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Abstract

Background: Biclustering of gene expression data searches for local patterns of gene expression.
A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are
mutually similar within a subset of experimental conditions/samples. Although several biclustering
algorithms have been studied, few are based on rigorous statistical models.

Results: We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling
procedure for its statistical inference. We showed that Bayesian biclustering model can correctly
identify multiple clusters of gene expression data. Using simulated data both from the model and
with realistic characters, we demonstrated the BBC algorithm outperforms other methods in both
robustness and accuracy. We also showed that the model is stable for two normalization methods,
the interquartile range normalization and the smallest quartile range normalization. Applying the
BBC algorithm to the yeast expression data, we observed that majority of the biclusters we found
are supported by significant biological evidences, such as enrichments of gene functions and
transcription factor binding sites in the corresponding promoter sequences.

Conclusions: The BBC algorithm is shown to be a robust model-based biclustering method that
can discover biologically significant gene-condition clusters in microarray data. The BBC model can
easily handle missing data via Monte Carlo imputation and has the potential to be extended to
integrated study of gene transcription networks.

ter. Second, all genes and conditions have to be assigned

Background

Clustering gene expression data has been an important
problem in computational biology. While traditional
clustering methods, such as hierarchical and K-means
clustering, have been shown useful in analyzing micro-
array data, they have some limitations. First, a gene or an
experimental condition can be assigned to only one clus-

to clusters. However, biologically a gene or a sample could
participate in multiple biological pathways, and a cellular
process is generally active only under a subset of genes or
experimental conditions. A biclustering scheme that pro-
duces gene and condition/sample clusters simultaneously
can model the situation where a gene or a condition is
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involved in several biological functions. Furthermore, a
biclustering model can avoid those “noise” genes that are
not active in any experimental condition.

Biclustering of microarray data was first introduced by
Cheng and Church [1]. They defined a residual score to
search for submatrices as biclusters. This is a heuristic
method and can not model the cases where two biclusters
overlap with each other. Segal et al. [2] proposed a modi-
fied version of one-way clustering using a Bayesian model
in which genes can belong to multiple clusters or none of
the clusters. But it can not simultaneously cluster condi-
tions/samples. Tseng and Wong developed a tight cluster-
ing algorithm [3]. It allows some of the genes not to be
clustered, but does not select conditions. Bergmann et al
[4] introduced the iterative signature algorithm (ISA),
which searches bicluster modules iteratively based on two
pre-determined thresholds. ISA can identify multiple
biclusters, but is highly sensitive to the threshold values
and tends to select a strong bicluster many times. The
plaid model [5] introduces a statistical model assuming
that the expression value in a bicluster is the sum of the
main effect, the gene effect, the condition effect, and the
noise term, i.e.:

Vi =:u+ai+ﬂj +£ij’

where noise g; ~ N(0, ¢2). It further assumes that the
expression values of two overlapping biclusters are the
sum of the two module effects. The plaid model uses a
greedy search strategy, so errors can accumulate easily.
Also in multiple clusters case, the clusters identified by the
algorithm tend to overlap to a great extent. Tanay et al. [6]
proposed a SAMBA biclustering scheme using bipartite
graphs containing both conditions and genes. Ben-Dor et
al. [7] attempted to identify order-preserving sub matrices
(OPSMs). Murali and Kasif [8] discretized gene expression
data into several symbols and searched for conservative
symbol motifs (xMOTIFs). A survey of different bicluster-
ing methods can be found in [9].

We here propose a Bayesian biclustering (BBC) model.
For a single bicluster, we assume the same model as in the
plaid model [5], as described in equation (1). But for mul-
tiple clusters, we constrain the overlapping of biclusters to
only one direction (i.e., either gene or condition direc-
tion). Besides, we use a more flexible error model, which
allows the error term of each cluster to have to a different
variance. To make the Bayesian inference of biclusters, we
implemented an efficient Gibbs sampling algorithm with
all effect parameters (except the error variances) inte-
grated out. We compared the performance of the BBC
algorithm for several different types of simulated datasets
with that of the plaid model [5], the ISA [4], the method
of Cheng and Church [1], the SAMBA method [6] and the
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OPSMs [7]. Finally, we applied the BBC algorithm to the
yeast expression dataset and identified many biologically
significant biclusters.

