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Introduction
Currently, antimicrobial resistance (AMR) in bacterial infections has emerged as a criti-
cal global concern, taking precedence on the agendas of policymakers and public health 
authorities in both developed and developing countries [1]. For example, Gram-negative 
bacteria, such as CRE and members of ESKAPE (K.pneumoniae, A.baumannii, P. aer-
uginosa and Enterobacter spp), are of popular concern [2]. AMR transmission in agri-
culture involves not only foodborne pathogens but also commensals and environmental 
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microbes, posing risks to human health from animal and plant-based foods [3]. Despite 
this, the reality is that investments in research and development of new antibiotics by 
the pharmaceutical industry and biotechnology companies are decreasing due to high 
failure rates and low profitability [4]. As a result, tackling AMR has posed a tremendous 
challenge.

Developing medicines based on antimicrobial peptides (AMPs) is a very promising 
solution to this global challenge. AMPs are low molecular weight proteins with broad-
spectrum antimicrobial properties and immune-modulatory effects [5]. Their unique 
antimicrobial mechanisms reduce the likelihood of resistance development, which dis-
tinguishes them from typical antibiotics [6–8]. Therefore, AMPs serve as a promising 
therapeutic option, ubiquitous in the innate immune systems of various life forms [9].

Due to the time-consuming and labor-intensive nature of high-throughput experi-
ments for evaluating each individual AMP, the accelerated advancement of research 
and application of AMPs is hindered. Fortunately, various databases are developed to 
offer information for enhancing the efficient discovery and design of AMPs. These data-
bases empower users to explore and extract extensive details regarding peptide struc-
tures, chemical modifications, bioactivities, and classifications [10]. Most of these AMP 
databases contain antimicrobial targets of the AMPs and whether the AMPs are natural 
or synthetic. Researchers can consult these databases and obtain AMP-related informa-
tion accordingly. However, the number of AMPs in each of these databases is not sub-
stantial, usually in the thousands. Additionally, the number of AMPs targeting a specific 
pathogen is often only in the hundreds, not to mention that there are a large number of 
duplicate AMP entries among different databases [11]. Compared to the vast number 
of peptides, the number of those with known antimicrobial activity is just a drop in the 
ocean, indicating that there are still many potential AMPs yet to be discovered.

With the development of artificial intelligence technologies, using computational 
methods to discover and design AMPs has become a trending research topic. In the last 
decade, several tools have been developed with Machine Learning methods: AntiCP2.0 
[12] (Support Vector Machine), AmpGram [13] (Random Forest), and TP-MV [14] 
(ensemble ML method). In recent years, there have also been tools designed based on 
Deep Learning methods, a brand new and powerful branch of ML methods, including 
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM): Deep-
AmPEP30 [15] (CNN), sAMP-PFPDeep [16] (CNN), and AMPlify [17] (LSTM). Most of 
these methods directly make predictions purely based on the amino acid sequence of a 
candidate AMP. In addition, although iAMP-Attenpred [18] and AMP-BERT [19] also 
predict AMPs based on amino acid sequences, their use of BERT [20] for word seman-
tic embedding has effectively improved accuracy and advanced the progress of AMP 
prediction.

Realizing that the information contained in the amino acid sequence alone might be 
limited, researchers also try to rely on some additional features of the peptides, such as 
the composition, physicochemical properties and structural properties, etc. The sAMP-
PFPDeep [16] converts the information of the position, frequency, and 12 physicochemi-
cal properties of the peptide sequences into three-channel images as model inputs. 
Similarly, Deep-AmPEP30 uses the PseAAC [21] feature to predict AMPs [15]. In particu-
lar, the increasing emphasis on predicting AMPs using structural properties arises from the 
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notably accurate predictions of protein structures by AlphaFold [22] and trRosetta [23], for 
example, sAMPpred-GAT uses the peptide structures predicted by trRosetta to predict the 
AMPs based on the Graph Attention Network (GAT) [24].

Existing studies have demonstrated the feasibility of using peptide sequence order, com-
position, physicochemical properties and structural properties to predict AMPs, with 
considerable performance. However, based on our study, the aforementioned manually 
extracted features for describing a candidate peptide sequence might not be sufficient for 
the best AMP prediction performance. We evaluated the combination of several manual 
feature extraction methods and found that feature concatenation may even make the fea-
ture vector less comprehensive, possibly due to more information conflict and redundancy, 
making model prediction more difficult. Instead, we believe that using deep learning for 
feature extraction might produce a better description of a peptide sequence for AMP pre-
diction. Subsequently, we evaluated the ablation of three feature vectors extracted by deep 
learning models (UniRep [25], ESM-2 [26], ProtT5 [27]) and found that the combination 
of features from UniRep and ProtT5 was more comprehensive, leading to more accurate 
model predictions. In this study, we proposed an AMP prediction framework, UniAMP, 
which utilizes the feature information jointly inferred by the deep learning models UniRep 
and ProtT5. At the core of UniAMP, we designed a novel deep neural network as a predic-
tor, composed of fully connected modules and self-attention mechanisms.

Some researchers have a need to predict AMPs targeting specific pathogens, which 
most previous predictors were unable to address. We selected P. aeruginosa as a repre-
sentative bacterium and C. albicans as a representative fungus, which pose significant 
threats to plant and human health respectively and are relatively common. Additionally, 
we tested our model on Salmonella spp., which has a smaller dataset, to further validate 
UniAMP’s performance. In order for fair and comprehensive comparison, we aggregate 
benchmark datasets consisting of all the AMP entries from CAMPR4 [28], DBAASPv3 
[29], dbAMP2 [30], DRAMP3 [31], LAMP2 [32] and YADAMP [33], with 9241 AMPs in 
total. Evaluation results on the benchmark datasets show that UniAMP clearly outperforms 
the existing methods under several comprehensive metrics, e.g. Matthews Correlation 
Coefficient(MCC) and F1-score, etc. Moreover, we assessed several state-of-the-art mod-
els on the test datasets, and UniAMP consistently demonstrated outstanding performance. 
We analyzed the inferred information and manually extracted features, concluding that the 
inferred information is more comprehensive and effective for AMP prediction. We believe 
that UniAMP may boost the research and discovery of AMPs, and we make UniAMP pub-
licly available (https:// amp. starh elix. cn).

