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Abstract 

Background:  Spatial and temporal lung infection distributions of coronavirus disease 2019 (COVID-19) and their 
changes could reveal important patterns to better understand the disease and its time course. This paper presents a 
pipeline to analyze statistically these patterns by automatically segmenting the infection regions and registering them 
onto a common template.

Methods:  A VB-Net is designed to automatically segment infection regions in CT images. After training and vali-
dating the model, we segmented all the CT images in the study. The segmentation results are then warped onto a 
pre-defined template CT image using deformable registration based on lung fields. Then, the spatial distributions 
of infection regions and those during the course of the disease are calculated at the voxel level. Visualization and 
quantitative comparison can be performed between different groups. We compared the distribution maps between 
COVID-19 and community acquired pneumonia (CAP), between severe and critical COVID-19, and across the time 
course of the disease.

Results:  For the performance of infection segmentation, comparing the segmentation results with manually anno-
tated ground-truth, the average Dice is 91.6% ± 10.0%, which is close to the inter-rater difference between two radi-
ologists (the Dice is 96.1% ± 3.5%). The distribution map of infection regions shows that high probability regions are in 
the peripheral subpleural (up to 35.1% in probability). COVID-19 GGO lesions are more widely spread than consolida-
tions, and the latter are located more peripherally. Onset images of severe COVID-19 (inpatients) show similar lesion 
distributions but with smaller areas of significant difference in the right lower lobe compared to critical COVID-19 
(intensive care unit patients). About the disease course, critical COVID-19 patients showed four subsequent patterns 
(progression, absorption, enlargement, and further absorption) in our collected dataset, with remarkable concurrent 
HU patterns for GGO and consolidations.

Conclusions:  By segmenting the infection regions with a VB-Net and registering all the CT images and the seg-
mentation results onto a template, spatial distribution patterns of infections can be computed automatically. The 
algorithm provides an effective tool to visualize and quantify the spatial patterns of lung infection diseases and their 
changes during the disease course. Our results demonstrate different patterns between COVID-19 and CAP, between 
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Background
CT imaging plays an important role in  understanding of 
lung infections from COVID-19 and subsequent treat-
ment assessment. In recent studies, Ai et al. [1] showed 
that chest CT findings were correlated with reverse tran-
scription polymerase chain reaction (RT-PCR) testing 
outcomes. Caruso et  al. [2] found that the specificity of 
chest CT was low (56%) but the sensitivity was high (97%) 
in diagnosing COVID-19. Similarly, a low rate of missing 
diagnosis of COVID-19 (3.9%, 2/51) is reported in Li and 
Xia [3], and CT could be used for screening COVID-19 
patients in complement to RT-PCR tests [4].

The common CT features of COVID-19 include 
peripheral ground-glass opacities (GGO) and consolida-
tions with multi-lobe and posterior involvement, bilat-
eral distribution, and sub-segmental vessel enlargement 
[2]. Studies showed that multiple small patchy shadows 
and interstitial changes could appear in the outer lateral 
zone of the lungs in the early stage. Traction bronchiec-
tasis  often appears in the GGO area, and the formation 
of the subpleural band may cause structural distortion in 
some cases; as the disease progresses, multiple GGO and 
infiltration could appear in both lungs; in severe cases, 
pulmonary consolidation may occur, and pleural effu-
sion is rare. Interlobular septa thickening and coincide of 
the intralobular line and GGO, called crazy paving sign, 
often appear with the disease progresses. Other imag-
ing signs include bronchiectasis and pleural thickening, 
but pleural effusion, pericardial effusion, enlargement of 
lymph nodes, pulmonary cavity, CT Halo sign and pneu-
mothorax are rare. These imaging features have been 
studied to distinguish the severity of the disease [5, 6] or 
to assess different stages of the disease during its time 
course [7–9]. For example, Bernheim et  al. [7] studied 
121 symptomatic patients and found that bilateral lung 
involvement occurred as the disease progressed. For 
patients without severe respiratory distress during the 
disease course, abnormalities on chest CT reach to peak 
severity approximately 10  days after initial onset of the 
symptoms and gradually recover thereafter [9]. However, 
these studies are mostly based on qualitative assessment 
of the images, and also limited by the relatively small 
number of recruited patients. As the purpose of this 
paper is to analyzing the spatial and temporal distribu-
tion patterns of infection regions by automatically seg-
menting and aligning images, we demonstrated the most 

important features such as GGO, consolidation and HU 
distributions and their subsequent changes of the popu-
lation studied.