Results and discussion

Simulation results

Bayesian biclustering in various simulated scenarios

We simulated a dataset with 400 genes and 50 samples.
The background data is i.i.d. from N(0, 0.5). Two clusters
of 100 genes and 15 conditions are simulated according to
the BBC model with main effects, gene effects, condition
effects and error terms as g ~ N(5, 0.5), 1, ~ N(7, 0.5),
iy, o ~ N(0, 0.5), By, B, ~ N(0, 0.5) and g5, ~ N(0, 0.5),
g~ N(0, 0.7).

We considered three scenarios for datasets with two clus-
ters: the two clusters have some common conditions but
distinct genes (Figure 1(a)); the two clusters have some
common genes but distinct conditions ( Figure 1(d)); and
two clusters have both common genes and conditions
(Figure 1(h)), in which case an additive model is assumed
for the overlapping part. The results from using a non-
overlapping gene version of the BBC model are shown in
Figures 1(b)-(c),(e)-(g),(i)-(k). In all cases the BBC model
identified the genes and conditions of the simulated clus-
ters correctly, but grouped them slightly differently
because of our model constraints.

Comparison of biclustering algorithms on data simulated from
statistical models

We compared six biclustering methods: the BBC method,
the plaid model, ISA, SAMBA, OPSMs, and Cheng and
Church's biclustering (CC). We considered both the single
cluster case and the multiple clusters case using simulated
data from the plaid model. A single cluster dataset is
shown in Figure 2(a). The 400 x 50 background noise
matrix is simulated according to i.i.d. normal N(0,0.5).
We superimposed a cluster of size 100 x 20 according to
the plaid model with p; ~ N(5, 0.5) and a;;, B;; ~ N(O,
0.5). The multiple cluster case is shown in Figure 2(b).
The background is the same as above. Two clusters of size
100 x 15 are also simulated according to the plaid model
with py ~ N(5,0.5), p, ~ N(7, 0.5) and oy, Bjiy o, Byp v
N(0, 0.5). An additive model is used for the overlapping
part of the two clusters.

Since each method searches for biclusters with different
structures, comparing biclustering results is not very
straightforward. In order to carry out a comprehensive
comparison among various biclustering results for simu-
lated datasets, we use the following four characteristics:
sensitivity, specificity, overlapping rate, and number of
clusters. Since we know which gene-condition combina-
tion belongs to the true biclusters, we use the standard
definition for sensitivity and specificity, both of which are
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Simulated data with two biclusters and the results of the BBC analysis. Bayesian biclustering for simulated datasets.
(2) A dataset with two non-overlapping clusters. (b)-(c) The two clusters found by the Bayesian biclustering model from (a). (d)
A dataset with two clusters with common genes. (e)-(g) The three clusters found by the Bayesian biclustering model from (d).
(h) A dataset with two clusters with both common samples and common genes. (i)-(k) The three clusters found by the Baye-
sian biclustering model from (h).

values between 0 and 1. A higher sensitivity suggests that
more “true” members of the clusters have been identified
by the algorithm, while a higher specificity suggests that
more background data points are excluded from the clus-
ters. The overlapping rate is defined as

Thus, if there is no overlap between the identified clusters,
the overlapping rate is 0. On the other hand, if the identi-
fied clusters greatly overlap with each other, the overlap-
ping rate is close to 1.

We used the BicAT software package [10] for ISA, CC, and
OPSMs. Different gene and condition thresholds are used
for the ISA. We carefully chose a set of thresholds with good
performance and then slightly changed the thresholds to
test the stability of the ISA. We used default settings for CC's
model. The plaid algorithm was implemented using the

_# of matrix entries in the union of identified clusters

1
> all clusters #of entries in each identified cluster
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Datasets simulated according to the plaid model Datasets for comparison. (a) A dataset with one single cluster (b) A
dataset with two clusters, of which both genes and samples overlap.

Plaid package [5]. The Expander package [11] is used for
SAMBA biclustering. The results are shown in Table 1,
where the left-hand-side value in each entry is for the single
cluster case, and the right-hand-side value is for the two-
clusters case.

