prediction output of the DDI event 
category.

Results
Evaluation metrics

Because predicting DDI event categories is a multiclass task, in this paper, we use six 
metrics to evaluate the effectiveness of the model, namely, the accuracy (ACC), area 
under the precision-recall curve (AUPR), area under the ROC curve (AUC), precision, 
recall, and F1-score. AUPR metrics are more suitable for our task than AUC values, 
where the AUPR scores can better reflect the classification effectiveness of the model 
in an unbalanced dataset. Because the category imbalance is more significant in our 
dataset, the common types of DDI events in our dataset are classified into 65 categories. 
\* MERGEFORMAT Fig. 1 shows the sample situation of each category in our dataset. 

Fig. 1  Distribution of the DDI events. Event 1: The metabolism of Drug A is decreased when Drug A is 
combined with Drug B (19,620 DDIs). Event 2: The risk or severity of the adverse reactions may be increased 
when Drug A is combined with Drug B (18,992). Event 3: When Drug A is combined with Drug B, the serum 
concentrations of Drug A may be increased (11,292). Event 4: The serum concentrations of Drug A can 
decrease when Drug A is combined with Drug B (4772)
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We use the micro-average approach to compute the AUPR, AUC, precision, recall, and 
F1-score. The micro-average will aggregate the contributions of all classes to compute 
the average. In a multiclass classification setup, the micro-average is preferable if there is 
a class imbalance.

Model evaluations

In this section, we compare the performance of CNN-Siam with those of several models, 
including the state-of-the-art method CNN-DDI [12], DDIMDL [6] and DeepDDI [2], 
followed by some of the more common baseline models: fully connected neural network 
with 3 layers (DNN), random forest (RF), K-nearest neighbor (KNN) and logistic regres-
sion (LR). Since the authors of CNN-DDI did not provide their code, we implemented 
CNN-DDI with the best strength according to the description of the model in the paper 
and then ran it on our dataset.

Regarding the setup of the comparison experiments, we used K-fold cross validation 
training method with K taken as 5, and the scores of the 5 training sessions were aver-
aged as the final scores. About other hyperparameters, the neighbor number of KNN 
was set to 4, and the number of decision trees of RF was set to 100.

Table 1 shows the comparative results of our model, and we can see that the perfor-
mance of CNN-Siam is the best thus far (the ACC, AUPR, AUC, and F1 are 0.9237, 
0.9627, 0.9986, and 0.9237, respectively), and it substantially outperforms the state-of-
the-art method in terms of the accuracy, AUPR, AUC, and F1-score, which are 0.8871, 
0.9251, 0.9980, and 0.7496, respectively.

We compared the combined predictive power of CNN-Siam and CNN-DDI. \* 
MERGEFORMAT Fig. 2 shows the scores of the models for each of the 65 DDI event 
types, the scores obtained by averaging 6 metrics by ACC, AUPR, AUC, F1-Score, Preci-
sion, and Recall.

Ablation study

We designed corresponding ablation experiments for some technical innovation points 
in the CNN-Siam algorithm and the overall robustness of the model, and in this subsec-
tion, the results of these experiments are presented. (a) For the Siamese network archi-
tecture, we experimented with and did not use the twin network architecture. From the 
findings of recent work [15], we found that summing the input vectors of both drugs 

Table 1  Results of CNN-Siam and other models

A single * indicates the result of our implemented CNN-DDI run on the same dataset. The bold fonts indicate the best results

Models ACC​ AUPR AUC​ F1 Precision Recall

CNN-Siam 0.9237 0.9627 0.9986 0.9237 0.9237 0.9237
CNN-DDI* 0.8681 0.9254 0.9982 0.8681 0.8681 0.8681

CNN-DDI 0.8871 0.9251 0.9980 0.7496 0.8556 0.7220

DDIMDL 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182

DeepDDI 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611

DNN 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027

RF 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161

KNN 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081

LR 0.7920 0.8400 0.9960 0.5948 0.7437 0.5236
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and inputting them into the model gives better results when using a single model. Thus, 
our experiments also aim to compare the results of summing the drug inputs and feed-
ing them into a single CNN model. The results are shown in Table 2, where we can see 
that CNN-Siam significantly outperforms a single CNN in terms of the accuracy, AUPR, 
and F1-score. Their values are 0.8879, 0.9425, and 0.8879, respectively, which shows the 
effectiveness of the Siamese network architecture. (b) CNN-Siam uses the combina-
tion of the best optimization algorithm RAdam (rectified Adam) [16] and LookAhead 
[17], and in the ablation experiments, we compare three cases: using only Adam, using 
RAdam alone, and using the combination of RAdam and LookAhead; their results are 
shown in Table 3. It can be demonstrated that RAdam is a better optimizer than Adam 
and can further improve the performance of the model with the addition of LookA-
head. (c) To test the robustness of CNN-Siam, we set up some experiments on hyper-
parameter tuning, including the batch size, numbers of folds of the cross-validation, 
and numbers of epochs. The results are shown in \* MERGEFORMAT Fig. 3. From the 
experimental graphs, we can see that the overall robustness of CNN-Siam is strong, in 