Constructing the distribution maps from a large num-
ber of imaging data is capable of depicting anatomical 
structures or functional uptake and is a promising way to 
demonstrate population-level findings. One may observe 
the physiologic changes of disease by comparing the spa-
tial distribution pattern of the diseased cases with that of 
the normal cases. Meanwhile, a temporal sequence of the 
distribution maps across the time course of the disease 
are capable of tracking the progression and recovery of 
the disease. To our best knowledge, there is no attempt 
till now to construct such a group imaging pattern for 
COVID-19 to describe the infection in lungs and to 
delineate the progression of COVID-19 in a quantitative 
way.

To better understand the spatial pattern of COVID-19 
infections in lungs at the population level as well as its 
evolution in the disease course, this study aims to con-
struct the CT image distributions from a large COVID-
19 patient cohort and models the spatial–temporal 
distribution of the infection regions using an automatic 
segmentation and registration pipeline. Specifically, we 
perform automatic contouring of the infection regions 
in the lungs and register all the chest CT images onto a 
common image space. Then, the spatial distribution of 
the infection regions can be computed in this common 
space. The distributions corresponding to different lesion 
sets or groups of different severity of COVID-19 at mul-
tiple time points alongside the time course of the disease, 
and against that of CAP, are compared quantitatively.

For this purpose, hundreds and thousands of the CT 
images need to be segmented, which is a tedious and 
time-consuming work. Thus, we present a neural network 
called VB-Net to segment the infection regions. To train 
the model, a human-involved-model-iterations (HIMI) 
strategy is adopted to iteratively segment and manually 
correct the infection regions. Basically, two radiologists 
annotate a group of images initially and then the neural 
network is trained using these images. Then, more train-
ing images are added by first applying the model and then 
correcting the segmentation manually. In this way, the 
training samples can be gradually annotated to update 
the model training procedure. Totally, we used 249 CT 
scans for training and 300 separate images for validat-
ing the segmentation model. The validation dataset was 

severe and critical COVID-19, as well as four subsequent disease course patterns of the severe COVID-19 patients stud-
ied, with remarkable concurrent HU patterns for GGO and consolidations.
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generated without applying the HIMI strategy. Then, the 
VB-Net was used to process the rest of the data of this 
study. After image registration, the spatial distribution 
maps and their time-course changes are computed for 
further analysis.

In this paper, we demonstrate that by automatically 
segmenting and registering the images and infection 
regions and constructing the spatial distribution of infec-
tion in a template CT image, patterns of infections can 
be visualized and quantified for comparison of different 
groups. The comparison results and patterns changes 
during the disease course provide better understanding 
of COVID-19 based on our dataset.

Methods
Data collection
249 CT scans of 249 COVID-19 patients were collected 
from hospitals outside Shanghai, China for training the 
segmentation network, and 300 CT images were col-
lected from the Public Health Center in Shanghai for 
validation (for those patients not admitted to ICU). All 
the COVID-19 patients were confirmed with a laboratory 
examination through real-time PCR (RT-PCR) detec-
tion by the local Center for Disease Control (CDC), and 
rechecked by national CDC. The scanners used include 
UCT780 from UIH, Optima CT250, LightSpeed 16 from 
GE, Aquilion ONE from Toshiba, SMMATOM Force 
From Siemens, and Scenaria 64CT from Hitachi. The 
major parameters of CT protocols are: 120 kV; automatic 
tube current (180–400  mA); iterative reconstruction; 
rotation time around 0.35  s; collimation of 0.625  mm; 
pitch of 1.5; axial plane matrix of 512 × 512; and breath 
hold at full inspiration. The reconstruction kernel used is 
set as lung window per definition of manufactures. Dur-
ing reading the lung window (with window width 1200 
HU and window level 600 HU) was used. All the scans 
are normal CT without contrast enhancement, and all 
the CT scans are captured in thin-section (< 2 mm). We 
selected the patients with a positive new coronavirus 
nucleic acid and confirmed by the CDC of China. All the 
selected patients are with age above 18 and the chest CT 
show infection. Only the scans reconstructed by lung 
window are used. We also excluded the duplicated scans 
of the same patient obtained at the same day. Two radi-
ologists independently annotated the validating data and 
involved in the HIMI training procedure of the segmen-
tation model.