It can be seen that the ISA method is very sensitive to the
choice of the thresholds. The performance of ISA also
degrades in the case of multiple overlapping clusters. The

SAMBA method and the OPSMs method correctly identi-
fied almost all background noises, but tends to exclude
some meaningful patterns. The CC method includes too
much background data in clusters. The plaid model per-
forms well in the single cluster case. But it identifies too
many overlapped clusters in the multiple clusters case. Our
BBC method performs well in both cases, even though the
data generation model for the overlapping part in the sec-
ond case does not satisfy the BBC model assumption.

Table I: Biclustering results of different methods for simulated data using the plaid model

Sensitivity Specificity Overlapping rate # of clusters
ISA (0.6, 1) | 0.84 0.99 0.84 0 0.12 | 3
ISA (0.6, 1.2) 0.95 0.53 0.84 0.90 0.06 0.08 10 8
ISA (0.7, 1.1) 0.84 0.68 091 0.84 0 0.16 10 8
SAMBA 0.43 0.39 0.99 0.99 0.31 0.3 7 14
cc* | 0.98 0 0 0.02 0 10 10
OPSMs 0.38 0.25 0.94 0.96 0.3 0.5 I 12
Plaid | | | 0.73 0 0.63 | ]
BBC** | | | | 0 0 | 3
Note: *In CC's method, the number of clusters is preset to be 10. **In BBC, the overlapping rate is automatically 0.
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Comparison of biclustering algorithms on data simulated with
biological characteristics

People are mostly interested in how different biclustering
methods perform for real microarray datasets. We next
carry out a comparison using simulated microarray datasets
with realistic characteristics. As shown in Figure 3, the data-
set has 100 genes and 50 conditions. The concentration of
three transcription factors (TF) are changed across condi-
tions. We assume that gene 21 to gene 40 are transcribed
when both TF1 and TF2 are active, with TF1 serving as an
activator and TF2 as an inhibitor. We also assume that gene
41 to gene 60 are transcribed when both TF1 and TF3 are
active, where TF1 serves as an inhibitor, TF3 an activator.
The expression values are simulated using the biochemistry
model presented in [12]. If gene i is regulated by M, inhib-
itors and M, activators, then

G,
1
L=l Ly Dy AL A Ay )-B(G;
AR UL M, P12 MA) ()

where G,; represents the abundance of the mRNA of gene i,
s(Iy, I ..., Iy, Ay Ay .o Ay,) is a rate law representing
mRNA synthesis, I, I, ..., I, are inhibitor concentrations,
Ay, Ay..., Ay, are activator concentrations, and b(G;) is
mRNA breakdown rate. In [12] mRNA synthesis rate is
modelled as

n.
M ki My A}"k
— {4
Syl il Ay Ay Apg )= Viggal 1]] (Ll I (1 +

mn n
ik k4 Kok
17+ ki) A+ Kay

10 20 30 40 50
conditions

Figure 3

The Simulated dataset with realistic characters
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where V., is the basal transcription rate, constants Ki;
and Ka, are concentrations at which the effect of the
inhibitor or activator is half of its saturating value. The
exponents 1; and n, regulate the sigmoidicity of the tran-
scription rate curve. We set n; = n;, = 1.5, and randomly

simulated Ki; and Kay, for the dataset.

We added real noise from the well known Leukemia
expression dataset [13]. We first obtained a noise data
matrix using all scattered (“noise”) genes excluded by the
tight clustering algorithm [3]. Then, we chose 100 rows
and 50 columns at random. We also scaled the noise to
control signal to noise ratio (SNR). Both the good data
quality case (SNR=10) and the bad data quality case
(SNR=4) are considered. We simulated 10 datasets for
both cases and the average value of each characteristics is
shown in Table 2, where the left-hand-side value in each
entry is for SNR=10 case, and the right-hand-side value is
for SNR=4 case. we chose the threshold values for the ISA
model in the same way as in the previous simulation
study.

