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Abstract

Background: N6-methyladenosine (m6A) modification is involved in tumorigenesis
and progression as well as closely correlated with stem cell differentiation and pluripo-
tency. Moreover, tumor progression includes the acquisition of stemness characteristics
and accumulating loss of differentiation phenotype. Therefore, we integrated m6A
modification and stemness indicator mRNAsi to classify patients and predict prognosis
for LGG.

Methods: We performed consensus clustering, weighted gene co-expression network
analysis, and least absolute shrinkage and selection operator Cox regression analysis

to identify an m6A regulation- and mRNAsi-related prognostic index (MRMRPI). Based
on this prognostic index, we also explored the differences in immune microenviron-
ments between high- and low-risk populations. Next, immunotherapy responses were
also predicted. Moreover, single-cell RNA sequencing data was further used to verify
the expression of these genes in MRMRPI. At last, the tumor-promoting and tumor-
associated macrophage polarization roles of TIMP1 in LGG were validated by in vitro
experiments.

Results: Ten genes (DGCR10, CYP2E1, CSMD3, HOXB3, CABP4, AVIL, PTCRA, TIMP1,
CLEC18A, and SAMD9) were identified to construct the MRMRPI, which was able to
successfully classify patients into high- and low-risk group. Significant differences in
prognosis, immune microenvironment, and immunotherapy responses were found
between distinct groups. A nomogram integrating the MRMRPI and other prognos-
tic factors were also developed to accurately predict prognosis. Moreover, in vitro
experiments illustrated that inhibition of TIMP1 could inhibit the proliferation, migra-
tion, and invasion of LGG cells and also inhibit the polarization of tumor-associated
macrophages.

Conclusion: These findings provide novel insights into understanding the interactions
of m6A methylation regulation and tumor stemness on LGG development and contrib-
ute to guiding more precise immunotherapy strategies.
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Introduction
Gliomas are heterogeneous neuroepithelial neoplasms deriving from the glial cells,
which are the most common and lethal malignant brain tumor [1] in the central nerv-
ous system (CNS) [2]. Classically, they can be classified into grades I-IV based on
their histopathological features. Diffuse grade II and III gliomas, including astrocyto-
mas, oligodendrogliomas, and oligoastrocytomas, are considered lower-grade gliomas
(LGQG), and grade IV glioma is called glioblastoma multiforme (GBM) [3]. Due to the
high infiltration and aggressiveness, LGGs are stubbornly resistant to first-line thera-
pies referring to maximum neurosurgical removal followed by adjuvant radiotherapy
and chemotherapy, ultimately, these tumors inevitably progress into a higher grade or
experience relapse [4]. Nevertheless, because of the obvious intratumoral heterogene-
ity, the patients affected by LGG still have different biological and clinical character-
istics, and their response to active therapy varies from person to person. Therefore,
the median survival is showing an extreme range from 5.6 to 13.3 years [5]. Aimed
at classifying patients more accurately, the genotypic features consisting of isocitrate
dehydrogenase (IDH) mutation and 1p/19q co-deletion status were integrated into
the traditional classification [5]. However, it provided valuable but insufficient and
imprecise risk stratification and prognosis prediction, especially for genetically heter-
ogeneous groups. Thus, it is urgent to uncover novel biomarkers to develop risk strat-
ification and provide a new perspective for the personalized management of patients.
Recently, N6-methyladenosine (m6A) modification has gained increasing attention.
It is the most prevalent and abundant form of modification in eukaryotic mRNA and
is a dynamic reversible process regulated by a methyltransferase complex involved
in binding proteins, methyltransferases, demethylases, also named “readers”, “writ-
ers’, and “erasers” [6]. Not only does m6A modification acts a vital role in mRNA
metabolism ranging from RNA stability, splicing, export, intracellular distribution
and translation [7], but also affects multiple biological processes such as regulating
cell cycle and differentiation, and maintenance of circadian rhythm [8]. Additionally,
the disorder of m6A regulators leads to weakened self-renewal capacity, developmen-
tal defects, dysregulation of cell proliferation, and cell death [7]. What is more, m6A
modification is involved in many complex diseases, especially tumorigenesis and pro-
gression [9]. Alternatively, m6A methylation is also closely correlated with stem cell
differentiation and pluripotency [10]. Excitedly, Tathiane M. Malta and colleagues
[11] used machine learning to perform a multi-platform comprehensive analysis of
33 tumor types in The Cancer Genome Atlas (TCGA) database to obtain stemness
indices that can quantify tumor stemness. It has also been demonstrated that higher
mRNAsi values are accompanied by greater tumor dedifferentiation and more active
biological processes related to cancer stem cells. Considering tumor progression
includes the acquisition of stemness characteristics and accumulating loss of differen-
tiation phenotype. Therefore, we integrated m6A methylation and stemness indicator
mRNAsi to conduct a comprehensive analysis.
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In the present study; first, we find genes related to m6A regulation and stemness index
mRNAsi through consensus clustering and weighted gene co-expression network analy-
sis (WGCNA). Next, the least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was used to identify an m6A regulation and mRNAsi-related prog-
nostic index (MRMRPI), which could classify patients into different prognosis groups.
Subsequently, we further explored the differences in immune status and immune micro-
environment (such as immune cells, and immune pathways) between high- and low-risk
populations. Additionally, the immunotherapy responses were predicted based on this
MRMRPI Then, a nomogram based on the MRMRPI was established to quantitatively
predict prognosis. Finally, the biological function of one gene (TIMP1) in the MRMRPI
was validated by in vitro experiments. It may be valuable to give novel insights into per-
sonalized management and fighting against LGGs by combining m6A and mRNAsi for