To construct the disease distribution patterns of 
COVID-19 and CAP, we used 2954 images from 2760 
COVID-19 patients confirmed with positive RT-PCR 
by following the protocols for the Diagnosis and Treat-
ment of COVID-19 (Trial revised version 5), and 1343 
images from 1089 CAP patients. The spatial distributions 

of ground glass opacification (GGO) and consolidation 
were also constructed and compared.

For progression and recovery course study, additional 
457 longitudinal CT images of 83 critically ill patients 
with intensive care unit (ICU) events and 1236 images 
from 223 severe patients without ICU care were used 
for time course analysis, including lesion distributions 
of the onset CTs when the diagnosis of COVID-19 was 
confirmed. All the cases used for progression study are 
from Shanghai Public Health Clinic Center, which have 
at least one follow-up scan. Because of low modality rate 
in Shanghai, we excluded a few death cases. We clas-
sified the data into severe patients (inpatients without 
ICU care) and critical patients (with ICU care) accord-
ing to the protocols for the Diagnosis and Treatment of 
COVID-19 (Trial revised version 5), which was issued 
by the National Health Commission of China on Feb. 
4th, 2020. Specifically, severe cases are those with obvi-
ous lesion progression (> 50% increase within 24–48  h) 
and (1) respiratory distress (≧ 30 breaths/ min); (2) oxy-
gen saturation ≤ 93% at rest; (3) arterial partial pres-
sure of oxygen (PaO2)/fraction of inspired oxygen 
(FiO2)≦300 mmHg (l mmHg = 0.133 kPa). Critical cases 
are the patients who require ICU care. As the longitudi-
nal data are scanned between Jan. 20th, 2020 and Mar. 
6th, 2020, we double checked the clinical criteria of all 
these patients underwent ICU treatment to make sure 
the grouping are correct.

Ethical approval was obtained from the ethics commit-
tee of the Shanghai Public Health Clinical Center (IRB 
No. 2020-E015-01, March 26, 2020). Written informed 
consent was waived because only anonymized imaging 
data and ICU dates were used. The study did not alter 
any diagnostic and treatment decisions of the patients 
included. All the methods were performed in accordance 
with the relevant guidelines and regulations.

Automatic infection segmentation using VB‑Net
Automatic segmentation of infection regions could be 
affected from the low contrast of the infection regions 
manifested as GGO in CT images and large variation of 
both shape and position across different patients. Our 
group developed a DL-based network called VB-Net, 
for lung CT image segmentation [10]. The VB-Net is a 
modified 3D convolutional neural network that com-
bines V-Net with the bottle-neck structure, consisting of 
two paths. The first path is a contracting path including 
down-sampling and convolution operations to extract 
global image features. The second path is an expansive 
path including up-sampling and convolution operations 
to integrate fine-grained image features.
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In the contracting path, the number of channels after 
the first convolution layer is 16. Each down-sampling 
layer doubles the number of channels doubles and halves 
the size of feature maps. On the other hand, the number 
of channels decreases by half, and the size doubles after 
each up-sampling layer. Skip connections are used at 
each resolution by employing a concatenating operation.

At each level, three convolution layers are used. Herein, 
we replace the 5 × 5 × 5 convolution operation in the 
V-Net by a bottleneck structure. Specifically, the first 
convolutional layer reduces the channels of feature maps 
by applying 1 × 1 × 1 convolution kernel. The second 
convolutional layer performs spatial convolution with 
3 × 3 × 3 kernel. The last convolutional layer increases 
the channels of feature maps by applying 1 × 1 × 1 con-
volution kernel. Compared with V-Net, the speed of VB-
Net is much faster and with significantly smaller GPU 
memory.