In summary, UniAMP enhances the accuracy of AMP prediction, providing researchers 
with a valuable tool to advance the discovery of AMPs; moreover, it highlights the value of 
utilizing the rich features contained in inferred information, offering a new perspective for 
other predictive tasks in bioinformatics.

Materials and methods
Data collection and dataset preparation

AMP and non‑AMP

We collected AMP data from six public AMP databases: CAMPR4 [28], DBAASPv3 [29], 
dbAMP2 [30], DRAMP3 [31], LAMP2 [32] and YADAMP [33]. These databases were 

https://amp.starhelix.cn
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merged into a single AMP database, retaining only experimentally validated, non-dupli-
cate sequences with antimicrobial activity. The database includes peptide sequences and 
antimicrobial activity information, represented as Key-Value pairs of Target-Minimum 
Inhibitory Concentration (MIC), with all MIC units converted to µg/ml. If discrepancies 
in MIC records across databases were found, the largest MIC value was used. Peptides 
were selected for the positive dataset if they had antimicrobial activity against specific 
pathogens, a MIC below 100 µg/ml, and a sequence length between 6 and 50 amino 
acids [34, 35]. The positive datasets for P. aeruginosa, C. albicans, and Salmonella spp. 
contained 4821, 2545, and 1875 sequences, respectively.

For the negative dataset, we collected 2,835,190 non-AMP sequences from UniprotKB 
[36] using the search condition ‘length:[6 TO 50] NOT antimicrobial NOT antibiotic 
NOT antiviral NOT antifungal NOT fungicide NOT secreted NOT secretory NOT 
excreted NOT effector NOT defensin.’ Sequences with antimicrobial activity were 
excluded after comparison with the AMP database. All sequences contained only the 20 
canonical amino acids.

Training and test datasets

In order for fair comparison and assessment of model robustness, Cluster Database at 
High Identity with Tolerance (CD-HIT) [37] program was adopted with a 40% sequence 
similarity threshold (-c 0.4, minimum value) to cluster the positive sequences, ensuring 
that sequences in different clusters were dissimilar [38]. In each positive dataset, all data 
were randomly divided into training and test datasets at a ratio of 8:2, while making sure 
that the split is not within any cluster, and each cluster is either in the training dataset as 
a whole or in the test dataset. This clustering-based splitting avoids potential bias from 
overlapping sequence similarities between training and test datasets, ensuring that the 
model is evaluated on diverse and independent data. The complete separation of clusters 
ensures robustness across different data distributions. Due to the imbalanced number of 
sequences in each cluster, random division was performed multiple times until the num-
ber of sequences in the two datasets approximate the targeted 8:2 ratio.

For the negative dataset, we used a subset of sequences due to their larger number. 
The negative sequences were clustered into 234,148 groups using CD-HIT, and a cor-
responding number of negative sequences were selected to match the positive dataset 
size-50 times the positive sequences for training and 100 times for testing. This imbal-
anced data ratio was designed to reflect the rarity of AMPs in proteins [6]. Preliminary 
experiments with an unoptimized BERT model confirmed that these ratios were effec-
tive for model training and evaluation, as shown in Table 1. Unfortunately, Higher ratios 
could not be tested due to hardware limitations. The ratio of 50:1 in the training data-
set balances computational feasibility and sufficient representation of negative samples, 
ensuring the model learns to distinguish AMPs effectively without overfitting. For the 
test dataset, a higher ratio of 100:1 was used to simulate a more challenging evaluation 
scenario. It is important to note that the ratio of 100 is merely a hypothetical assump-
tion to represent rarity, and the actual ratio in reality may be lower. Besides, the nega-
tive dataset was also balanced to match the peptide length distribution of the positive 
sequences. This helps mitigate potential bias in the test dataset.
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Following these procedures, we constructed 6 peptide datasets according to their dif-
ferent antimicrobial activities, as shown in Table  2, each AMP group containing both 
training and test datasets.

Benchmark datasets

We constructed a balanced benchmark dataset (Table 2) for AMPs targeting P. aerugi-
nosa to test the performance compared with previous methods (most test datasets in 
previous methods were balanced). Specifically, all positive sequences in the test dataset 
of P. aeruginosa were selected, and the same number of negative sequences with simi-
lar length distribution were randomly selected. Since there are specific requirements of 
different previous studies, such as sequence length less than 30 [15] and more than 40 
[24], corresponding adjustments were made according to these requirements to obtain 
its true performance.

Feature extraction

These studies demonstrated the low sequence homology of peptide sequences, but 
structural similarities in corresponding functions [24, 39, 40]. Furthermore, they used 
computational methods to predict the structure properties of peptides and effectively 
predicted the peptide’s antimicrobial activity and other functions through its struc-
tural properties. This highlighted the importance of feature extraction in this task. 
On the other hand, we used feature vectors inferred by deep learning models trained 
on large-scale datasets as inputs. Since these inferred features are derived from a 

Table 1 The impact of training dataset ratio

The purpose of this experiment was to determine the dataset ratio

 Therefore, the hyperparameters were not optimized, and the dataset differed from that used in practice

Negative:positive MCC (validation) MCC (test)

1 0.9567 0.2119

2 0.9562 0.3681

5 0.9474 0.5714

10 0.9471 0.7778

20 0.9423 0.8084

50 0.9436 0.8556

Table 2 Datasets in this study

Both positive and negative sequences were filtered by CD-HIT, and the similarity between training samples and test samples 
is < 40%

 The peptide length distributions of positive and negative sequences in the same dataset are similar

Datasets Positives Negatives

P.aeruginosa training 3828 191400

P.aeruginosa test 993 99300

C.albicans training 2036 101800

C.albicans test 509 50900

Salmonella spp. training 1490 74500

Salmonella spp. test 385 38500

P.aeruginosa benchmark 993 993
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larger dataset, they can enhance the richness and comprehensiveness of the features 
extracted from smaller datasets.