providing promising prognostic targets.

Results

Identifying m6A methylation modification patterns of LGG

To explore whether the m6A methylation modification plays a vital role in LGG, con-
sensus clustering was performed based on the expression of 21 regulators in TCGA and
CGGA datasets. These regulators included 8 writers (CBLL1, KIAA1429, METTL3,
METTL14, WTAP, ZC3H13, RBM15, RBM15B), 11 readers (ELAVL1, FMR1, HNRN-
PA2B1, HNRNPC, IGF2BP1, LRPPRC, YTHDF1, YTHDF2, YTHDF3, YTHDCI,
YTHDC?2), and 2 erasers (ALKBHS5, FTO). It should be noted that IGF2BP1 is excluded
from the CGGA analysis because of the lack of available sequencing data. In total, 481
samples in TCGA and 404 samples in CGGA with complete survival information were
enrolled in the study. In TCGA cohort, patients were divided into three groups when
k=3 (Additional file 1: Fig. S1A-C), and there were significant differences in patient sur-
vival between different groups (Additional file 1: Fig. S1D, log-rank test). Meanwhile,
similar results can be obtained in the CGGA cohort (Additional file 1: Fig. S1E-H).

Identifying MRGs and screening modules related to mRNAsi by WGCNA

As shown in Fig. 1A, 3136 MRGs were identified. To further screen MRGs related to
mRNAsi, WGCNA was performed to establish a co-expression network. We select p =4
as the soft threshold to ensure a scale-free network after outlier samples are removed.
Eventually, these MRGs were clustered into six modules, each with no less than 30 genes
(Fig. 1B) and the genes non-clustered were assigned to the gray module. Next, the corre-
lations between these modules and each phenotype were calculated separately as shown
in Fig. 1C. Among these modules, the brown (positive correlation) and turquoise (neg-
ative correlation) modules attracted our attention due to the highest correlation with
mRNAsi. At the same time, for mRNAsi, the gene significance of these two modules is
the most remarkable (Fig. 1D). Besides, we plotted to scatter diagrams based on the GS
and MM of each gene in the two modules (Fig. 1E), the high correlations between them
revealed the importance of module genes and their close correlation with mRNAsi.
Therefore, a total of 260 genes were selected, including 58 brown module genes and 202
turquoise module genes for subsequent analysis, and they were significantly enriched in
immune-related signaling pathways (Fig. 1F).
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Fig. 1 Screening of MRGs related to mRNAsi based on TCGA database. A The Venn diagram showed the
common differential expressed MRGs between the three groups. B Weighted gene correlation network
analysis (WGCNA) of the differential expressed MRGs. Different colors represent different modules. C
Correlation analysis of the modules and clinical traits. Red-marked modules were selected for further analysis.
D Gene significance of the mRNAsi trait. E Scatter plot analysis of modules in the brown and turquoise
modules. F KEGG pathway analysis of the selected module genes

Development and validation of MRMRPI

To construct a robust MRMRPI, TCGA acted as the training set and CGGA as the
validation set. First of all, the candidate genes in the training set were subjected to
univariate Cox regression to determine the top 50 genes ranked by P value, which
were further submitted to LASSO Cox regression analysis (Additional file 2: Fig.
S2A). Finally, 10 prognostic genes were chosen for the risk-scoring system, and their
univariate Cox results were visualized using a forest plot (Additional file 2: Fig. S2B).
Consistently, the K-M curves with the median expression level of these genes as the
thresholds also demonstrated their prognostic significance (Additional file 3: Fig.
S3A). And they also showed the same prognostic trend in the CGGA data set (Addi-
tional file 3: Fig. S3B). The calculating formula of this risk-scoring system was equal to
a line combination of the expression value of these genes and the optimal coefficients
(Additional file 2: Fig. S2C) derived from LASSO regression. Based on this system,
patients ranked by their risk score (RS) were distinguished into high- and low-risk
groups according to the median RS value. Besides, the patients with high risk showed
a significantly shortened survival time (Additional file 2: Fig. S2D). Simultaneously,
aimed at validating the robustness of MRMRPI, the same RS formula and similar pro-
cedures were conducted in the validation set. 404 patients were classified into dif-
ferent groups, as expected, the one with low risk showed a significantly prolonged
survival time (Additional file 2: Fig. S2E). Moreover, the ROC curves also revealed
the good predictive performance of this MRMRPI in TCGA (Additional file 2: Fig.
S2F) and CGGA (Additional file 2: Fig. S2G) cohorts. Finally, the DCA has also dem-
onstrated the superiority of the MRMRPI in training (Additional file 2: Fig. S2H) and
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validation (Additional file 2: Fig. S2I) cohorts, which would make the clinical applica-

tion more convincing.