Computing spatial distributions of infections
As shown in Fig. 1, three steps were adopted to build the 
distribution maps. First, the VB-Net was used to segment 
the lung fields and infection regions. The segmentation 
network achieved an average Dice coefficient of 91.6% 
between automated and manual segmentations of the 
infection regions for COVID-19, and generated satisfac-
tory segmentations for the rest of the images studied in 
the paper. Second, we registered all the CT images based 
on segmented lung field masks to a template through aff-
ine and deformable registration [11, 12]. The template 
is a normal CT image whose lung volume is close to the 
median of the population data studied. By warping the 
segmented lung field masks (left and right) of each sub-
ject to the template with nearest neighborhood interpo-
lation, the infection regions of each subject are obtained 

in the template space. Finally, the distribution maps were 
constructed to encode spatial distribution of the normal-
ized infection regions.

Construction of distribution maps
The distribution map, which reflects the distribution 
map of the infection regions, was constructed by first 
accumulating the binary infection masks in the template 
image space and then dividing the result by the number 
of images. Thus, the value at each voxel location denoted 
the probability of infection, which was the ratio of the 
infected lungs at that voxel to the total number of the 
lungs under consideration.

Specifically, suppose the template image is T  , the 
infection region of subject i is Si , i = 1, . . . ,N  , and the 
deformation field is Fi , the warped segmentation is cal-
culated by S′

i
= Fi ◦ Si with nearest neighborhood inter-

polation. The distribution map of the infection regions is 
calculated as m = 1/N

∑
i
S
′

i
 . Using the same computing 

method, we constructed multiple distribution maps cor-
responding to different segmentation regions or groups 
as follows:

•	 The COVID-19 map (calculated using 2954 COVID-
19 images) and the CAP map (calculated from 1343 
CAP images).

•	 The COVID-19-GGO, COVID-19-Consolida-
tion, CAP-GGO, and CAP-Consolidation maps, 
obtained by separating the warped infection regions 
into GGO and consolidation components, i.e., with 
an HU threshold − 300 (GGO < − 300, and consoli-
dation ≥ − 300), on the corresponding normalized 
CT images.

•	 Onset scan of severe and critical COVID-19 patients.

Fig. 1  The pipeline to construct respective distribution maps for the COVID-19 and CAP image populations. Step 1 is an AI-based lung field and 
infection region segmentation network VB-Net; step 2 registers all the images and infection regions onto a common template image; and step 3 
computes respective spatial distributions of infection regions
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•	 Longitudinal distribution maps for critical COVID-
19 patients (457 images of 83 patients) were also 
computed by first aligning the scanning dates to 
the dates of ICU admission and then grouping the 
images into nine time-course stages.

Histograms of infection regions
To illustrate the intensity distribution of infections, we 
calculated the histograms of HUs in infection regions 
for each subject, and then average them across all sub-
jects. Histograms were computed from the original CT 
images rather than the warped CT images. The reason is 
that deformable registration cannot preserve voxel vol-
umes and often presents interpolation and partial volume 
effects for HU values. Note that only HU values within 
the range of − 1000 ~ 150 were calculated, and 128 bins 
were used for calculating the histograms. The popula-
tion-wise histograms were calculated from the image 
intensities within all the respective infection masks.

Statistical analysis
Voxel-wise X 2 test was used to compare the difference of 
infection occurring frequencies between two maps. Spe-
cifically, at each voxel location, the p value was calculated 
by comparing the frequencies of the voxels infected in 
two respective distribution maps.

As HU histograms were calculated for infection regions 
of different image groups, the Kolmogorov–Smirnov 
(K–S) test [13] was used to compare whether the two his-
togram distributions are significantly different. The null 
hypothesis is that two independent HU histograms are 
drawn from the same continuous distribution. If the p 
value is significant, then we cannot reject the hypothesis 
that the distributions of the two groups are the same.

All statistical analyses were performed using Python 
toolbox SciPy. The significant level was set to 0.05. Nota-
bly, given the potential for type I error, the false discov-
ery rate (FDR) could have been used to adjust multiple 
comparisons. Thus, the findings by using simple p value 
thresholding should be interpreted as exploratory and 
descriptive.