In this study, we represented peptides based on their sequences, composition, 
physicochemical properties and inferred information. More specifically, peptides 
were represented in three different forms as inputs to models. Firstly, the amino 
acid sequences of peptides were directly used as inputs in prediction. Secondly, the 
composition and physicochemical properties of a peptide were represented by PCA: 
PseAAC [21], CT [41], and AC [42]. Thirdly, the feature vectors of the peptides were 
computed using UniRep [25], ESM-2 [26], and ProtT5 [27], resulting in three vectors 
of 1900, 1280, and 1024 dimensions, respectively. Table 3 summarizes the comparison 
of UniRep, ESM-2, and ProtT5.

Pseudo amino acid composition (PseAAC)

PseAAC [21] is particularly valuable for capturing information about local and global 
sequence patterns, which can be crucial for various tasks such as protein structure 
prediction, function prediction, and classification [43]. The encoding of PseAAC 
combines the hydrophobicity, hydrophilicity, and side-chain mass of amino acids. The 
PseAAC values are quantified as follows:

where N represents the length of sequence, � is the number of sequence correlation fac-
tors, and here we take it as 4. The calculation formula for each element in the vector is 
given by following equation:

where fi is the normalized occurrence frequency of the 20 amino acids in sequence, w 
is the weight factor for the sequence order effect, we choose w=0.05. And θj is the jth 
sequence correlation factor.

(1)X = [x1, x2, · · · , x20, · · · , x20+�]T (� < N )

(2)xu =
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�20
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Table 3 Comparison of UniRep, ESM-2 and ProtT5

1The ‘n’ is the length of the sequence

 It is changed from 1024× n to 1024 by taking the average (in this study) or the maximum value

Method Model Task Dataset Advantages Limitations Length

UniRep mLSTM Proteingeneration UniRef50(24 mil-
lion)

EfficiencyFast Lackslong-range-
context

1900

ESM-2 Transformer Protein
representation

UniRef50
 &UniRef90
(65 million)

Strong
contextual
modeling

High
computational
cost

1280/2560

ProtT5 T5 Protein
language

UniRef50 &BFD
(2.1billion)

Versatile
Multi-task

Slower
Resource-heavy

1024×n1



Page 7 of 22Chen et al. BMC Bioinformatics           (2025) 26:10  

Conjoint triad (CT)

The CT [41] method, akin to the commonly used K-mer approach for biologi-
cal sequences, categorizes amino acids into 7 classes based on their types. Subse-
quently, with K set to 3, resulting in a frequency space of 343 ( 7× 7× 7 ), amino acid 
sequences of length N generate N − 2 3-mers. The frequencies of these 3-mers are 
computed and assigned to the frequency space, culminating in a 343-dimensional 
vector representing the peptide features.

Auto covariance descriptor (AC)

The amino acid proximity effect calculated by the AC are primarily manifested in the 
interactions between an amino acid and a fixed number of surrounding amino acids, 
showing hydrophobicity (H1), hydrophilicity (H2), net charge index (NCI), Polarity 
(P1), polarizability (P2), solvent-accessible surface area (SASA), and side chains (SC) 
[42]. Initially, for an amino acid sequence of length N, a 7× N  matrix is constructed 
based on the aforementioned physicochemical properties. In this matrix, each ele-
ment Pi,j represents the ith property of the jth amino acid. Subsequently, normalize 
the matrix as follows:

where P and Dj are the mean and standard deviation of the i physicochemical property 
over 20 amino acids. Then calculate the AC vector based on the normalized matrix as 
follows:

Given the minimum length requirement of 6 for AMP sequences, nmax was set to 5, 
resulting in the representation of a peptide as a 35-dimensional ( 7× 5 ) vector.

UniRep

UniRep[25], trained on 24 million UniRef50 [44] amino acid sequences using a 
1900-hidden unit Multiplicative long-/short-term-memory (mLSTM) RNNs model 
capable of fully learning the rich information of natural language to generate protein 
sequences [45], exhibits several capabilities. It successfully learns physicochemically 
meaningful clusters within amino acid embeddings and proves effective in parti-
tioning structurally similar proteins. Additionally, the model showcases its semantic 
richness by hierarchically clustering proteins based on expert-labeled datasets and 
revealing correlations between internal hidden states and protein secondary struc-
ture. Notably, UniRep’s single-hidden unit positively correlates with alpha-helix anno-
tations and negatively correlates with beta-sheet annotations, suggesting the model’s 
ability to predict secondary structure in an unsupervised manner.

(3)P′
i,j =

Pi,j − P

Dj

(4)AC(n, i) =
∑N−n

j=1 (P′
i,j −

∑N
j=1 P

′
i,j

N )× (P′
i,j+n −

∑N
i=1 P

′
i,j

N )

N − n
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In summary, UniRep is better suited for detailed secondary structure and physico-
chemical insights. Based on a trained UniRep model, we converted the peptide into a 
1900-dimensional vector as the input to the model.

ESM‑2

ESM-2 [26] employs a transformer architecture [46] with 15 billion parameters and is 
trained on 138 million UniRef90 sequences and 43 million UniRef50 sequences, encom-
passing 65 million unique sequences.This model excels in learning evolutionary, struc-
tural, and functional features from amino acid sequences, enabling accurate prediction 
of secondary and tertiary protein structures. ESM-2’s performance was demonstrated by 
metrics such as Root Mean Square Deviation (RMSD), Template Modeling Score (TM-
score), and contact precision, showing strong correlations with experimental data and 
high accuracy, with correlation coefficients indicating strong correlations for secondary 
structure elements and functional site annotations. Moreover, ESM-2’s feature vectors 
capture detailed information about protein sequences, including semantic richness, evo-
lutionary patterns, and biophysical properties. These vectors facilitate tasks such as phy-
logenetic inference, structural prediction, and functional annotation.

Therefore, ESM-2 is optimal for comprehensive structural and precise functional 
predictions. Based on the trained ESM-2 model, we converted the peptide into a 
1280-dimensional vector to serve as the input for further analysis.