Subgroup analysis of immune landscape and relevant biological processes based

on the MRMRPI

The result that screened module genes were significantly enriched in immune-related
signaling pathways (Fig. 1F) such as cell adhesion molecules, Toll-like receptor signaling
pathway, and so on, which indicated that the tumor immune microenvironment prob-
ably acted an important role in the LGG progress. Therefore, we further investigate the
differences in the immune microenvironment between the high and low-risk groups of
the MRMRPL. First of all, GSEA was performed in TCGA cohort, and results showed
that there were 41 immune-related gene sets (Additional file 4: Fig. S4A) enriched in
the high-risk subgroup but no one in the low-risk subgroup. The top 10 terms ranked by
FDR were further displayed in Additional file 4: Fig. S4B.

Afterward, we employed the ESTIMATE algorithm to calculate immune and stro-
mal scores, and the MCP-counter algorithm to estimate the abundance of infiltrating
immune cells (T cells, CD8" T cells, cytotoxic lymphocytes, B lineage, NK cells, Mono-
cytic lineage, Myeloid dendritic cells, Neutrophils), stromal cells (Endothelial cells,
Fibroblasts). As the results showed (Fig. 2A, E), there was an obvious positive correlation
between RS and infiltrating cells as well as various infiltrating cell subpopulations except
for the statistically non-significant relationship between Endothelial cells and Monocytic
lineage in TCGA set (Fig. 2A). Also, the abundance of each cell subpopulation was all
significantly higher infiltrated in the high-risk group compared with the low-risk group
(Fig. 2B, F). Consistently, the high-risk group showed significantly higher immune and
stromal scores than the low-risk group (Student’s ¢ test, P<0.0001) in both TCGA and
CGGA cohorts, which were respectively exhibited on the box plots of Fig. 2C, D, G,
H. Simultaneously, we further explored the correlation between RS and the expression
of several common immune checkpoints. Pearson’s correlation analysis indicated sig-
nificantly positive correlations between RS and immune checkpoints including GZMB,
CD27, CTLA-4, ICOS, LAG-3, OX40, PD-1, and PD-L2. The results originated from
TCGA and CGGA cohorts were visualized in Additional file 5: Fig. SSA-H and S5I-P
respectively.

Next, to have a better understanding of the immune landscape and relevant biologi-
cal processes between subgroups, we further annotated a series of gene signatures. The
results showed that immune pathways related to immune cell recruitment, antigen pro-
cessing and presentation, immune suppression, cytotoxicity, inflammation, and adap-
tive and innate immunity were obviously activated in the high-risk group both in TCGA
(Fig. 3) and CGGA (Additional file 6: Fig. S6) cohorts. Consistently, functional annota-
tion demonstrated that gene sets including immune activation, stromal activation, and
DNA damage repair were remarkably enhanced in the high-risk group. This phenom-
enon was observed in both TCGA (Fig. 4A-D) and CGGA (Fig. 4E—H) cohorts.

Chemotherapeutic drug sensitivity and immunotherapy response prediction
Chemotherapy is an important strategy for postoperative treatment; thus, we analyzed
138 chemotherapeutic drugs’ sensitivity, and the results with statistically different IC50s
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between groups are shown in Fig. 5. Additionally, previous studies demonstrated that the
tumor immune microenvironment plays important roles in tumorigenesis and immuno-
therapy [12, 13]. Considering that MRMRPI greatly affected the immune landscape and
relevant biological processes, we inferred that the MRMRPI could be used to predict the
responses to immunotherapy for LGGs patients. Eventually, the results that patients in
the low-risk group responded significantly better than those in the high-risk group in
both TCGA (Fig. 6A) and CGGA cohorts (Fig. 6B), which confirmed our speculation.

Construction and assessment of the nomogram

To construct a nomogram that could quantitatively predict the survival probability
of LGG patients, the independent prognostic risk factors were screened by univari-
ate Cox analysis followed by multivariate Cox analysis in TCGA cohort. The RS and
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clinical characteristics including age, gender, grade, mRNAsi, and IDH_1p/19q status
were incorporated into the above screening process. However, only the RS and age
demonstrated independent prognostic values (Fig. 7A), which were finally integrated
into the construction of the nomogram (Fig. 7B). The high C-index of 0.848 showed
a good discrimination ability, and the calibrations presented strong coherence for the
predicted and actual probabilities of 1-, 3-, and 5-year survival (Fig. 7C). Moreover, the
ROC analyses also suggested an excellent predictive ability for sensitivity and specific-
ity (Fig. 7D) with its 1-, 3-, and 5-year predicting AUC equal to 0.907, 0.893, and 0.806
respectively.

