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Abstract 

Background:  Construction of kinship matrices among individuals is an important 
step for both association studies and prediction studies based on different levels of 
omic data. Methods for constructing kinship matrices are becoming diverse and dif-
ferent methods have their specific appropriate scenes. However, software that can 
comprehensively calculate kinship matrices for a variety of scenarios is still in an urgent 
demand.

Results:  In this study, we developed an efficient and user-friendly python module, 
PyAGH, that can accomplish (1) conventional additive kinship matrces construction 
based on pedigree, genotypes, abundance data from transcriptome or microbiome; 
(2) genomic kinship matrices construction in combined population; (3) dominant and 
epistatic effects kinship matrices construction; (4) pedigree selection, tracing, detec-
tion and visualization; (5) visualization of cluster, heatmap and PCA analysis based on 
kinship matrices. The output from PyAGH can be easily integrated in other mainstream 
software based on users’ purposes. Compared with other softwares, PyAGH integrates 
multiple methods for calculating the kinship matrix and has advantages in terms of 
speed and data size compared to other software. PyAGH is developed in python and 
C +  + and can be easily installed by pip tool. Installation instructions and a manual 
document can be freely available from https://​github.​com/​zhaow-​01/​PyAGH.

Conclusion:  PyAGH is a fast and user-friendly Python package for calculating kin-
ship matrices using pedigree, genotype, microbiome and transcriptome data as well 
as processing, analyzing and visualizing data and results. This package makes it easier 
to perform predictions and association studies processes based on different levels of 
omic data.

Keywords:  Kinship matrices, Python package, Omic data

Background
Kinship matrix, a symmetrical matrix representing the pairwise relatedness between 
individuals, was initially proposed to account for variance–covariance structure of 
breeding values (additive genetic effects) implemented in the best linear unbiased 
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prediction (BLUP) method using pedigree information. With the development of high 
throughput genotyping methods during the last two decades, the kinship matrices 
were calculated using genome-wide markers and can be used to account for cryptic 
relatedness between pairwise individuals in genome wide association studies (GWAS) 
and to fit polygenicity in genomic prediction (GP), such as genomic best linear unbi-
ased prediction (GBLUP) method [1, 2]. Therefore, how to construct kinship matrix is 
an important factor to control false discoveries in GWAS and obtain high accuracy in 
GP for different traits or diseases.

Actually, methods for constructing kinship matrices are becoming diverse and dif-
ferent methods have their specific appropriate application scenarios. For instance, 
under the occasion that only part of individuals are genotyped in the population, the 
kinship matrix can be calculated in combination of pedigree and genotypes, which 
can be further implemented in GP [3] and GWAS [4], which are well known as single-
step methods in animal and plant breeding area. Meanwhile, when GWAS or GP is 
applied in a large cohort composed of multiple populations, Wientjes et  al. (2017) 
suggested to construct a kinship matrix considering the heterogenous minor alle fre-
quencies (MAF) across different populations. And the results obtained by simulated 
data showed that when the across-population genomic relationships were scaled by 
the within-population allele frequency, the genetic correlation was estimated unbias-
edly. In addition, nonadditive effects, including the interaction between the effects of 
alleles either at the same locus (dominance) or between the allels of multiple genetic 
loci (epistasis), contributes significantly to phenotypic variation associated with the 
expression of polygenic complex traits [5]. Nonadditive effects are considered as a 
possible explanation for the "missing heritability", that is, marginal genetic effects that 
cannot be accounted for in GWAS or GP. Some studies have shown that consider-
ing nonadditive effects can improve the accuracy of predictions [6, 7]. However, the 
mainstream GWAS and GP software such as GCTA [8] or DMU [9] either fail to cal-
culate such extended kinship matrices or can’t output these matrices, which limits its 
further application.

Furthermore, due to the development of multi-omics, kinship matrix can be calculated 
not only at the genomic level, but actually at multi-omic level. The concept of kinship 
should therefore be extended to improve its application in association and prediction 
studies. For instance, prediction of phenotypes based on transcriptome [10] or micro-
biome [11] improves the accuracy by utilizing more data. Microbiome-wide association 
studies [12] and transcriptome association studies [13] can further explore the mecha-
nism of different omics on polygenic complex traits. However, there is no software avail-
able to meet such a need to calculate kinship matrices based on abundance data from 
transcriptome or microbiome.