ProtT5

The ProtTrans project [27] includes models like ProtBERT, ProtXLNet, and ProtT5, 
which are used for tasks such as protein function annotation, structure prediction, and 
understanding the language of proteins, with ProtT5, an auto-encoder model, specifi-
cally employed for generating vector representations of protein language models. ProtT5 
was trained on a dataset of approximately 2.1 billion protein sequences, utilizing 45 mil-
lion sequences from UniRef50 and 2,122 million sequences from the Big Fantastic Data-
base (BFD [47]). By extracting information from a large number of protein sequences 
through self-supervised learning, ProtT5, as a pre-trained model of a protein language 
model, assists in capturing patterns and rules within sequences. Consequently it encom-
passing structural, functional, evolutionary, and contextual information of protein 
sequences. Moreover, as part of the protein language model, these vectors demonstrate 
strong potential for application in various bioinformatics tasks.

ProtT5 is particularly effective in generating protein sequence embeddings that can be 
used in various downstream bioinformatics tasks. Based on the trained ProtT5 model, 
we converted the peptide into a 1024-dimensional vector to serve as the input for fur-
ther analysis.

Classification models

In this study, two types of models were used for peptide classification, distinguished pri-
marily by the variance in their input vectors. One type used traditional Natural Lan-
guage Processing (NLP) models, treating the peptide sequence as a sentence composed 
of words representing the 20 canonical amino acid input into the model [34]. The other 
type incorporated the aforementioned feature vectors as input into the model.
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Sequence vector model

Previously, the Neural Network Model (NNM) based on AmpScannerV2 [38] com-
bined with the NLP algorithm had proved effective. In particular, this method performs 
well on datasets containing a substantial number of negative sequences, with precision 
several times than that of previous approaches. As part of this analysis, three proven 
effective NNM [34] based on NLP algorithms were used for sequence-based AMPs pre-
diction (Fig 1).

The first model consisted of several convolutional layers and an LSTM layer as the 
backbone network. The second model replaced the LSTM later in the first model with 
an attention (ATT) layer, while the third model was BERT model based on transformer 
encoders [20, 46]. Like training the NLP model, we treat the amino acid sequence as a 

Fig. 1 The framework of Sequence Models. We used the word2vec to encode the peptide sequence into 
a 50-dimensional vector. Modifications to the LSTM and ATT models were limited to a single network layer, 
with the remaining network architecture kept consistent
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sentence, with each amino acid symbol representing a word (the word vector space is 
of size 20 because giving the 20 canonical amino acids). Subsequently, each amino acid 
sequence was encoded into a 50-dimensional vector, where each dimension corresponds 
to the index of the amino acid symbol at that position. For sequences with fewer than 50 
amino acids, zeros were padded to complete the vector.

Feature vector model

When designing the model, we started by recognizing that the feature extraction, typi-
cally handled by the backbone network, had already been completed. Consequently, 
our focus shifted towards constructing an effective prediction head to perform accurate 
classification based on the extracted features. Inspired by the study [48], we devised a 
network architecture named UniAMP, which incorporates two transformer encoder lay-
ers. Our objective was to facilitate the transmission of information between features and 
achieve feature fusion, particularly over longer distances. Unlike fully connected layers, 
the transformer encoders can efficiently capture relationships across distant features, 
thereby enriching the learned feature representations. To further enhance the model’s 
performance and stability, we introduced batch normalization and dropout layers within 
the fully connected modules. Batch normalization aids in stabilizing feature mapping by 
normalizing intermediate outputs, while dropout helps prevent overfitting by randomly 
deactivating neurons during training. These additions also mitigate issues such as gra-
dient vanishing or exploding, which are common in deep networks. In addition to the 
UniAMP architecture, we also implemented a baseline prediction head using a simple 
Multilayer Perceptron (MLP). This was done to validate our hypothesis that transformer 
encoders provide a significant advantage in capturing long-range dependencies and 
achieving better feature fusion compared to simpler models.

The model architecture is shown in Fig.   2. Initially, the feature vectors are mapped 
to a 256-dimensional vector through two fully connected modules. The reshaped fea-
ture vectors are then fed into two transformer encoder layers to facilitate information 
integration and interaction. Finally, the refined feature representations are processed 
through additional fully connected layers, which generate the predicted labels.

Performance measure

Evaluation metrics

Five metrics were used to evaluate the performance of different methods in this study:

where TP, FP, TN and FN are the number of true positives, false positives, true nega-
tives, and false negatives. MCC provides a balanced assessment of a model’s overall 

(5)
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TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
(1+ β2)× Precision× Recall

β2 × Precision+ Recall

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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classification performance, which is especially valuable in scenarios with imbalanced 
class distribution [49]. In addition, Area Under the ROC Curve (AUC) and Average Pre-
cision (AP) were used, which are defined as the area under the Receiver Operating Char-
acteristic (ROC) and Precision-Recall (PR) curve.

Model training and test

For existing AMPs predictors, their performance was evaluated on benchmark datasets 
using trained models published by the creators. In the case of the models in this study, 
we trained them on training datasets and subsequently assess their performance on both 
the benchmark and test datasets.

During training, we set 20% of the training data for validation. At each iteration epoch 
of the model, we assessed its performance on the validation set, with the MCC serving 
as the primary evaluation metric. It is important to note that all models shared identical 
training conditions, including the selection of the validation set (same random seed) and 
the configuration of hyperparameters (batch size=256, lr=1× 10−4 ), but we found that 
the models containing the transformer encoder structure is difficult to converge with a 
learning rate (lr) of 1× 10−4 , so we adjust it to 1× 10−5 . Additionally, a patience value 
of 30 was established, meaning that training will be halted if the model does not achieve 
a higher MCC within 30 epochs after reaching the current highest MCC. To enable the 
model to learn features of positive samples in an imbalanced dataset, we employed a 
criterion with weighted coefficients. This ensures that positive samples receive a higher 
weight when calculating the loss. We aim to eliminate potential biases in the imbal-
anced dataset through this approach. Besides, when training the models proposed in this 
paper, five models were trained strictly for each model structure using the previously 

Fig. 2 The framework of UniAMP. We used trained UniRep, ESM-2, and ProtT5 as feature extractors to 
replace the backbone network. The inferred features from these deep learning models have proven to be 
information-rich. Subsequently, we input the ablation combinations of the three vectors into the model. 
The Transformer encoder in the model utilizes self-attention mechanisms to facilitate information transfer 
between features and achieve feature fusion, thereby enhancing performance
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mentioned training methods, and the model with the median MCC performance was 
selected for comparison.