Analysis of gene expressions at the single-cell level

To further analyze the expression of the gene signature at a single cell level, we per-
formed scRNA-seq analysis in LGG. Totally, 7 clusters of cells were visualized by the
UMAP dimensionality reduction algorithm (Fig. 8A). Moreover, 5 major cell types
(neoplastic cells, oligodendrocyte precursor cells (OPCs), macrophages, astrocytes,
and oligodendrocytes) were identified from the eight LGG samples (Fig. 8B). As
Fig. 8C illustrated, genes like CSMD3, and CABP4 were expressed in most cell types,
whereas TIMP1 was mostly expressed in macrophages and astrocytes. HOBX3 is
almost only expressed in astrocytes. Gene like PTCRA was expressed very low in spe-
cific cell types.
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TIMP1 promotes the proliferation, migration and invasion of LGG cells and macrophage
polarization
Among the ten genes that make up the MRMRP], the biological functions of TIMP1
in LGG remained unknown. To validate the tumor-promoting role of TIMP1 in the
MRMRP], siRNA was used to inhibited the expression of TIMP1 in HS683 and SHG44
cells (Fig. 9A). The CCK-8 assays and colony formation assays showed that the inhibi-
tion of TIMP1 significantly inhibited the proliferation ability of LGG cells (Figs. 9B,
C). Meanwhile, the results of wound healing and Transwell assays demonstrated that
knockdown of the expression of TIMP1 remarkably inhibited the migration and invasive
capacity of LGG cells (Fig. 9D-E). These results illustrated that TIMP1 played a tumor-
promoting role in LGG cells, and its risk role in the MRMRPI was validated.

In both HS683 and SHG44 cell lines, immunofluorescence staining analysis revealed
that the fluorescence intensity ratio of CD163 and CD68 was considerably lower in the
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Fig. 5 The 33 chemotherapeutic drugs, with significantly different IC50 between high- and low-risk groups,
were identified by using "pRRophetic" package. Statistical test: Wilcoxon. *P < 0.05; **P < 0.01; ***P<0.001;
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si-TIMP1 group than in the control group (Additional file 7: Fig. S7A). The statistical
analyses were showed in Fig. S7B. These results showed that knocking down TIMP1 in
glioma cells inhibited tumor-associated macrophage polarization.

Discussion

Mounting evidence suggested that m6A modification serves a crucial role in cancer
and non-cancerous diseases, aberrant m6A RNA methylation could affect inflamma-
tion, innate immunity as well as the response to antitumor therapy, and the interaction
between regulatory factors can promote or suppress the progression of tumors [14]. As
most studies concentrate on single or several regulators rather than comprehensive and
overall analysis, to fill this insufficiency, we paid attention to MRGs based on distinct
m6A modification patterns that demonstrated taking effect in tumors such as gastric
cancer [15], colon cancer [16], hepatocellular carcinoma [17] as well as gliomas [18].
On the other hand, as well known that undifferentiated malignancies are responsible
for tumor recurrence and anti-tumor resistance, and contribute to disease progression
and poor prognosis. Recently, Malta et al. utilized a machine-learning algorithm [11]
to develop a stemness index mRNAsi, which describes the similarity between stem and
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tumor cells according to gene expression data and possesses satisfactory adaptability and
quantification of stemness. Besides, it was observed that mRNAsi was tightly associated
with survival in several tumors including LGGs in pan-cancer cohorts. Hence, we com-
bined MRGs and mRNAsi in the present study to develop a robust prognostic index for
LGGs. As far as we know, it is the first study integrating MRGs and mRNAsi, which pro-
vides a novel insight into a more systematic understanding of LGG progression, facili-
tating more effective looking for therapeutic targets and enhancing more personalized
management of LGGs.