Results
Performance of infection region segmentation
By segmenting the 300 validating CT images, the average 
Dice is 91.6% ± 10.0%, and for the same dataset the inter-
rater variability analysis between two radiologists indi-
cates that the average Dice coefficient is 96.1% ± 3.5%. By 
comparing with a V-Net segmentation (with average Dice 
87.3% ± 10.1%) the segmentation performance of VB-Net 
has been improved significantly (p < 0.001). For annotat-
ing the training images, we performed three round of 

training and correcting of the training samples, and the 
average annotating time was reduced to around 4.7 min 
per case from 211  min per case, showing a significant 
time reduction when drawing the masks for infection 
regions. Notice that to have a fair comparison, the anno-
tation of the validating dataset was performed by two 
independent radiologists and did not refer to any auto-
matic segmentation results.

Comparison between distribution maps of COVID‑19 
and CAP
The distribution maps for the spatial distribution of infec-
tions of (1) 2954 CT images of 2760 COVID-19 patients 
(first row, left of Fig. 2) and (2) 1343 images of 1089 CAP 
patients (first row, right of Fig.  2) were calculated. The 
COVID-19 infections have the occurring frequency up 
to 35.1%, and mostly distributed on peripheral, posterior, 
and middle-lower pulmonary lobes. On the contrary, 
the highest infection frequency count was much lower 
(8.9%) as reflected by the CAP map. In general, the CAP 
induced infections were smaller in overall size or num-
ber. Also, the CAP infections tended to be peripheral and 
close to the diaphragm.

Figure  2 also shows GGO (second row) and consoli-
dation (third row) infection distributions of COVID-19 
and CAP. For COVID-19, GGO infections held a large 
percentage of infected regions and spread more widely 
than consolidation infections. In COVID-19, the maxi-
mum probabilities of GGO and consolidation com-
ponents were 26.1% and 10.7%, respectively. In CAP, 
these two types of infections were relatively mild, with 
the maximum probability of 7.9% in GGO and 5.1% in 
consolidation.

The p value map between infection frequencies of 
COVID-19 and CAP was calculated using X 2 test and 
shown on the bottom (right) of Fig. 2. This p value map 
highlights the locations where two maps and their under-
lining patient cohorts have significant difference. The 
locations with p < 0.05 accounted for 48.0% of the total 
lung field volume, indicating that the locations and sizes 
of COVID-19 infections were prevalently and signifi-
cantly different from CAP in the lung. We further com-
puted the ratios of the volumes of significantly different 
voxels in the right and left lungs, as well as five lobes over 
the entire lung volume, and reported them in Table  1. 
The most different region is the right lung, especially the 
right-lower lobe (bold font in Table  1). The left-upper 
lobe is another affected region with p value < 0.05, with 
the volume of voxels being 12.8% of the entire lung. 
We also compared the percentage of the region with p 
value < 0.05 with respect to the left/right lungs or lobes 
that the infection locates.
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Fig. 2  The distribution maps for COVID-19 (first row, left) and CAP (first row, right), GGO and consolidation distribution probabilities (2nd and 3rd 
rows), HU distributions of COVID-19 and CAP infections (bottom row, left). These maps show the spatial distributions of the infection occurring 
frequency. The p value map (bottom row, right) highlights the locations with significant difference between COVID-19 and CAP distributions

Table 1  Ratio between the volume of statistically different regions (with p < 0.05) and the total volume of lung/lung lobe, and left/
right lung and lobes, compared between COVID-19 and CAP in Fig. 2 and between severe and critical COVID-19 in Fig. 2, respectively

Region with p < 0.05 between two groups 
(A vs. B)

Volume percentage in lungs Volume percentage in lobes

Lung (%) Lung-R (%) Lung-L (%) Upper-R (%) Middle-R (%) Lower-R (%) Upper-L (%) Lower-L (%)

COVID-19 versus CAP (divided by whole 
lung volume)

48.0 28.3 19.7 10.2 6.1 12.0 12.8 6.9

Severe versus Critical (divided by whole 
lung volume)

0.1 0.1 0 0 0 0.1 0 0

COVID-19 versus CAP (divided by respective 
volumes)

48.0 50.6 44.6 42.8 42.0 71.0 41.4 56.0

Severe versus Critical (divided by respective 
volumes)

0.1 0.2 0 0 0 0.7 0 0
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To further analyze the HU distributions, we calcu-
lated the histograms of HU values within the infection 
regions of all the samples of the two groups (bottom 
left of Fig.  2). For statistical analysis, K-S statistics was 
employed to compare the histograms of two groups. 
It turns out that, by splitting the histograms using HU 
threshold − 300 (as shown by the vertical dotted-dashed 
line), the p value of the GGO part (HU < − 300) was 0.42, 
and the p value of the consolidation part (HU ≥−  300) 
between COVID-19 and CAP was 0.0005. Thus, compar-
ing with CAP, COVID-19 had significantly less consolida-
tion components.