The BBC model performed the best among these meth-
ods. Again the ISA method was sensitive to thresholds. It
also had some false positives. The OPSMs method missed
most of the significant patterns. The SAMBA method
found some small and tight biclusters of genes and condi-
tions, but also excluded many significant patterns. CC's
method misidentified many noisy data points as biclus-
ters. The plaid model recognized almost all significant
patterns, but its specificity was low. Interestingly, the plaid
model gave better results for low SNR case, which was due
to the fewer number of clusters found by the plaid model.

Effects of normalization for Bayesian biclustering model

Data normalization is an important step for microarray
analysis. Although some clustering methods such as ISA
incorporate the normalization step in their procedures,
most clustering methods work on normalized microarray
data. The BBC model belongs to the latter. Since the nor-
malization procedure greatly changes the microarray data,
different normalization procedures may lead to very dif-
ferent clustering results.

We conducted a study on how normalization methods
affect the biclustering results. Five normalization proce-
dures including column standardization (CSN), row
standardization (RSN), quantile normalization on gene
level (QNGL), the interquartile range normalization
(IQRN), and the smallest quartile range normalization
(SQRN) were considered. In CSN (or RSN), each column
(or row) is re-centered and re-scaled, so that the sample
mean of each column (or row) becomes 0, and the sample
variance becomes 1. These are quite crude methods, but
are still used in many clustering applications. QNGL used
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Table 2: Biclustering results of different methods for simulated data with realistic characteristics

Sensitivity Specificity Overlapping rate # of clusters

ISA (0.6, 1) 0.98 0.70 0.76 0.78 0.51 0.65 72 9.8
ISA (0.6, 1.2) 0.90 0.75 0.79 0.73 0.57 0.57 11.2 13
ISA (0.7, 1.1) 0.94 0.76 0.80 0.79 0.48 0.59 83 10.9
SAMBA 0.38 0.28 0.99 0.99 037 0.37 5.8 5.3
CC* 0.84 0.70 0.15 0.25 0.02 0.01 10 10
OPSMs 0.21 0.16 091 0.91 0.35 0.35 9.3 8.9
Plaid 1.00 0.99 0.48 0.61 0.30 0.18 5 2.9
BBC** | 0.97 0.99 0.97 0 0 2 2

Note: *In CC's method, the number of clusters is preset to be 10. **In BBC, the overlapping rate is automatically 0.

the same technique with quantile normalization [14],
which was developed for normalizing oligonucleotide
arrays on probe levels. In QNGL, we apply the quantile
normalization on gene level for the simulated array data.

IQRN and SQRN are two new methods we propose here.
They are inspired by CSN, but are more robust to outliers.
In IQRN, one first sorts the data in each column, trims off
0/2% of the data from each tail, and computes the a.%-
trimmed mean and standard deviation. Then, all data in
that column is standardized by subtracting the trimmed
mean and being divided by the trimmed standard devia-
tion. This normalization method can reduce the artificial
normalization effect caused by outliers. In SQRN, instead
of using the middle (100-a.)% of the data, one first finds
for each column the shortest interval that contains a cer-
tain percentage (e.g., 50%) of the data. Then the data of
that column is standardized by the sample mean and var-
iance of the data inside the shortest quartile range. If dis-
tributions of the data in each column are symmetric and
unimodal, then SQRN is equivalent to IQRN. But SQRN
gives better results for skewed distributions. We applied
the above five normalization methods on the same simu-
lated dataset as in Figure 2(b) before applying our BBC
procedure.

As shown in Table 3, both IQRN and SQRN performed
very well, whereas the other three methods affected the
clustering results significantly. Thus, in our yeast data
analysis reported in the following section, we used IQRN
before applying the BBC procedure.

Table 3: Comparison of normalization methods for Bayesian
Biclustering Model

Sensitivity ~ Specificity ~ Overlapping rate  # of clusters
RSN 0.84 0.85 0 3
CSN 0.95 0.58 0 3
QN | 0.44 0 4
IQRN | I 0 3
SQRN | I 0 3

Bayesian biclustering for yeast datasets

We analyzed the same yeast expression data as in [15]
using the BBC procedure. This dataset was derived by
combining the environmental stress data of [16] and the
cell cycle data of [17]. The combined dataset contains
6108 genes and 250 conditions (or samples). We applied
the 90% IQRN procedure across all conditions. Since the
dataset contains many missing data, we imputed them
along with our BBC iterations. The BBC algorithm was
asked to search for K biclusters, with K ranging from 30 to
65. We observed that the BIC [18] achieved the optimal
value with K= 57. Out of 6108 genes, 6021 were included
in one of the clusters, and all conditions were included in
at least one cluster.