Results
Information redundancy and overfitting of manual feature extraction methods

In this section, We evaluate various combinations of manual feature extraction meth-
ods, and their performance on P. aeruginosa datasets is reported in Table 4. The MCC 
values for three manual feature extraction methods greatly exceeded 0, confirming their 
informativeness. However, the combination of PseAAC, CT, and AC, which includes 
more feature, did not achieve the best performance, instead, PseAAC alone yielded the 
best performance. We observed that the combinations using PseAAC achieved similar 
MCC values on the validation dataset (maximum difference of 0.008), however, a notable 
discrepancy emerged on the test set (maximum difference of 0.043). The poorest per-
formance observed in the combination of PseAAC and CT, particularly considering the 
higher dimensionality of CT compared to the other two features, led us to hypothesize 
that one contributing factor is the presence of additional redundant information caus-
ing the model to overfit [50]. While the model still demonstrates capability in handling 
higher-dimensional inputs (evidenced by similar performance on the validation dataset), 
in practice, it exhibits signs of overfitting. Another contributing factor is that AC and CT 
fail to contribute additional meaningful information compared to PseAAC.

The combination of inferred information from UniRep and ProtT5 is suitable for AMP 

prediction

We conducted ablation experiments to evaluate the performance of three deep learn-
ing models (UniRep, ESM-2, and ProtT5) on the downstream bioinformatics task of 
AMP prediction. The experiments were carried out on the P. aeruginosa dataset, and 
the results are reported in Table 5. The evaluation results for single inferred informa-
tion show that, regardless of the model, the rankings for Recall, F1-score, and MCC 
metrics are always in the order of ProtT5, ESM-2, and UniRep from highest to low-
est, while the rankings for Precision are ESM-2, UniRep, and ProtT5. It is normal for 
different models to have their own strengths and weaknesses, but here we mainly 
discuss their comprehensive performance in terms of the MCC metric. The inferred 

Table 4 Ablation results of manually extracted features

The validation set did not participate in training but was used for model selection, whereas the test set data was solely used 
for evaluation

Bold values indicate the maximum value

Combination Metrics

 PseAAC CT AC MCC (validation) MCC (test)

√
– – 0.8879 0.8315

–
√

– 0.8357 0.7217

– –
√

0.7720 0.6968
√ √

– 0.8864 0.7877
√

–
√

0.8856 0.8197

–
√ √

0.8802 0.7997
√ √ √

0.8936 0.8161
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information from the ProtT5 model is undoubtedly best, which may be attributed 
to its use of the largest dataset (ProtT5: 2.1 billion, ESM-2: 181 million, UniRep: 24 
million).

Ablation results using multiple inferred information showed consistent trends 
across models. the combination of UniRep and ProtT5 achieved the highest F1-score 
and MCC, the combination of ESM-2 and ProtT5 achieved the highest recall, while 
the combination of all three models achieved the highest precision. Moreover, the 
performance using combined inferred information is superior to that of using sin-
gle inferred information. Specifically, when comparing the highest results, MCC 
increased by 0.008, Precision increased by 0.015, and Recall increased by 0.01. There-
fore, using combined inferred information does not easily lead to information redun-
dancy and overfitting as manually extracted information might. Considering the 
comprehensive situation in the task of AMP prediction, the combination of UniRep 
and ProtT5 is highly recommended.

Inferred information, particularly from large pre-trained models, can capture com-
plex relationships and abstract features from protein sequences that might be over-
looked by traditional feature extraction methods. By incorporating multiple inferred 
information sources, we enable the model to learn a richer and more comprehensive 
representation of the underlying biological data. This strategy effectively enhances 
the accuracy of AMP prediction, making it more robust and reliable. Furthermore, 
The use of inferred information in AMP prediction tasks has been relatively uncom-
mon in previous studies, which primarily relied on manually curated features or word 
embedding vectors. UniAMP not only incorporated these inferred features but also 
specifically designed a framework to integrate them, enhancing the ability to cap-
ture subtle patterns in the data. This has resulted in improved prediction accuracy, as 
demonstrated by the ablation experiments.

Table 5 Ablation results of manually extracted features

Due to the significant imbalance between positive and negative samples in the test dataset, the accuracy at the thousandth 
decimal place is almost identical, thus we do not compare accuracy

Bold values indicate the maximum value

Combination Metrics

 Model UniRep ESM-2 ProtT5 TP FP TN FN Precision Recall F1-score MCC

MLP
√

– – 838 77 99223 155 0.9158 0.8439 0.8783 0.8779

MLP –
√

– 860 69 99231 133 0.9257 0.8660 0.8948 0.8943

MLP – –
√

888 83 99217 105 0.9145 0.8942 0.9042 0.9033

MLP
√ √

– 896 93 99207 97 0.9059 0.9023 0.9041 0.9031

MLP
√

–
√

890 71 99229 103 0.9261 0.8962 0.9109 0.9102
MLP –

√ √
898 87 99213 95 0.9116 0.9043 0.9079 0.9070

MLP
√ √ √

886 70 99230 107 0.9267 0.8922 0.9091 0.9084

UniAMP
√

– – 851 63 99237 142 0.9310 0.8569 0.8925 0.8922

UniAMP –
√

– 862 58 99242 131 0.9369 0.8680 0.9012 0.9009

UniAMP – –
√

893 80 99220 100 0.9177 0.8992 0.9084 0.9075

UniAMP
√ √

– 880 64 99236 113 0.9322 0.8862 0.9086 0.9080

UniAMP
√

–
√

895 65 99235 98 0.9322 0.9013 0.9165 0.9158
UniAMP –

√ √
903 80 99220 90 0.9186 0.9093 0.9139 0.9131

UniAMP
√ √ √

872 44 99256 121 0.9519 0.8781 0.9135 0.9134
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UniAMP is effective on balanced datasets.