Fig. 2  Average scores of CNN-Siam and CNN-DDI for each DDI event

Table 2  Results of CNN-Siam and CNN alone

Models ACC​ AUPR AUC​ F1

CNN-Siam 0.9237 0.9627 0.9986 0.9237

CNN-alone 0.8879 0.9425 0.9984 0.8879
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which more folds may further improve the accuracy of the model in terms of the K-fold 
cross-validation.

Conclusion and discussion
Drug molecule interactions play an important part in drug development and the treat-
ment of patients. Since such a large number of drugs cannot be studied based on experi-
mental means, discovering more drug interactions with the help of computational means 
is currently the best solution. In this work, we proposed a novel algorithm, CNN-Siam, 
to predict DDI events by fully exploiting the multimodal information of drugs. CNN-
Siam learns the representation of a single drug by feeding the chemical substructure, 
target, and enzyme data of a single drug into two CNNs that share parameters through a 
Siamese network architecture, and subsequently, the drug pair representations are fused 
and inputted into a multilayer perceptron for classification. Through experiments, we 
demonstrate that CNN-Siam, augmented by some advanced optimization algorithms 
(RAdam and LookAhead), can outperform the best available algorithms and predict the 
event types of DDIs more accurately.

Among the 65 DDI events predicted in the current dataset, we found that for the first 
8 events, the prediction was good, while the scores of the subsequent events were less 
stable, especially for the event 33 (Drug B may increase the hypertensive activities of 

Table 3  Results of different optimizers

Optimizer ACC​ AUPR AUC​ F1

Adam 0.8213 0.8827 0.9967 0.8213

RAdam 0.9186 0.9583 0.9986 0.9186

RAdam + LA 0.9237 0.9627 0.9986 0.9237

Fig. 3  Performance charts with different hyperparameters
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drug A), event 39 (the serum concentration of the active metabolites of drug A can be 
reduced when drug B is used in combination with drug resulting in a loss in efficacy), 
event 52 (Drug B may increase the hepatotoxic activities of drug A), and event 64 (Drug 
B may increase the myelosuppressive activities of drug A.). Since the first few DDI events 
have covered most of the dataset, it is normal to get more satisfactory prediction results, 
while the later events with poor scores may be more worthy of investigation from other 
fields. Meanwhile, it can be seen from the experimental results that both CNN-Siam 
and CNN-DDI have relatively poor prediction results for these events mentioned above, 
which is a direction we need to focus on for future algorithm improvement.

Overall, the performance of CNN-Siam is good, but it also has some drawbacks. Cur-
rently, our model takes a long time to train, so we hope to speed up the training pro-
cess with some optimizations in future work. We also hope to apply CNN-Siam to larger 
datasets or add more modal data to further validate its effect on larger datasets and 
improve its generalization performance in future work. Regarding the architecture of the 
Siamese network, we can calculate the similarity loss after obtaining the feature vectors 
of the two drugs, similar to the usual practice of contrastive learning. By adding the simi-
larity loss and classification loss together, the model can more clearly learn and more 
accurately predict the DDI similar to the known DDI.

Method
Dataset

In this study, we used a public dataset collected by Deng et al. [6] from the DrugBank 
online database. This dataset contains multiple pieces of information on 572 drugs, 
including the chemical structures, targets, enzymes, and pathways. There are 74,528 
paired DDIs, and the number of known DDIs is 37,264. They counted these 37,264 
known DDIs and finally filtered 65 more common DDI types. Top 4 frequent events are: 
(1) the metabolism of drug A can be decreased when combined with drug B (19,620); 
(2) the risk or severity of adverse effects can be increased when drug A is combined 
with drug B (18,992); (3) the serum concentration of drug A can be increased when it is 
combined with drug B (11,292). (4) the serum concentration of drug A can be decreased 
when it is combined with drug B (4772). Details of all events are provided in supplemen-
tary-data of Deng et al. [6].