We analyzed the clustering results from three aspects.
First, we identified the significant categories of experimen-
tal conditions for each cluster. More precisely, we classi-
fied the 250 experimental conditions into 22 categories
according to the biological nature of each experiment.
Some examples of categories are heat shock stress, amino
acid starvation, and « factor synchronization. Then we
searched for significant enrichment for each category. Sec-
ond, we did functional enrichment test of genes in each
cluster using functional information from the MIPS data-
base. Third, we searched the promoter sequences (up to
800 bps upstream) of genes in each bicluster for the
enrichment of transcription factor binding sites (TFBS).
We applied the TFBS scores of 51 known yeast transcrip-
tion factors used in [ 15], which measures how likely a pro-
moter sequence contains a TFBS and was computed using
ScanACE [19]. A cutoff value of 0.5 was used to make a
presence/absence call for a TFBS. The presence frequency
of each TFBS in all genes in the dataset was used as null
hypothesis. For all the three types of enrichment analysis,
we used the criterion of P value< 0.05 after the Bonferroni
correction.

Out of the 57 clusters, 36 have significant gene functions
enrichments, 26 have significant TFBS enrichments, 51
have significant experimental condition categories enrich-
ments, 22 have all three types of enrichments and 54 have
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Table 4: Bayesian Biclustering results for yeast expression data
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Cluster name size* Significant conditions (P value) Enriched TFBS (P value) Enriched gene functions (P-value)
ribosome proteins 213,85 nitrogen depletion(7.1e-3), steady state  RAPI (2.9e-60) ribosomal protein (2.1e-160)
(3.9¢-4)
rRNA processing 329,113  steady state (8.9e-4) ABFI (5.2e-4), PAC (1.2e-127), RRPE  rRNA processing (4.3e-77), nucleic acid
(2.7e-63) binding (1.6e-25)
ubiquitin 113,88  diamide stress(4.2e-3), menadione RPN4 (4e-12) ubiquitin / proteasomal pathway (8.3e-
stress(2.7e-2)
oxidative stress 40,38 hydrogen peroxide stress (4.8e-8), CADI(5.7e-15), YAPI(1.9e-15) oxidative stress response (9.3e-8),
menadione stress(4e-7), diamide stress metabolism of phenylalanine (4.2e-8),
(3.2e-6) metabolism of tyrosine (2.7e-8)
respiration 55,97 steady state(l.8e-7) HAP4 (1.3e-16), SKN7(6.3e-8), respiration (2.5e-38), electron
MSN24a(7.4e-4) transport and membrane-associated
energy conservation (5.1e-45)
purin metabolism 42,48 menadione stress (4.1e-6), amino acid BASI (3.2e-5) purin nucleotide/nucleoside/nucleobase
starvation (4.8e-3) anabolism (6.2e-10)
stress response and protein folding 48,46 heat shock (4.5e-7), diamide stress HSFI (4.7e-3), protein folding and stabilization (8e-8),
(1.7e-4), osmolarity stress (6.5e-4) , stress response(3.0e-5)
MSN2/4 and YAPI deletion (3.8e-3)
stress response and heat shock 87,191 heat shock (5.2e-3) HSFI (1.5e-3), MSN24 (6.1e-11), C-compound and carbohydrate
MSN24a (9.6e-11), STRE (1.0e-5), metabolism (1.0e-3), energy (7.4e-4)
GISI (1.9e-4)
cell cycle 86,87 o factor (3.5e-8), cdc15 (3.7e-8), cdc28  MCMI (1.0e-10), SWI4 (4.16e-7), cell cycle and DNA processing (5.1e-9),
(4.5e-2), elu (4.0e-6) FKHI (6.6e-7), MBPI(3.6e-4), TATA cytokinesis (cell division) (2.9e-6),
(1.3e-4) pheromone response (7.6e-4)
DNA topology 35,45 cIn3, clb2 (2.1e-2) GCN4(4.3e-6), MBPI (2.0e-5), MCMI  DNA topology (I.3e-22), somatic/
(3.2e-3), SWI4 (I.1e-3), XBPI (1.3e-5)  mitotic recombination (8.9e-9)
cell cycle (GI phase) 108,62 o factor (3.35e-11), cdc 15 (2.5e-10), MBPI (3.7e-14), SWI4 (6.4e-5) cell cycle and DNA processing (l.4e-
cdc28 (7.8e-6) 12)
nitrogen, sulfur & selenium 37,16 amino acid starvation (I.2e-5), nitrogen ~ CBFI(3.3e-7), GCN4 (7.3e-5), MET3|  amino acid metabolism (I.5e-30),
metabolism depletion (4.2e-2) (8.7e-4), MET4(le-7) nitrogen, sulfur and selenium
metabolism (1.3e-13)
glycolysis regulation 38,78 Disulfide-reducing agent stress (1.6e-4), GCRI (4.6e-3) sugar, glucoside, polyol and carboxylate