Therefore, we developed the PyAGH package to calculate kinship matrices using a 
variety of methods based on different levels of omics data for different application sce-
narios. PyAGH can calculate additive, dominant and epistatic kinship matrices based 
on genomic data within one population and different additive kinship matrices across 
multiple populations efficiently. It also supports construction of kinship matrices using 
pedigree, microbiome and transcriptome data. In addition, the output of PyAGH can 
be easily provided to downstream mainstream software, such as DMU [9], GCTA [8], 
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GEMMA [14] and BOLT-LMM [15]. Thus, these user-friendly features allow novice 
users to focus on the analysis rather than technical aspects of installation and execution.

Implementation

The PyAGH package is implemented in Python programming language. It contains 
multiple Python3 and C +  + scripts with all the functions required for the program to 
execute. Some functions are written in C +  + via pybind11 (https://​github.​com/​pybind/​
pybin​d11) to accelerate the computation speed. To be able to handle high-density 
genomic data, PyAGH supports multi-threaded computation, as well as split-chromo-
some computation based on the chunk matrix theory. In addition, for large-scale pedi-
gree data, sparse matrices are used to save memory as well as to increase speed through 
multithreading. PyAGH has been successfully tested on machines running Unix-based 
operation system (OS) (macOS/Linux) and Windows. A detailed description of all algo-
rithms and functions of PyAGH is provided in the user manual available at https://​
github.​com/​zhaow-​01/​PyAGH. Basic information of PyAGH’s functions has been sum-
marized in Table 1.

Construction of kinship matrix based on pedigree data

Kinship matrix is the core of traditional breeding in best linear unbiased predic-
tion (BLUP) which is a famous classical method and widely used in breeding since 
1950s [16]. makeA() and makeD() are the functions in PyAGH used to construct 
kinship matrices based on pedigree information for additive and dominant effects, 
respectively. The additive effect refers to the cumulative effect between alleles and 

Table 1  Summary of PyAGH’s functions

Category Function Description

Pedigree sortPed() Sort the pedigree data according to the correct birth date of individuals 
and check for various errors in the pedigree like offspring born before its 
parents, same offspring have different parents, loop in pedigree and etc

selectPed() Select pedigree based on specific individuals and generations

makeA() Construct kinship matrix based on pedigree information for additive 
effect. Option to use sparse matrix for memory saving

makeD() Construct kinship matrix based on pedigree information for dominant 
effect. Option to use multithreading when there are multiple CPU

Genome makeG() Construct kinship matrix based on genotype data for additive effect. 
Option to use different methods

makeG_inter() Construct kinship matrix based on genotype data for dominance and 
epistatic effect. Option to use multithreading

makeH() Combine information of pedigree and genotypes to construct kinship 
matrix for both genotyped and ungenotyped individuals

Microbiome makeM() Construct kinship matrix based on microbiome data

Transcriptome makeT() Construct kinship matrix based on transcriptome data

Composition analy-
sis and visualiza-
tion

coefKinship() Calculate the ancestry coefficients using kinship matrix

coefInbreeding() Calculate the inbreeding coefficients using kinship matrix

cluster() Cluster analysis of the kinship matrix and plot the result

pca() Principal component analysis of kinship matrix and plot the result

heat() Plot the heatmap of a kinship matrix

gragh() Plot family tree tracing back up to three generations of an individual

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/zhaow-01/PyAGH
https://github.com/zhaow-01/PyAGH
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non-alleles, which is a fixed component of intergenerational inheritance and is 
also called breeding value in breeding. The dominant effect refers to the difference 
between the effect value of each gene and its additive effect value, which is derived 
from the effect of the interaction between alleles and is a non-additive effect, called 
dominant deviation. This effect can be inherited but not fixed and is the main part of 
the heterozygous advantage. The program for function makeA() improves the speed of 
computation by referring to the algorithm propose by Meuwissen and Luo [17]. And 
makeD() further calculates the dominant effects on the basis of makeA(). To improve 
the speed of computation, both functions were written in C +  + and support multi-
threaded operation, while using sparse matrices to save memory.