In the present study, the m6A modification patterns classified by Consensus Cluster-
ing instead of just m6A regulators attracted our attention. Subsequently, MRGs were
obtained from differential expressed analyses between various patterns, which could
help us more comprehensively understand the role of m6A in LGG. Next, the WGCNA
algorithm was used to integrate MRGs and mRNAsi, and two module genes were identi-
fied. Finally, there were ten genes incorporated into the development of the MRMRPI
determined by univariate Cox regression and LASSO regression analyses. Among these
genes, DGCR10, CYP2E1, and CSMD3 were identified as protective genes with their
high expression closely associated with prolonged survival. In contrast, HOXB3, CABP4,
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AVIL, PTCRA, TIMP1, CLEC18A, and SAMDY9 were confirmed as risk-associated
genes. In previous publications, DGCR10 (also known as DGCR5) acted as a tumor-sup-
pressive factor in glioma, consistent with our findings, which upregulated significantly
inhibited glioma cell proliferation, migration, and invasion, whereas promoted apopto-
sis [19]. CYP2EL1 genetic polymorphism affects the susceptibility of multiple tumors [20,
21], while CSMD3 mutation is significantly linked to prognosis in some cancers such
as non-small cell lung cancer [22], esophageal squamous cell carcinoma [23], but their
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specific mechanism still needed further exploring. Regarding the risk-associated genes,
previous studies demonstrated that HOXB3 promotes cell proliferation and invasion
in glioblastoma [24], overexpressing a cytoskeleton regulator AVIL accelerate cell pro-
liferation and migration, enables fibroblasts to transform into immortalized astrocytes
to drive tumorigenesis of glioblastoma [25], but their roles in LGGs is still ambiguous.
TIMP1 showed a positive correlation with glioma malignancy [26] and its expression
level was suggested as an independent predictor of glioblastoma survival [27]. How-
ever, there was still a lack of experiments to validate the biological function of TIMP1.
Herein, we performed in vitro experiment and the results showed that TIMP1 promotes
the proliferation, migration and invasion of LGG cells. Moreover, the scRNA-seq analy-
sis showed that TIMP1 is mostly expressed in macrophages, which maybe regulate the
biological function of tumor-associated macrophages in the microenvironment of LGG.
More importantly, in vitro experiments, we further confirmed the polarizing effect of
TIMP1 on tumor-associated macrophages. Currently, there was almost no report about
CABP4, PTCRA, CLEC18A, and SAMD?9 in LGGs, which remains to be fully explored.

Then, we compared the immune status, as well as the distribution of immune scores,
stromal scores, immune cells, immune pathways and relevant biological processes
between high- and low-risk groups. Stromal scores in the high-risk group were higher
than that in the low-risk group as expected, which was consistent with the reports that
tumor stromal strongly facilitated the growth, progression, differentiation, and metas-
tasis of tumor cells by nourishing tumor parenchyma [28]. Stromal-related signatures
activated in the high-risk group also confirmed such a viewpoint. Interestingly, the
immune scores, as well as infiltrated immune cells, were significantly higher in the high-
risk rather than low-risk group. This may be related to the formation of an immune-
excluded microenvironment. As reported that although such a microenvironment
was abundant in immune cells, they stayed in the matrix surrounding tumor cell nests
instead of penetrating parenchyma [15, 29]. The matrix may penetrate the tumor itself
or be limited to the tumor envelope, which makes immune cells seem to be truly inside
the tumor. Besides, the results that the immune checkpoints expressed much higher
in the high-risk group are in accord with this assumption, which could contribute to
the state of immunosuppression and lead to a poor prognosis [30]. Furthermore, anti-
gen and inflammation persist within the tumor microenvironment, which will lead to
T-cell exhaustion and dysfunction [12]. This explains the activation of inflammatory and
immune pathways in the high-risk group rather than the low-risk group. In addition, the
immune system needs to maintain immune homeostasis, which contributes to avoid-
ing potential tissue damage and autoimmunity as well as generates a successful immune
defense [31]. Our GSEA results presented significantly enriched immune-related GO
terms in the high-risk group, reflecting an activated immune system in this population.
However, the activated immune system of high-risk patients generated an adverse rather
than beneficial effect on the prognosis of LGGs, which may be caused by the imbalance
between suppressed and activated responses. This also revealed its microenvironment
dominated by chronic inflammation and immunosuppression. Therefore, it might be
a valuable immunotherapy strategy that maintains an equilibrium between amplifying
and suppressing the immune response, which was supported by the results that better
responses to immunotherapy of patients in the low-risk group.
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Immunotherapy has ushered in a new era of cancer treatment, however, increasing
reports [32, 33] suggest that cancer stem cells (CSCs) may potentially play an important
role in treatment resistance and have been suggested to accelerate the progression and
recurrence of tumors. It has been shown that in gliomas, CSCs evade immune clear-
ance by activating regulatory T (Treg) cells, inactivating dendritic and natural killer cells
[34], suppressing T cell proliferation and recruiting infiltration of type 2 macrophages
(M2) [35], which results in local or systemic immunosuppression [36]. Alternatively,
tumor-associated macrophages (TAMs) secrete cytokines to enhance the self-renewal
[37] of CSCs as well as to stimulate invasion and drug resistance [38] of CSCs. There-
fore, strategies developed to target the stemness of tumor cells may identify new thera-
peutic opportunities for glioma treatment. We also established a quantitative prognostic
prediction nomogram that combined the MRMRPI and independent clinical prognostic
factors determined by univariate and multivariate Cox analyses. According to this nom-
ogram, clinicians can classify patients into distinct risk stratification more accurately
and provide more scientifically personalized management of LGG patients.