diamide (1.5e-3)

catabolism (3.3e-10), glycolysis and
gluconeogenesis (3.1e-11)

*size:(the number of genes in the cluster, the number of conditions in the cluster)

at least one type of enrichment. We named a few of these
biclusters and listed them in Table 4. The enriched gene
functions and the significant experimental conditions
showed strong correlations. For example, in the cell cycle
cluster, the enriched gene function terms are cell cycle,
DNA processing and cell division, and the significant
experimental conditions are all cell-cycle experiments
including cIn3 and clb2 experiments, « factor, cdcl5,
cdc28 and elutriation synchronization. Another example
is stress response and protein folding cluster, the enriched
gene function terms are stress response and protein fold-
ing, and the significant conditions are heat shock,
diamide and osmolarity stress experiments. The bicluster-
ing results are also supported by the TFBS information. In
many clusters, the enriched TFBSs correspond to TFs
known to be involved in the pathways and biological
functions that were found significant from gene func-
tional enrichment analysis. For instance, in the ribosome
protein bicluster, the enriched TFBS RAP1 is known to be
involved in ribosome protein transcription [20]. The
ubiquitin cluster is enriched with TFBS of RPN4, which
was shown to be part of the ubiquitin fusion degradation
pathway [21]. The nitrogen, sulfur and selenium cluster
shows significant over-representation of binding sites for
TFs CBF1, GCN4, MET31, and MET4. CBF1 is known to
induce sulfate assimilation pathway along with MET4

[22], GCNA4 is an activator involved with protein biosyn-
thesis, and MET31 is a known transcriptional regulator of
sulfur amino acid metabolism [23]. The G1 phase cluster
is enriched with MBP1 and SWI14 binding sites. MBP1 and
SWI4 are known to act together to regulate late G1-specific
transcription of targets and genes for DNA synthesis [24].
The oxidative stress cluster is enriched by CAD1 and YAP1
binding sites, where YAP1 activates the transcription of
anti-oxidant genes in response to oxidative stress [25]. The
glycolysis regulation cluster is enriched by TFBS GCR1,
which is known to be involved in glycolysis [26].

Conclusions

We have presented a rigorous hierarchical Bayes model for
clustering microarray data in both the gene and the exper-
imental condition directions. We used Gibbs sampling
and Bayesian information criterion to identify biclusters
as well as the total number of clusters. Using simulated
datasets, we showed that the BBC algorithm outper-
formed other clustering methods especially when multi-
ple clusters were present. Moreover, the BBC method
performed the best for simulated data based on biochem-
istry models with realistic noise background. We also dis-
cussed the impact of normalization procedures on the
clustering results, and found that both the interquartile
range normalization and the smallest-quartile range nor-
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malization are robust for our BBC model. When applied
to a well-known yeast microarray dataset, the BBC proce-
dure discovered many biologically significant clusters,
from which significant enrichments of gene functions,
associated experimental conditions, and related TFBS
enrichment were found.