From their experiments, we can see that the prediction accuracies of the DDIs are 
higher when three modal information of the chemical structures, targets, and pathways 
are selected. Thus, we only use these three feature data of drugs.

In training the model, we used two techniques for the data separately: K-fold cross 
validation and Mixup [18]. K-Fold cross validation is a common cross validation method 
that divides the dataset into K  parts, and for each training loop, K − 1 parts of the data 
are used for training, and the remaining part is used as the validation set, the training 
will take K  loops. In our experiments, we divide the dataset into 5 parts and use 4 parts 
of the data for each training loop, and the remaining part of the data is used as the val-
idation set. During the training process, we recorded the results of each training ses-
sion and finally took the average value as the final result. Mixup is a data argumentation 
method that increases the size of the dataset by performing some transformations on the 
data to improve the generalization ability of the model, and it is calculated as:
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where batch_x1 is a subset randomly sampled from the dataset, and batch_x2 is another 
subset randomly sampled again after disrupting the dataset. � is a randomly generated 
number that obeys a beta distribution and is controlled by the two hyperparameters α 
and β . In our experiments, we set both α and β to 0.5 to ensure that � takes a value of 
approximately 0.5, thus ensuring the equilibrium of the data.

CNN‑Siam algorithm

Drug data preprocessing

The extraction of the drug features and their conversion to a specific representation is 
the most important step in the construction of a model. Based on previous work [6], we 
chose to use one-hot encoding to transform the three modal data of a drug, i.e., chemical 
structure, target, and enzyme. One-hot encoding is a commonly used encoding method 
that transforms the chemical structure of each drug into a vector. Each element in the 
vector takes the value 0 or 1, where 0 means no atom at a position and 1 indicates the 
presence of atoms at that position. However, the dimensionality of the drug feature vec-
tor after one-hot encoding is too high, and the sparsity is high (most values are 0). Thus, 
we use the Jaccard similarity to calculate the similarity between two drugs, and the for-
mula for the Jaccard similarity is:

where A and B represent the one-hot feature vector of the drugs, |A ∩ B| represents the 
intersection of Drug A and Drug B, and |A ∪ B| represents the union. The Jaccard simi-
larity is in the range of [0, 1], and the larger the value is, the higher the similarity of the 
two drugs. After calculating the Jaccard similarity, we convert the drug feature vector 
into 572 dimensions; thus, the input of the model is 2 * 572 * 3 dimensions.

Model description

The main framework of the model is shown in \* MERGEFORMAT Fig. 4a. The input of 
the model is the feature vectors of two drugs, Drug A and Drug B. Moreover, the dimen-
sions of Drug A and Drug B are 572 * 3, and the two feature vectors drugA_feature and 
drugB_feature are obtained after the computation of a CNN, respectively. In the experi-
ments of Lin et al. [15], the authors found that by simply adding the two drug feature 
vectors and then inputting them into the model gives better results. Thus, we tested the 
results of concatenating drugA_feature and drugB_feature in the dimensions and adding 
them directly and proved that the direct addition is better. We have also done experi-
ments to verify this, and the data shows that concatenating gives 0.78 ACC, 0.92 AUPR, 
0.97 AUC and 0.79 F1-Score, while directly adding them together gives a better result of 
0.92 ACC, 0.96 AUPR, 0.99 AUC and 0.92 F1-Score. Therefore, the feature vectors are 
summed and inputted into a multilayer perceptron, which consists of two hidden layers 
and one classification layer. The number of neurons in each layer is 2048 and 256, the 

(1)� = Beta(α,β)

MixedBatch = �× batchx1 + (1− �)× batchx2

(2)Jaccard =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
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activation function is ReLU, and the output results correspond to the classification prob-
abilities of 65 DDIs. (\* MERGEFORMAT Fig. 4c).

Convolutional neural network CNNs have been widely used in the field of deep learn-
ing for computer vision and have achieved satisfactory results. Because of the devel-
opment of deep learning techniques, an increasing number of studies have started to 
replace MLPs with CNNs as backbone networks to solve problems in the life sciences. 
The benefit of CNNs is that they can fully extract local as well as global information. 
In addition, they can share parameters and save considerable computational overhead 
compared to MLPs. In this paper, for each single CNN of CNN-Siam, the structure is 
shown in Fig. 4b. Based on the CNN-DDI [12], we keep only five convolutional layers, 
each with 64, 128, 128, 128, and 256 convolutional kernels of size 3*1. After the last con-
volutional layer, we add a batch normalization layer to prevent the distribution shift of 
the feature vectors computed and summed by the CNNs and to reduce a certain degree 
of overfitting.