Conclusion

In conclusion, as far as we know, it was the first time to construct an MRMRPI in LGG
that integrated MRGs and mRNAsi, classifying patients into distinct risk stratification.
Importantly, patients in different risk stratifications have completely different prognoses
and immune microenvironment. These findings provide novel insights into the under-
standing interactions of m6A methylation regulation and tumor stemness on LGG
development and contribute to guiding more precise immunotherapy strategies.

Materials and methods

Data collection and processing

The LGGs mRNA-Seq data was extracted from TCGA and Chinese Glioma Genome
Atlas (CGGA) databases. The normalized former by log,(x+ 1) transformed, along with
relevant clinical information were downloaded from the UCSC Xena website (https://
xena.ucsc.edu/), while the latter and corresponding clinical data were downloaded from
the CGGA official website (http://www.cgga.org.cn/index.jsp). Only samples with com-
plete survival data and survival time greater than 30 days were selected for subsequent
analysis. At the same time, the sequencing data in CGGA is also log2(x + 1) transformed.
Besides, the stemness index mRNAsi corresponding to the sample in TCGA-LGG was
obtained from the previous research [11].

Consensus clustering and differential expression analysis
To investigate whether the m6A regulation patterns are suitable for LGG, we mined
the 21 regulators involving 8 writers, 11 readers, and 2 erasers if possible from a cur-
rent study [15] to identify subtypes by Consensus Clustering analysis [39] in TCGA and
CGGA datasets. 1000 times repetitions and Pearson correlation were conducted using
the “ConsensuClusterPlus” package.

To screen m6A-related genes (MRGs), the “limma” R package was utilized in TCGA
dataset to determine differential expression genes (DEGs) between different subtypes
classified by the consensus clustering of m6A regulators expression [15]. Adjusted P
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value <0.01 was defined as the significant criteria for identifying DEGs, and the overlaps
are considered to be MRGs.

Weighted gene co-expression network analysis (WGCNA)

The overlap of DEGs was used to establish a co-expression network [40, 41] in TCGA
cohort and identify the modules most related to mRNAsi. Primarily, a gene expression
similarity matrix was constructed based on Pearson correlation. Next, a proper soft-
thresholding power =4 was selected to establish a signed weighted adjacency matrix,
which was subsequently translated into a topological overlap matrix (TOM). Finally, the
average linkage hierarchy was clustered with the parameter height=0.25 and gene mod-
ules were identified. Besides, the module and clinical traits correlations were calculated
by module eigengene (ME) representing the first principal component of each module.
Next, gene significance (GS) the correlation between genes and clinical traits as well as
module membership (MM) the correlation between module genes and gene expression
profiles, which were both calculated. The high correlation between GS and MM means
the importance of the genes in the module and the close correlation with the clinical
trait.

KEGG pathways

To explore the underlying biological functions of the chosen module genes, the Kyoto
encyclopedia of genes and genomes (KEGG) enrichment analysis [42-46] was com-
pleted by using the “clusterProfiler” package. The significant cut-off value was defined as
P<0.05.

Development and validation of the MRMRPI

After WGCNA filtering, the module genes related to m6A and mRNAsi were subjected
to further analysis. Aimed at constructing an MRMRPI, of which the development
was in TCGA set, while validation in CGGA set. First, univariate Cox regression was
employed in the training set to screen the top 50 genes ranked by P value. Then, to iden-
tify the optimal genes with prognostic value and corresponding coefficients, the least
absolute shrinkage and selection operator (LASSO) Cox analysis was performed just like
the present studies [3, 47, 48]. Moreover, the MRMRPI was validated in CGGA dataset
by using the same coefficients. Patients were classified into high- and low-risk subgroups
based on the median cutoff value, which was proven by Kaplan—Meier (K-M) analysis
with the log-rank test. Besides, time-dependent receiver operating characteristic (ROC)
curves and decision curve analysis (DCA) were applied to evaluate the prognosis pre-
dicting performance.

Functional and pathway enrichment analyses

To investigate the immune status variations between different risk groups, we performed
GSEA with program gsea-3.0.jar, and the immune-related gene ontology gene sets were
regarded as the reference gene sets, which were obtained from the Molecular Signa-
tures Database (http://software.broadinstitute.org/gsea/msigdb/). The enrichment items
are consideredsignificant only when the nominal P value <0.01 and the false discovery
rate (FDR<0.25). We also performed a GSVA (gene set variation analysis) algorithm to
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identify the differences in biological processes between distinct groups. The gene sets
included c2.cp.kegg.v7.4.symbols downloaded from the Molecular Signatures Database
and other relevant biological processes retrieved from the supplementary material in a
previous study [49].