To accurately assess the performance of UniAMP, we evaluated multiple predic-
tors on the benchmark datasets (Table 6), including CAMPR4 [28], AmPEP [15, 51], 
amPEPpy [52], AMPfun [53], AmpGram [13], AMPScannerV2 [38], and sAMPpred-
GAT [24]. It should be noted that the positive data in the benchmark datasets have 
antibacterial records against P. aeruginosa, which is a Gram-negative bacterium. This 
indicates that these positive data are all AMP. On the other hand, all negative data 
have no information on antibacterial activity in UniProtKB and have been filtered 
to remove duplicates against six AMP databases. Since the experiments on antibac-
terial activity in UniProtKB are not exhaustive, it cannot be proven that the nega-
tive data definitively lack antibacterial activity. However, the probability of negative 
data being AMP is extremely low (since proteins with antibacterial activity are rare), 
so they may contain only a very small number of AMPs. Therefore, we can consider 
such benchmark datasets to be suitable for evaluating existing predictors. Addition-
ally, a portion of the benchmark datasets was collected from CAMPR4 (it is unclear 
whether the data in the benchmark dataset overlaps with the training set of any pre-
dictor). As a result, the performance of existing predictors, especially CAMPR4, may 
be overestimated.

The performance of each predictor is presented in Table  6. UniAMP exhibits the 
highest accuracy, precision,  F1-score, and MCC on benchmark datasets, and the 
highest recall among the six models trained in this study. Interestingly, most existing 
predictors have a high recall rate (>0.9), whereas the model trained in this study is 
more inclined towards precision. The importance of these two metrics varies depend-
ing on the scenario, making it difficult to determine which is more critical. However, 

Table 6 Performance of UniAMP and some existing AMPs predictors on benchmark datasets

Existing AMPs Predictors used trained models published by the creators
1 Some predictors exhibited sample deficiencies due to their constraints, and we selected the subset meeting the 
constraints

Bold values indicate the maximum value

Mehod TP FP TN FN Accuracy Precision Recall F1-score MCC

CAMPR4-RF [28] 970 167 826 23 0.9043 0.8531 0.9768 0.9108 0.8173

CAMPR4-SVM [28] 935 142 851 58 0.8993 0.8682 0.9416 0.9034 0.8015

RF-AmPEP301   [15] 851 137 667 43 0.894 0.8613 0.9519 0.9043 0.7911

AMPScannerV2 [38] 917 172 821 56 0.8852 0.8449 0.9436 0.8915 0.7757

sAMPpred-GAT1 [24] 48 19 94 0 0.882 0.7164 1.0 0.8348 0.7720

amPEPpy  [52] 927 172 821 66 0.8802 0.8435 0.9335 0.8862 0.7647

AmpGram1  [13] 808 202 660 54 0.8515 0.8000 0.9374 0.8633 0.7136

CAMPR4-ANN [28] 837 148 845 156 0.8469 0.8497 0.8463 0.8484 0.6939

AMPfun [53] 940 366 627 53 0.789 0.7198 0.9466 0.8178 0.6091

AmPEP [51] 544 418 575 449 0.5634 0.5655 0.5478 0.5565 0.1270

LSTM 847 5 988 146 0.9239 0.9941 0.8529 0.9181 0.8566

ATT 826 5 988 167 0.9133 0.9939 0.8318 0.9057 0.8379

BERT 848 4 989 145 0.925 0.9953 0.854 0.9193 0.8586

MLP 890 3 990 103 0.9466 0.9966 0.8962 0.9437 0.8978

PCA 771 6 987 222 0.8852 0.9923 0.7764 0.8712 0.7893

UniAMP 895 1 992 98 0.9501 0.9988 0.9013 0.9475 0.9046
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UniAMP maintains a high precision while also achieving a recall above 0.9, making it 
potentially suitable for a wider range of scenarios.

Subsequently, we primarily discuss MCC. The two models using inferred information, 
UniAMP and MLP, ranked first and second. However, when the inferred information 
was replaced with manually extracted information using the same model structures, 
their comprehensive ability significantly decreased, ranking only at a medium level 
among existing tools and the lowest among the six models tested in this study. Moreo-
ver, models using inferred information improved the MCC by at least 0.04 compared to 
models using sequence information. These results demonstrate that using inferred infor-
mation, particularly UniAMP, is highly effective for this task.

It was observed that the predictors trained in this study (except for PCA) outper-
formed existing predictors, which may raise concerns about whether these results reflect 
the true performance of each predictor. As previously stated, the benchmark datasets are 
suitable for all predictors, and we made our best effort to avoid similarities between the 
test and the training datasets (length confounding and similarity filtering [37]). Based on 
the results, UniAMP outperformed the out-of-the-box predictors by at least 0.087 and 
the three proven baseline models (LSTM, ATT and BERT [34]) by 0.046. Since the three 
baseline models were trained on the same dataset, we believe these results demonstrate 
its effectiveness.

UniAMP is effective on imbalanced datasets.

The imbalanced test dataset better reflects the actual situation, where AMPs are rare. 
We set the ratio of positive to negative data at 1 to 100, but the real ratio may be even 
lower, making the model’s performance on imbalanced datasets more important. The 
performance of all models is reported in the Table 7. In this study, we built three test 
datasets, differentiated by the antimicrobial activity of the positive data, which are tar-
geted against P. aeruginosa, C. albicans, and Salmonella spp.. Evaluation results show 
that UniAMP achieved the highest scores across all metrics on the P. aeruginosa and C. 
albicans datasets, and on the Salmonella spp. dataset, it was the highest in all metrics 
except for Precision, where MLP scored higher.