Unlike many other biclustering methods, the BBC is com-
pletely model-based and does not need to fine tune any
threshold parameters. Because it is a full Bayesian model,
the BBC can handle missing data extremely easily, and can
also incorporate likelihood-based criterion, such as AIC,
BIC, maximum likelihood, Bayes factors, etc., for model
evaluations and comparisons. In addition, the BBC model
has the potential to be extended by incorporating other
types of data, such as the promoter sequence information
into the model.

Methods

Bayesian biclustering model

Consider a microarray dataset with N genes and P condi-
tions (or samples), in which the expression value of the it
gene and j condition is denoted as yipi=1200e N, j
=1,2,9 e P Weassume that

K K
Yij = 2 (G i 4 B+ €45 0 ) 0351 2 03 )

where K is the total number of clusters (unknown), , is
the main effect of cluster k, and o, and By, are the effects
of gene i and condition j, respectively, in cluster k, &, is
the noise term for cluster k, and ¢; models the data points
that do not belong to any cluster. Here 3; and «;, are
binary variables: 8;, = 1 indicates that row (gene) i belongs
to cluster k, and §;, = 0 otherwise; similarly, k; = 1 indi-
cates that condition (column) j is in cluster k, and k;, = 0
otherwise.

When multiple biclusters are allowed, the original plaid
model usually finds biclusters greatly overlapping with
each other. This effect is quite artificial and is likely due to
the nonidentifiability problem caused by the additive
assumption made for overlapping clusters. We solve this
problem by allowing biclusters to overlap only in one
direction, either the gene or the condition direction, but
not both. This results in two versions of the BBC model:
non-overlapping gene biclustering and non-overlapping
condition biclustering. In non-overlapping condition
biclustering, a condition can be in one or none of the clus-
ters, but a gene can be assigned to multiple clusters. Math-
ematically, this constraint can be written as

lelercjk <1 . In non-overlapping gene biclustering, a

http://www.biomedcentral.com/1471-2164/9/S1/S4

condition can be assigned into multiple clusters, while a
gene can only be in no more than one cluster. This corre-

sponds to Zszl 6ik <1 . Note that in either of these two

versions, different biclusters do not overlap. Without loss
of generality, we focus our discussions on the non-over-
lapping gene biclustering in this paper. Thus the priors of
the indicators k and 9 are set so that a condition can be in
multiple clusters and a gene be in no more than one clus-
ter, i.e.,

k;j ~ Bernoulli(q;,)

P(S, =16, =01%k)=p,

K
P(3,)=0,1=1,2,...K) = p =1-k§lpk,

where p,, and g, are set to be constant. We tested different
values for p, and ¢, and found out that different values do
not affect the results much. We used ¢, =0.1 and

1
Pr K+1
for the yeast dataset.
We assume a priori that
2
Hy, - N(O,Guk)
L 2
ay, |6ik =1 N(O,Uak)
o 2
ﬁjklkjk_l N(0,0'ﬁk)
2
Eiil ~N(0,05,)
.. ~N(0,62).

U}
. 2 2 2 2 :
The hyperpriors for the G,uk’aak’o-ﬂk’gek’c‘ are set to
be inverse Gamma distributed.

In our model, an observation y;; can belong to either one
or none of the biclusters. Thus, we can rewrite the proba-
bility distribution of y; conditional on the cluster indica-
tors. If y; belongs to cluster k,(k = 1,2,... ,K), then

I 2
Vij |93, =1k =1~ NQhy oy, + B g r0Z,)-

If y; belongs to none of the clusters, then
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16, K., =0 for all k's ~ N(0,52).

ik" jk
With Gaussian zero-mean priors on the effects parame-
ters, we get the marginal distribution of the y; conditional
on the indicators as:

Vij

Y|,k ~N(0, ),

where X is the covariance matrix of Y, and Y = (Y,, Y;, Y,,

-+ Y)Twith Yy, = {y; 1 83K, = 1}, k = 1, being the vector
composed of the data points belonging to cluster k, and Y,
being the vector of data points belonging to no cluster.
More specifically, X is a sparse matrix of the form

62l 0 0
—|o 7 0
0 o0 «

where 2, = cov(Y,, Y,,) is the covariance matrix of all data
points belonging to cluster k whose entries are:

cov(¥yj Ymn |9, =8,y =K jpp =Ky =1)

[ ftk 2k+6f3k+662k’ ifi=m&j=n
Gﬁk+o§k, ifi=m&j#n
52 cék, ifizm&j=n
_O-,thk' if izm&;j#n.