ESTIMATE algorithm and MCP-counter

ESTIMATE algorithm [50] was used to calculate the immune score and stromal score
that could represent all immune cells and stromal cells respectively [51]. The Micro-
environment Cell Populations-counter (MCP-counter) method was applied to further
estimate the infiltrating cell types. It is a validated method that enables the reliable quan-
tification of the abundance of 8 immune and 2 matrix populations in the transcriptome
of malignant tissues, and the abundance of these cells allows an inter-sample compari-
son [52].

Prediction of chemotherapeutic drug sensitivity and immunotherapy responses

To assess the predictive capability of MRMRPI in chemotherapeutic agent sensitivity, we
calculated the half-maximal inhibitory concentrations (IC50) of 138 chemotherapeutic
components by uing the "pRRophetic" package [53, 54] and compared the differences
between the low- and high-risk groups. To further predict the response of immune
checkpoint blockade (ICB) therapy, the ImmuCellAl platform (http://bioinfo.life.hust.
edu.cn/ImmucCellAl/#!/analysis), a powerful tool [55] with high accuracy, was employed.

Nomogram construction and validation

To strengthen the predictive performance of MRMRPI and quantitatively predict prog-
nosis, we developed a nomogram [56] in TCGA dataset, which integrates RS derived
from MRMRPI and other important prognostic biomarkers. Univariate and multivariate
Cox regression analyses were employed to determine independent prognostic biomark-
ers incorporated into the nomogram. Additionally, the concordance index(C-index), cal-
ibration curves, and ROC curves were used to evaluate the nomogram.

Single-cell RNA sequencing

According to a previous study, single-cell RNA sequencing (scRNA-seq) analysis was
performed [57]. We downloaded a glioma dataset (GSE89567) in the GEO database
and extracted the single-cell data expression matrix of LGG. The R package Seurat was
employed to analyze the single-cell data. First, a Seurat object to store the data matrix
was created by the“CreateSeuratObject” function. Then, quality control was performed
to discard features and cells that do not meet the basic standards: (1) genes detected
in more than 3 cells; (2) cells with more than 200 total detected genes; (3) cells with
less than 5% of mitochondrial genes. Next, the “NormalizeData” function was used to
normalize the data, and the function“FindVariableGenes” was applied to identify 2000
highly variable genes. Then, the principal component analysis (PCA) was performed.
Afterward, a uniform manifold approximation and projection (UMAP) algorithm was
used for further visualization. Finally, the “scCATCH” R package combined with manual
annotation was used to annotate the cell types and “FeaturePlot” was used to visualize

expressions.
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Cell culture and quantitative real-time PCR

LGG cell lines (HS683 and SHG44) were obtained from Xiangya School of Medicine,
Central South University, Changsha, China. HS683 and SHG44 cells were cultured in
high-glucose DEME (Gibco) supplemented with 10% fetal bovine serum. The Small
interfering RNAs (siRNAs) against the TIMP1 gene were synthesized by RiboBio
Corporation (Guangzhou, China). We used Lipofectamine 2000 transfection rea-
gent (Invitrogen) for the siRNA transfection according to the manufacturer’s proto-
col. The siRNA of TIMP1 (sense: CCACCUUAUACCAGCGUUATT, antisense: UAA
CGCUGGUAUAAGGUGGTT). The TRIzol lysis method was utilized to extract total
RNA from cells. The Thermo Scientific RevertAid First Strand cDNA Synthesis Kit
was used to synthesize cDNAs. The mRNA level of TIMP1 was detected by quantita-
tive real-time PCR (qRT-PCR). The 2-AACt method was used to calculate the mRNA
expression levels. The qRT-PCR primers were synthesized by Sangon Biotech (Shang-
hai, China), and the sequences were as follows: for TIMP1, the forward primer was
5-CTTCTGCAATTCCGACCTCGT-3" and the reverse primer was 5-ACGCTGGTA
TAAGGTGGTCTG-3’ for GAPDH, the forward primer was 5-CATTGACCTCAA
CTACATGGTT-3"and the reverse primer was 5-CCATTGATGACAAGCTTCCC-3".

Wound healing and Transwell assays

The wound healing and Transwell assays were performed by previously described
methods [58].

Cell colony formation assay

After transfected with TIMP1 or control siRNAs, about 1000 cells/well were plated
into 6-well plates and cultured for two weeks to allow colony formation. The colonies
were fixed with 4% paraformaldehyde and stained with 0.01% crystal violet. Then we
judged the cell growth ability according to the colony numbers.

Cell proliferation assay

After HS683 and SHG44 cells were transfected with TIMP1 or control siRNAs, the
Cell Counting Kit-8 (CCK-8) assay (Vazyme, Nanjing, China) was conducted to moni-
tor cell proliferation ability. HS683 and SHG44 cells (1.5 x 10° cells/well) were seeded
into 96-well plates. Then, 10 pL of CCK-8 reagent was added to each well and incu-
bated for 2 h at 37 °C. The Optical Density (450 nm) was determined on 0, 24, 48, and
72 h.