Firstly, In terms of feature information, similar to the phenomenon shown in Table 6, 
models using inferred information had higher MCC scores on all three test datasets 
compared to sequence models. In particular, UniAMP outperformed the three sequence 
models in all metrics except for one precision. Secondly, In terms of effectiveness of the 
models. As shown in Table 5, in all combinations of the ablation experiments, UniAMP’s 
MCC is at least 0.004 higher than that of MLP. On the three test datasets, this difference 
reached to 0.023. Finally, in terms of data volume, the amount of data in the three test 
datasets gradually decreases, which mirrors real-world conditions. P. aeruginosa, being a 
frequently studied object, has a larger amount of valid data, whereas for rarer pathogens, 
the data significantly decreases. UniAMP demonstrates optimal comprehensive perfor-
mance across all three datasets, highlighting its applicability. In conclusion, UniAMP is 
highly recommended for solving AMP prediction problems. This is not only due to the 
comprehensiveness of the inferred information from the deep learning models but also 
due to the specialized network architecture built for this information.
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Comprehensive performance of UniAMP in AMP prediction

In the previous evaluation, we used a confidence threshold of 0.5 for classification. To 
comprehensively assess the model’s performance at various thresholds, we also used 
AUC and AP for evaluation. AUC measures a model’s ability to distinguish between 
positive and negative classes at various thresholds, making it a crucial metric for com-
prehensive model evaluation compared to fixed-threshold metrics. However, on imbal-
anced datasets, particularly those with significant imbalance, AUC may achieve a high 
score due to low confidence values of a large number of negative samples, potentially 
overestimating the model’s capability. In contrast, AP is more suitable for evaluating 
imbalanced datasets because it primarily captures the model’s ability to maintain high 
precision and recall. Therefore, we use AUC to evaluate the benchmark dataset and AP 
to evaluate the test dataset.

The ROC and PR curves are reported in Fig. 3. On the benchmark dataset, UniAMP’s 
AUC is only lower than that of the predictor sAMPpred-GAT [24]. However, due to the 
limitations of sAMPpred-GAT (sequence length greater than 40), the available samples 
constitute only one-tenth of the dataset, which severely distorts the evaluation results. 
Among the remaining predictors, UniAMP has the highest AUC, indicating that its per-
formance is not sensitive to threshold selection. It demonstrates strong ability to dis-
tinguish between positive and negative classes across various thresholds, reflecting its 
excellent robustness and comprehensive performance. Additionally, UniAMP achieved 
the highest AP in two of the three test datasets, and ranked second in the remaining one, 
just behind MLP. The PR curves on the P. aeruginosa and Salmonella spp. datasets are 
not similar. Except for UniAMP, which is the highest, the other four models do not show 
any regularity. This indicates that model performance varies with different datasets, with 
UniAMP being relatively the most stable. Unfortunately, UniAMP did not maintain the 
best performance on the C. albicans dataset. However, it exceeded the performance of 

Table 7 erformance of UniAMP and baseline models on test datasets

Due to the significant imbalance between positive and negative samples in the test dataset, the accuracy at the thousandth 
decimal place is almost identical, thus we do not compare accuracy

Bold values indicate the maximum value

Dataset Model TP FP TN FN Precision Recall F1-score MCC

P. aeruginosa LSTM 847 94 99206 146 0.9001 0.8529 0.8759 0.8750

P. aeruginosa ATT 826 77 99223 167 0.9147 0.8318 0.8713 0.8710

P. aeruginosa BERT 848 94 99206 145 0.9002 0.8539 0.8764 0.8755

P. aeruginosa MLP 890 71 99229 103 0.9261 0.8962 0.9109 0.9102

P. aeruginosa UniAMP 895 65 99235 98 0.9322 0.9013 0.9165 0.9158
C. albicans LSTM 393 46 50854 116 0.8952 0.7721 0.8291 0.8298

C. albicans ATT 398 56 50844 111 0.8767 0.7819 0.8266 0.8262

C. albicans BERT 409 59 50841 100 0.8739 0.8035 0.8372 0.8364

C. albicans MLP 435 70 50830 74 0.8613 0.8546 0.8579 0.8565

C. albicans UniAMP 435 44 50856 74 0.9081 0.8546 0.8805 0.8798
Salmonella spp. LSTM 297 33 38467 88 0.9000 0.7714 0.8307 0.8317

Salmonella spp. ATT 292 34 38466 93 0.8957 0.7584 0.8213 0.8226

Salmonella spp. BERT 293 33 38467 92 0.8987 0.7610 0.8241 0.8254

Salmonella spp. MLP 298 30 38470 87 0.9085 0.7740 0.8359 0.8371

Salmonella spp. UniAMP 313 37 38463 72 0.8942 0.8129 0.8517 0.8512
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the three sequence models by at least 0.03. Considering its stability, the overall perfor-
mance of UniAMP is commendable.

Discussion
Previously, most predictors were designed for all AMPs, providing them with a larger 
dataset for training. Moreover, when targeting specific pathogens, such as E.coli [35], 
the available positive data is extremely scarce, even less than one-tenth of the origi-
nal dataset, making model training more challenging. As is well known, the backbone 
of a deep learning model is significant, as the features it extracts are directly related to 
the model’s performance. However, relying solely on limited data makes it difficult to 
extract comprehensive and rich features. Many previous protein engineering models 
have been trained on large protein datasets. Although their tasks were not AMP pre-
diction, the rich protein-related information learned by these models can be used for 
downstream bioinformatics tasks. Therefore, we believe that the inferred information 
from pre-trained models can replace the information from backbone trained with few-
shot learning. As demonstrated in this study, UniAMP exhibits excellent performance 

Fig. 3 AUC measures a model’s ability to distinguish between positive and negative classes at various 
thresholds, while AP primarily captures the model’s ability to maintain high precision and high recall. 
Therefore, AUC is more suitable for balanced benchmark datasets, whereas AP is appropriate for severely 
imbalanced test datasets
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in predicting AMPs with antibacterial activity against P. aeruginosa,C. albicans and Sal-
monella spp.. These results confirm our hypothesis. On the other hand, manual feature 
extraction can similarly use abundant prior knowledge to make up for data scarcity. We 
do not doubt that in the future, it will be possible to manually extract all functionally rel-
evant information for AMPs comprehensively. However, manual feature extraction relies 
on extensive real experimental data and thorough mechanistic explanations. To the best 
of our knowledge, no study has systematically extracted all features relevant to the func-
tionality of AMPs. The manually extracted information in this study performed signifi-
cantly worse than the inferred information. Therefore, considering the current state of 
research, inferred information appears to be a better choice than manually extracted 
information.