Gibbs sampling for Bayesian biclustering

In order to make inference from the BBC model, we
implement a Gibbs sampling method [27] to draw sam-
ples from the posterior distribution of the indicator varia-
bles, which can be derived by combining equation (8)
with a prior distribution on the dand «. Initializing from
a set of randomly assigned values of 8's and «'s, we sample
the column (condition) indicators x by calculating the
following log-probability ratio:

— 2 .2 2 2 2
. P(Kjk —1|K_]~_k'5~~'0,u #0310 302 0% ,Y)
P(x ik =O|K-j-k’6"’6/21 ,cré ,Gé.,oez ,0'32,Y)
| P(Y|K‘ —1|1<_]._k,5 ,O'lzl ,Gé.,G%., Ez,c:e )P(K =1)
=log
P(Y\K —0|1<_j_k,6 ,02 ,cr& ,0[23 Ez,oe )P(K )

Since each data point belongs to no more than one clus-
ter, we can therefore divide data points into two sets given
the current parameters except ;. The first set contains
data points not in cluster k, i.e., V, = {y;;: 8y, = 0 or x;, =0,1

http://www.biomedcentral.com/1471-2164/9/S1/S4

#j}. The second set contains data points that are or can in
clusterk, ie., V, = {y;: 85, = 1y, = LI#jjU{y;: 8y = 1}.
Two data points are independent if they belong to differ-
ent clusters, therefore we can write the joint likelihood of
Y as a product of the joint likelihood for data in V,; and V,,
respectively. As a consequence, the log-posterior probabil-
ity ratio can be simplified as

P(V, |Kjk :1,02k,sz,aék,czk,aez)P(Kik =1)

P(V2|Kik=0,0'2k,0' k,c;%k,c ez )P(K =0)

In order to calculate the likelihood term in the above
ratio, we need to take the inverse and determinant of the
covariance matrices for the vector V, in both cases. The
dimensions of these covariance matrices are huge in prac-
tice (in the order of thousands), so a brute force calcula-
tion would be expensive. Since the covariance matrices
have the special structures as shown in equation (9), we
can simplify the likelihood ratio term. The final simplified
form only involves multiplications and additions of
matrices with dimension I, x I,, where I,, is the number of
genes in cluster k given current parameters.

Similarly we can obtain the log- posterior probability ratio
for gene indicators §;,

2 2 52 52
| P(5lk 1]o . i KO ,Ga ,GB 062.05,Y)
og(P(c‘i =0|6 .,k 0'2 c2.02.,062.,62,Y)
ik ik T M T T g e e
Since our model requires that ZkK 05 " <1, then the

gene indicators §;, are correlated. We thus need to calcu-

late the log-posterior probability ratio for every 3;, k = 1,
2, ¢ ¢ ¢ K, and sample them jointly.

We also sample the effect parameters based on the indica-
tors 8 and «. The gene effects o, and condition effects B,
can serve as scores for genes and conditions in a cluster.
Moreover the BBC model is very convenient and coherent
in handling missing data in microarray datasets: just treat
them as additional unknown variables and iteratively
impute them in the Gibbs sampling iterations. Suppose at
step t, we have sampled both the indicator variables and
effects parameters, we can impute the missing data, say Vi
by sampling from distribution
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N0 400+ 50,020, i 500

N(©.020), 5K 60 o

il jk

In the above procedure, we preset the value K for the total
number of clusters. However, the information of K is not
available in general. In practice, we search biclusters for a
number of K's and select the best K based on the Beyesian
information criterion (BIC) [18].

An executable program for the BBC algorithm is available
at _http://www.people.fas.harvard.edu/~junliu/BBC
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