Construction of kinship matrix based on genomic data

With the development of genotyping technology, more and more genomic data are 
available for GP, like GBLUP method [18]. The makeG() function provides four meth-
ods for calculating the additive effects kinship matrix. In a single population, the first 
method to calculate G matrix was developed by VanRaden [1]:

where xij and xik are the genotypes of the ith marker in individuals j and k (denoted as 0, 
1 and 2). pi is the minor allele frequency (MAF) of the ith marker. The second method of 
calculating G matrix was developed by Yang et al. [2]:

where m is the number of markers, while other symbols represent the same meaning as 
formula (1). When computing G matrix in a combined popualtion, due to the differences 
in MAF between different populations, the direct use of the above method may bring 
bias. PyAGH provides two alternative methods to consider the heterogeneity of genetic 
structure of the combined population. One method for calculationg G matrix consider-
ing MAF differences between populations was developed by Chen et al. [19]:

where G11 and G22 represent the genomic kinship matrix of individuals in two inde-
pendent populations, respectively. G12 and G21 represent the genomic kinship matrix 
of individuals cross two populations. W1 and W2 are standardized genotypes of indi-
viduals in two populations, respectively. p1j and p2j are the minor allele frequencies of 
the jth marker calculated based on population 1 and population 2, respectively. Another 
method calculationg G matrix in combined populations was developed by Wientjes et al. 
[20]:
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where the symbols represent the same meaning as formula (3).
The makeG_inter() function calculates the dominant effect and epistatic effect kinship 

matrix based on genomic data according to algorithms proposed by Xu [21]. Epistatic 
effects refer to the effects of interactions between non-allelic genes at different loci, where 
one pair of genes suppresses or masks the other pair of genes. The formulas for dominant 
kinship matrix (d) and four epistatic kinship matrices (aa, dd, ad, da) are show in Table 2, 
where the Z and W represent the genotype matrices of different coding modes. For kth 
marker in individual j:

Zjk and Wjk represent the codes for additive and dominance effects, respectively, and A 
(the first homozygote), H (heterozygote), and B (the second homozygote) indicate the three 
genotypes. Zk # Wk represents element-wise vector multiplication.

The original kinship matrix were normalized by dividing the mean of all diagonal ele-
ments of the original matrix so that the diagonal elements are approximately equal to 1. 
Using the normalized kinship matrix will result in the estimated genetic variance having the 
same scale as the residual variance.

The makeH() function combines information of pedigree and genotypes to construct kin-
ship matrix H for both genotyped and ungenotyped individuals used in single-step genomic 
best linear unbiased prediction (ssGBLUP) method [3, 22]. The formula for H matrix is:

where subscript 1 represent the individuals without genotypes and subscript 2 represent 
the individuals with genotypes. A11 , A12 , A21 and A22 are constructed by pedigree infor-
mation.Gw is calculated by Gw = (1− w)G∗ + wA22 . The parameter w is used adjust the 
relative weights of the G matrix and the A matrix. G∗ = a+ bG , a and b are achieved by:
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Table 2  Formulas used to calculate marker generated kinship matrices

Type of effect Original kinship matrix Kinship matrix

Dominance(d) K∗d =
∑m
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where A22 is a submatrix of A related to the genotyped individuals; G is a additive 
genomic relationship matrix of genotyped individuals. Avg

(

diag(G)
)

 is the average of 
the diagonal of the G matrix. And Avg

(

offdiag(G)
)

 is the average of the off-diagonal of 
the G matrix.

Construction of kinship matrix based on microbiome and transcriptome data

The host associated microbiome is known to influence many traits. A number of stud-
ies have reported that combining microbiome and genomic information could improve 
the prediction accuracy compared with only genomic data [23]. The makeM() function 
can easily normalize operational taxonomic units (OTU) as well as calculate the kinship 
matrix based on microbiome data. The formula for M matrix is as follows:

where n is the number of OUT in population. O is the original OTU matrix after natural 
logarithmic variation and normalization. And for each OUT j of individual i, the trans-
formation formula is:

where Xij is the abundance of the jth OTU of the ith individual. sd
(

log
(

Xij

))

j
 is the 

standard deviation of jth OUT in all individuals.
In addition, modeling transcriptome data as predictors in genomic prediction is 

expected to explain more nonlinear variation or complex biological regulatory processes 
and has the potential to improve the accuracy of prediction [24]. The makeT() function 
in PyAGH can simply calculate the kinship matrix based on transcriptome data. The for-
mula for T matrix is as follows:

R is the normalized gene expression matrix, and the normalization formula is:

where Xij is the expression of gene j in individual i, Xj  is the mean of the expression of 
gene j in all individuals, and sdj is the standard deviation of the expression of gene j in all 
individuals.

Pedigree and composition analysis and visualization

Pedigree provides important information for estimating breeding values in the field of 
plant and animal breeding. To make it easier to use such information, PyAGH provides 
targeted tools for specific demands, such as detecting common pedigree errors (like 
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offspring born before its parents, individual with two genders, same offspring have dif-
ferent parents, and etc.), selection target individuals (a subset of the whole pedigree), 
sorting pedigree by birthdate, pedigree visualization, calculating inbreeding coefficients 
and ancestry coefficients. In addition, principal component analysis (PCA), heatmap 
and cluster analysis functions were involved in PyAGH to reveal population structure 
conveniently.