In addition, we also implemented a residual connection [19], which adds the output 
of the conv2 convolutional layer directly to the output of the conv3_2 convolutional 
layer. This process has the advantage of enabling the subsequent convolutional layers to 
learn the features better and reduces the problem of gradient disappearances, allowing 
even deeper networks to be trained successfully and increasing the training speed of the 
model. The residual connection is calculated as:

where x is the input, y is the output, f (x) is the output of the convolutional layer, W1 and 
W2 are the weights of the convolutional layers, b1 and b2 are the biases, and σ is the acti-
vation function.

Siamese network The Siamese network is a special kind of neural network that con-
sists of two identical networks that completely share the parameters. Usually, the twin 

(3)y = f (x)+ x = σ [W2[σ(W1x + b1)]+ b2]+ x

Fig. 4  The framework of CNN-Siam. a Workflow: Inputting Drug A and Drug B into two weight-sharing 
CNNs to obtain the feature outputs, summing them, and finally inputting them into a multilayer perceptron 
for classification. b Model architecture of the CNN. It consists of 5 convolutional layers and 1 normalization 
layer, where the output of the 2nd convolutional layer is added to the input of the 5th convolutional layer to 
achieve a residual connection. c Architecture of the MLP. Two hidden layers and one classification layer
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network is used to calculate the similarity of the two inputs, and the two feature vec-
tors obtained from the calculation are subjected to similarity losses. Then, the param-
eters are updated through backpropagation. In our model, the two drugs are input 
into two identical CNNs so that the two CNNs can simultaneously learn some fea-
tures that are similar between the two drugs. Moreover, these features can help the 
model to identify other drug pairs to determine whether there is a DDI for these drug 
pairs. The twin network is insensitive to the order of the drugs, i.e., the model can 
learn similar features between two drugs without affecting the learning of individual 
drug features due to the change in the input order.

Loss function On the choice of the loss function, we use the Focal Loss [20], and the 
equation is shown below:

where pt is the probability of the prediction for Category t; γ is the hyperparameter, 
when γ = 0; FL is the cross-entropy loss function; and when γ = 2, FL is the Focal Loss. 
We set γ to 2. Regarding the probability of Classification pt , the larger pt is, i.e., the more 
accurate the classification, the smaller the value of the FL loss. Moreover, the smaller 
pt is, the larger the value of FL. This is equivalent to the more inaccurately classified 
categories. The larger value of the loss function will be given. This causes the model to 
be more focused on those misclassified samples (i.e., those categories with a particu-
larly small number of samples), thus allowing the model to better learn the features of 
these samples. Furthermore, the classification accuracy of the model is improved. For 
our dataset, the first three categories account for almost 70% of the samples, so the Focal 
Loss is a necessary choice.

Optim Algorithms RAdam (Rectified Adam) [16], a variant of the classical optimizer 
Adam, LookAhead [17], is a novel algorithm that can assist the optimizer in param-
eter updating. Regarding a conventional training process of a deep learning model, 
the model is first defined (architecture is determined), and then the parameters of the 
model are randomly initialized. After entering the training step, the data are divided 
into multiple mini-batches. Then, one mini-batch is input at a time to calculate the 
prediction result. The loss function is used to compare the prediction with the real 
result to obtain the loss value, the loss gradient is passed back, and the optimizer 
is used to update the model parameters. Therefore, the choice of the optimizer is a 
crucial part of the model. The improvement of RAdam over Adam is that it dynami-
cally turns on or off the adaptive learning rate according to the dispersion of the vari-
ance at the early stage of training, which makes the model less prone to fall into the 
local optimal solution. Moreover, it has the advantage of a fast convergence of vanilla 
Adam, which is equivalent to providing a combination of Adam. The LookAhead opti-
mization algorithm is an auxiliary algorithm of the optimizer, which is based on the 
principle of maintaining two sets of model weights internally. One set of weights is 
responsible for exploring fast updates forward, and the other set of weights is updated 
slowly. However, this set can provide long-term stability. Furthermore, these two sets 
of parameters can be interpolated, thus improving the training stability and conver-
gence speed. The greatest advantage is that there is no need for manual hyperpa-
rameter tuning. Overall, the combination of RAdam and LookAhead is a very good 

(4)FL(pt) = −(1− pt)
γ log(pt)
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optimization algorithm that can ensure stable training of the model and reduce the 
computational and time costs of manual hyperparameter adjustment.
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