Although UniAMP exhibits excellent performance, it was observed that its recall on 
the benchmark dataset is lower than that of several existing predictors. One possible 
explanation is that existing predictors are designed for all AMPs and can predict antibac-
terial activity against different pathogens, which may lead to some false recalls: the pre-
dicted antibacterial activity may not be specific to P. aeruginosa. Specifically, the positive 
data in the benchmark dataset not only exhibit antibacterial activity against P. aerugi-
nosa but may also have antibacterial activity against other pathogens, and this likelihood 
is not low [54]. The existing predictors actually predict the antibacterial activity of this 
data against other pathogens rather than P. aeruginosa. This indicates the necessity of 
developing out-of-the-box models specifically targeting particular pathogens. Another 
possible explanation is that the antimicrobial mechanisms of AMPs are similar for differ-
ent pathogens. This allows these models to learn additional antimicrobial mechanisms 
from more data to predict antibacterial activity. However, some antimicrobial mecha-
nisms may not apply to P. aeruginosa, resulting in a significant decrease in precision. 
This is merely a hypothesis, and we hope to explore it further in future research.

Table  5 shows that various combinations of inferred information outperform single 
inferred information, and we recommend the combination of UniRep and ProtT5 for 
better overall performance. However, in different scenarios, other combinations are also 
worth considering. The combination of ESM-2 and ProtT5 can achieve higher recall, 
while the combination of all three can achieve higher precision, which should not be 
overlooked. This study only explored three models: UniRep, ESM-2, and ProtT5. In fact, 
there are many more protein engineering models available. From a combination per-
spective, there are numerous ablation experiments that can be conducted, making such 
exploration seemingly endless. However, the results show that the performance of a sin-
gle ProtT5 is similar to the combination of UniRep and ESM-2. This suggests another 
idea: it is possible that the information inferred from a single model is comparable to 
that inferred from combinations. Based on the results of this study, for a single model 
to replace the combination of multiple models, the protein engineering model must be 
comprehensive. This means it requires support from a large dataset and training on mul-
tiple tasks to ensure that the information it learns is sufficiently rich. We will continue to 
pay attention to relevant information and use various upstream deep learning models to 
solve such downstream tasks.

Some researchers aim to discover specific AMPs. While many excellent predictors 
can predict AMPs, they lack the capability to identify which pathogens these peptides 
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specifically target. Despite the broad-spectrum nature of AMPs, extensive trial and error 
is still required. Currently, researchers seeking to discover novel AMPs against patho-
gens like P. aeruginosa can leverage UniAMP for high-throughput screening of potential 
peptide sequences. These sequences can be obtained through various methods, such as 
extracting them from the proteomes of organisms known to exhibit resistance against P. 
aeruginosa. Experimentally testing sequences with the highest model-predicted scores 
significantly reduces redundant experiments, saving both time and cost. This framework 
can be adapted to other pathogens with our publicly available training method. By utiliz-
ing inferred information, UniAMP provides a more comprehensive understanding of the 
intrinsic mechanisms, enhancing its practical value. However, its limitations should not 
be overlooked. Evaluation results reveal that MCC decreases as data volume decreases, 
indicating that UniAMP cannot fully resolve the issue of data scarcity. Imbalanced data-
sets may introduce additional potential biases, including not only the model’s tendency 
caused by the imbalance in the training data but also the uncertainty in the test dataset, 
which may fail to reflect the true sample space. Additionally, given the diverse antimi-
crobial mechanisms of AMPs, the pathogens studied here can not fully represent the 
entire range of pathogen populations. Consequently, UniAMP’s generalizability to other 
pathogens and diseases requires further exploration.

In terms of the model, we have some follow-up improvement plans and suggestions. 
First, UniAMP was designed with a structure that includes the functions of the head 
and neck, while replacing the backbone with upstream deep learning models. However, 
during training for downstream tasks, we did not train the parameters of these upstream 
models. While it is possible to freeze the backbone parameters to ensure the stability 
of extracted features and reduce overfitting [55], this approach is still worth exploring. 
Secondly, although the inferred information obtained from upstream models has proven 
to be relatively comprehensive, whether it can further extract deep features remains to 
be discussed. In the future, we plan to add a deep feature extraction module to UniAMP. 
Third, the total set of AMPs can be viewed as the union of specific AMPs sets. Similarly, 
the task of predicting AMPs is the union of tasks predicting specific AMPs. This sug-
gests that we can use a multi-task learning framework. Specifically, in this study, we built 
three separate models for three specific AMPs, while many predictors built one general 
prediction model for all AMPs. Combining both approaches, using a multi-task learn-
ing framework to build only one model that simultaneously predicts the antibacterial 
activity against multiple pathogens might be a good idea. The antibacterial mechanisms 
against different pathogens have both commonalities and differences, putting the predic-
tion tasks of AMPs for various pathogens in a cooperative state. This might improve the 
model’s performance on each individual task [56].

In summary, we hope this study not only provides a useful AMPs predictor, UniAMP, 
which uses inferred information from UniRep and ProtT5, but also offers valuable refer-
ences and suggestions for upstream and downstream research in bioinformatics.

Conclusion
In this study, we proposes a framework for predicting AMPs, called UniAMP to accel-
erate the discovery of AMPs. The framework uses a feature vector with 2924 val-
ues inferred from two protein engineering models, UniRep and ProtT5, to represent 



Page 20 of 22Chen et al. BMC Bioinformatics           (2025) 26:10 

proteins. Furthermore, we designed an advanced deep learning model for this vector 
to predict whether it has antimicrobial activity against specific pathogens. Evaluation 
results show that the performance of the model exceeds multiple existing predictors 
and baseline models on four evaluation datasets. We conducted multiple ablation and 
comparison experiments between peptide sequences, artificial information, and inferred 
information. The results indicate that, at this stage, the information inferred using deep 
learning models is more comprehensive and non-redundant. This characteristic contrib-
utes to UniAMP’s excellent performance and robustness, and this framework exhibits 
potential applications in future research. To assist researchers with downstream tasks, 
we have made the data and code publicly available and released an online tool for 
UniAMP. Additionally, we analyzed the strengths and weaknesses of UniAMP and pro-
posed several improvement plans and suggestions for this task, with the hope that they 
will be helpful to researchers in this field.

In summary, UniAMP enhances the accuracy of AMP prediction, providing research-
ers with a valuable tool to advance the discovery of AMPs; moreover, it highlights the 
value of utilizing the rich features contained in inferred information, offering a new per-
spective for other predictive tasks in bioinformatics.
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