Results
To support the robustness and speed of the package, we tested the performance of main 
functions with different cases data in a Linux machine with Intel(R) Xeon(R) Gold 5218 
CPU @ 2.30 GHz and 256 GB RAM. First, we compared the makeA function with the 
Nadiv (https://​github.​com/​matth​ewwol​ak/​nadiv) package using a dataset containing 
100,000 pedigree records. Nadiv is a widely used R package for processing pedigree 
data. The results of the comparison between the two softwares were shown in Table 3. 
When the number of records is small, the computational speed of PyAGH and Nadiv is 
not much different, and even Nadiv is slightly faster than PyAGH. But PyAGH can sup-
port a larger number of pedigree data. For example, when the number of records reache 
100,000, Nadiv was unable to perform the calculation, while PyAGH took only about 
13  min to complete the calculation. This indicates that PyAGH can support a larger 
amount of pedigree data while maintaining speed compared to Nadiv package when cal-
culating the pedigree additive kinship matrix. In addition, because the first step in cal-
culating the dominance effect kinship matrix based on pedigree data is to calculate the 
additive effect kinship matrix, i.e., the makeA function is the basis of the makeD func-
tion, PyAGH can also support a larger amount of pedigree data for the calculation of the 
dominance effect kinship matrix.

Next, we tested functions that perform calculations based on genomic data. We com-
pared the makeG function with GCTA software using a dataset containing 10,000 indi-
viduals and 1 million SNPs for one chromosome. The runing time for the two software 
to calculate the additive genomic kinship matrix for different number of individuals 
are shown in Table 4. Regardless of the number of individuals, PyAGH computed the 
G matrix faster than GCTA. In addition, PyAGH provides two additional methods for 
calculating additive kinship matrices in combined populations, whereas GCTA does not 
calculate. Therefore, using PyAGH makes it easier and faster to perform matrix calcula-
tions based on research needs.

The function makeG_inter in PyAGH, which calculates the dominance effect kin-
ship matrix based on genomic data, was compared with PEPIS platform [25]. PEPIS 

Table 3  Runtime and RAM of construction kinship matrix based on pedigree in PyAGH and Nadiv

The numbers of pedigree records verify from 10,000 to 100,000

– means that it cannot be calculated

Number of records PyAGH Nadiv

10,000 3 s (0.3 GB) 2 s (0.3 GB)

20,000 32 s (1.5 GB) 23 s (1.6 GB)

50,000 2min8s (11.9 GB) 1min47s (16.4 GB)

100,000 13min35s (100.6 GB) –

https://github.com/matthewwolak/nadiv


Page 8 of 12Zhao et al. BMC Bioinformatics          (2023) 24:153 

is a pipeline for estimating epistatic effects in quantitative trait locus mapping and 
genome-wide association studies. Since PEPIS is a cloud-based platform, we used the 
test data provided by PEPIS including 1000 individuals and 40,000 SNP for PyAGH 
testing. Table 5 shows the running time for PyAGH and PEPIS to calculate the kin-
ship matrices of the four dominance effects aa, dd, ad, da, from which it can be seen 
that the advantage of PyAGH over PEPIS increases as the number of loci increases. At 
40,000 loci, the computational speed of PyAGH was about 3 ~ 4 times faster than that 
of PEPIS. Whether using pedigree or genomic information, PyAGH has speed advan-
tages over other softwares and can support larger data sizes.

Because there is no software to calculate the kinship matrix based on microbiome 
data, we tested PyAGH in a dataset containing 16 s RNA sequencing data of 4500 pigs 
[26]. The results show that the package can quickly calculate the M matrix in the case 
of meeting the data size of a conventional study. When we fix the number of OTU 
at 100,000 and the number of individuals varies from 1,000 to 4,500, the time taken 
increases linearly (Fig.  1A). When we fix the number of individuals at 4,500 while 
varying the numbers of OTU from 10,000 to 100,000, the time taken increases as a 
quadratic function (Fig. 1B). For all 4,500 individuals and 100,000 OTU, PyAGH took 
about 20 s, and it can be seen that our software can quickly normalize the OUT mat-
irx and calculate the kinship matrix.