Macrophage differentiation and co-culture system

Macrophages (M0) were induced by THP-1 monocytes. Briefly, the THP-1 cells were
seeded into the 6-well plate at 1 x 10° cells/ml. Then, 100 ng/ml PMA (Phorbol-
12-myristate-13 acetate) was added for 48 h to obtain macrophages (MO0). To estab-
lish a co-culture system, HS683 and SHG44 cells were seeded on top of the culture
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inserts, and macrophages (MO) were seeded in a 24-well plate. Subsequently, the mac-
rophages (MO) were harvested for further analysis after 72 h.

Immunofluorescence staining

Immunofluorescence staining was conducted to observe the expression level of CD68 and
CD163. After discarding the culture medium, macrophages growing in a 24-well plate
were fixed with 4% paraformaldehyde at room temperature for 10 min and then permeabi-
lized by 0.3% Triton X-100 for 20 min. Next, at room temperature, 5% BSA (Bovine Serum
Albumin) was used to block the unspecific binding sites for 2 h. The cells were incubated
overnight with the primary CD68 (1:100; mouse; Proteintech 66,231-2-Ig) and CD163
(1:100; rabbit; Proteintech 16,646—1-AP) antibodies. Then, at room temperature, the slides
were incubated in Alexa Fluor 568-conjugated donkey anti-mouse secondary antibody
(1:500, Invitrogen) and Alexa Fluor 488-conjugated donkey anti-rabbit secondary antibody
(1:500, Invitrogen) for 1 h. DAPI (1:500, Sigma, United States) was used to label the nuclei.

Statistical analysis

Statistical analyses were carried out using the R software (version 4.0.0) and GraphPad
Prism (version 8.0). The log-rank test was employed in the Kaplan—Meier survival analy-
sis. Pearson’s correlation analyses were conducted to calculate the correlation between
the two groups. Student’s ¢ test was used in the two-group comparisons. A P value less
than 0.05 was considered statistically significant.
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Additional file 1: Figure S1. The consensus clustering of m6A regulators could classify LGG patients into three
groups in TCGA and CGGA glioma datasets. (A) Consensus clustering matrix of 481 samples from TCGA dataset for
k = 3. (B) Relative change in area under the cumulative distribution function (CDF) curves according to different k
values (TCGA). (C) Principal component analysis (PCA) based on the expression of m6A regulators showed distinct
groups of glioma patients (TCGA). (D) Survival analysis of patients in different groups in TCGA cohort. (E) Consensus



https://doi.org/10.1186/s12859-023-05328-7

Tang et al. BMIC Bioinformatics (2023) 24:225

clustering matrix of 404 samples from the CGGA dataset for k = 3. (F) Relative change in area under the CDF curve
according to different k values (CGGA). (G) PCA based on the expression of m6A regulators showed distinct groups
of glioma patients (CGGA). (H) Survival analysis of patients in different groups in the CGGA cohort.

Additional file 2: Figure S2. Construction and validation of the m6A regulation and mRNAsi-related prognostic
index (MRMRPI). (A) The 10 genes were selected by least absolute shrinkage and selection operator (LASSO) Cox
analysis in TCGA dataset. (B) Forest plot of the univariate Cox results of the 10 genes. (C) Coefficient values for each
gene in the LASSO Cox analysis. Risk scores, living status, and Kaplan-Meier curves in the training (D) and validation
cohorts (E). Time-dependent ROC curve analysis of the MRMRPI in the training (F) and validation (G) cohorts (H).

Additional file 3: Figure S3. Kaplan-Meier curves of the 10 prognostic genes in TCGA (A) and CGGA (B) datasets.

Additional file 4: Figure S4. GSEA showed the immune-related GO terms between low- and high-risk groups. (A)
A total of 41 immune-related GO terms were significantly enriched in the high-risk group. (B) The visualization of the
top 10 enrichments in the high-risk group.

Additional file 5: Figure S5. The correlation analyses between risk score (RS) and immune checkpoints in TCGA
(A-H) and CGGA dataset (I-P).

Additional file 6: Figure S6. Activation of several immune pathways in the high-risk groups in the CGGA cohort.
These pathways are involved in immune cell recruitment, antigen presentation and processing, innate immunity,
immune suppression, cytotoxicity, inflammation, and adaptive immunity. Green font represents the gene overex-
pressed in the low-risk group, while red represents the gene overexpressed in the high-risk group. Statistical test:
Wilcoxon. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ***, p < 0.0001.

Additional file 7: Figure S7. TIMP1 promotes macrophage differentiation toward M2 in vitro. (A) The expression
of CD68 and CD163 in macrophages treated differently detected by immunofluorescence. (B) Statistical analysis of
different groups (** Represents p < 0.01).
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