Gene expression data can provide additional information in genomic prediction 
and can also be used to further explore the genetic mechanisms of traits in associa-
tion studies. With the increase of transcriptome sequencing data, the application of 
transcriptome data in GP and GWAS will increase. PyAGH can quickly and easily 
calculate kinship matrix based on gene expression abundance data. And we used the 
gene expression data in muscle tissue of 1321 pigs from FarmGTEx (https://​www.​
farmg​tex.​org/) as an example [27]. We performed PCA of the kinship matrices based 

Table 4  Running time of constructing kinship matrices based on genotypic data in PyAGH and 
GCTA​

Both PyAGH and GCTA used all 64 threads of the machine for computation

We fixing the number of snps at 1,000,000 while varying the numbers of individuals from 1,000 to 10,000

Number of individuals PyAGH GCTA​

1000 10 s 2min32s

3000 51 s 2min36s

5000 1min39s 3min44s

10,000 4min50s 7min40s

Table 5  Running time of construction kinship matrix for epistatic effect in PyAGH and PEPIS

The test data is simulation data used in PEPIS (http://​bioin​fo.​noble.​org/​PolyG​enic_​QTL/). We fixing the number of individuals 
at 1,000 while varying the numbers of SNPs from 4,000 to 40,000

Number of SNPs PyAGH PEPIS

4000 4 min 5 min

10,000 16 min 34 min

20,000 48 min 121 min

40,000 140 min 488 min

https://www.farmgtex.org/
https://www.farmgtex.org/
http://bioinfo.noble.org/PolyGenic_QTL/
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on genomic data (Fig. 2A) and transcriptomic data (Fig. 2B), respectively. The results 
show that the kinship matrices calculated based on the two data were different, indi-
cating that the transcriptome data provide additional information different from the 
genome.

In addition to calculating a variety of kinship matrices, PyAGH can also quickly 
check pedigree data, extract specific subsets of individuals on demand, and calcu-
late ancestry coefficients and inbreeding coefficients. These features allow the user to 
easily organize the pedigree data to focus on the next analysis process. At the same 
time, PyAGH allows for a variety of visualizations including PCA, Heatmap, cluster-
ing and family trees. Figure 3A, B shows the heat map and clustering diagram drawn 
using the example data in the package. Figure 3C shows the results of PCA analysis 
of the genomic data of two populations using PyAGH. Data were obtained from pre-
vious study of two large white pig populations [28]. The left figure is PCA variance 
explained based on custom PCA. The right figure is PCA plot of top 2 PCs. Figure 3D 

Fig. 1  Running time of PyAGH function makeM in different data. A fix the number of OTU at 100,000 while 
varying the numbers of individuals from 1,000 to 4,500. B fix the number of individuals at 4,500 while varying 
the numbers of OTU from 10,000 to 100,000

Fig. 2  Scatter plots of the first and the second principal components from kinship matrices based on 
genome (A) and transcriptome (B), respectively
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was a family tree of one specific individual in three generations. This function is use-
ful in production practice.

Conclusions
In this study, we have presented PyAGH, which is a robust and fast Python package for 
calculating kinship matrices using pedigree, genotype, microbiome and transcriptome 
data as well as processing, analyzing and visualizing data and results. This package pro-
vides various methods for kinship matrices construction based on additive, dominant 

Fig. 3  A Heat-map of a kinship matrix. B The pedigree dendograms of the cluster results. C PCA analysis 
results. The left figure is PCA variance explained based on custom PCA. The right figure is PCA plot of top 2 
PCs. D Family tree of one individual in three generations
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and epistatic effects in a single population or combined populations. The PyAGH pack-
age has been intensively tested to guarantee the computation correctness and speed. 
Compared to existing tools, PyAGH exhibited the best performance for constructing a 
variety of matrices. And the calculation results can be easily used in other softwares, 
making the process of genome prediction and association studies more convenient. 
PyAGH is a python package that completes the process of using python for bioinformat-
ics analysis. In the future work, we plan to apply more comprehensive kinship matrix 
calculation methods and multi-omics data processing to the coming version of PyAGH. 
In conclusion, PyAGH simplifies the procedure of calculating kinship matrices that are 
important for prediction or association studies.

Availability and requirements
Project name: PyAGH.

Project homepage: https://​github.​com/​zhaow-​01/​PyAGH
Operating System(s): Mac Os, Linux, Windows.
Programming language: Python, C +  + .
Other requirements: All dependencies are handled during the installation.
License: MIT.
Any restrictions to use by non-academic: PyAGH has no restriction.
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