Comparison between onset stages of severe and critical 
COVID‑19 cases
The severe COVID-19 cases were those undergoing 
inpatient treatments without going to ICU, and the criti-
cal COVID-19 cases were those admitted to ICUs (as 

described in the data collection subsection). All selected 
cases finally recovered after hospitalization. The above 
patient cohort allows us to observe the difference of 
infection patterns between severe cases and critical 
cases. Because it is highly interesting to see whether these 
patients’ CT images are different from the initial stage of 
the illness, we hereby chose to use the first images cap-
tured when the patients were diagnosed and prior to ICU 
admission if any, for comparison.

Figure 3 shows the lesion distributions for severe (top) 
and critical (middle) cases at their first scan, and the p 
value maps calculated using K–S test are shown on the 
bottom. Each group had 45 images from different sub-
jects. The two distribution maps were quite similar, and 
the region with significant difference was also small (i.e., 
counting for 0.1% of the lung volume). This might par-
tially explain why it is difficult to predict severity with 
onset images, although it is invaluable for exploring such 

Fig. 3  Comparison between onset images of severe and critical COVID-19 cases
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a prediction. Table 1 gives the ratios between the volume 
of significantly different region to the total lung volume. 
The right lung, especially the right-lower lobe, had rela-
tive difference (0.1%).

Time course of critical COVID‑19 patients
To assess the images of critical patients during the dis-
ease course, the spatial–temporal infection distributions 
were calculated and shown in Fig. 4. For each patient, all 
images were temporally sorted based on Day 0, which 
was defined as the date admitting the patient into ICU. 
Nine groups along the time course were identified for a 
total of 457 images (83 patients): Day − 10 ~ − 6, n = 33; 
Day −  5 ~ −  2, n = 54; Day −  1 ~ 1, n = 79; Day 2 ~ 5, 
n = 82; Day 6 ~ 9, n = 59; Day 10 ~ 13, n = 39; Day 14 ~ 17, 
n = 35; Day 18 ~ 24, n = 34; and Day > 25, n = 42. Figure 4 
shows that the infections rapidly grew and reached the 
peak at 2 ~ 5  days after being admitted to ICU (Day 0). 
In our cohort of patients we have observed this evolu-
tion: the infections started to absorb in Day 6 ~ 13, yet 
enlarged again in Day 14 ~ 17. After 18  days, the infec-
tions were slowly absorbed. The above findings further 
confirm that COVID-19 progresses rapidly and recovers 
slowly for severe cases.

Similarly, we also grouped the time course images 
of severe patients into nine stages and computed their 

infection distributions accordingly. The volume curves 
of the regions with high infection probability in both 
critical and severe patient groups are calculated using 
a threshold (35%) and plotted on the bottom of Fig. 4. 
It can be clearly seen that the distribution maps have 
demonstrated the progression (Day −  10 ~ 5), absorp-
tion (Day 6 ~ 13), enlargement (Day 14 ~ 17), and fur-
ther absorption (Day > 17) stages for critical patients, 
while the curve of severe patients shows gradual 
increase in first 10  days and then decrease thereafter. 
And meanwhile, the volume of high infection probabil-
ity in severe patients is smaller (peak volume less than 
25 cc) than critical patients (up to 400 cc).

Figure 5 (top) shows the HU distributions of the nine 
time-course groups of severe (right) and critical (left) 
patients. We used black solid curve to represent the 
earliest HU distribution, and four dashed curves and 
four dotted curves of critical patients (left, top) shows 
the progression and recovery stages, respectively. It 
can be seen that GGO and consolidation changes are 
clearly associated with the disease time course. Simi-
larly, the top-right part of Fig. 5 is the HU distributions 
of severe patients. The black solid curve is the average 
histogram at the first time-point. The consolidation 
in severe patients also tends to increase initially and 

Fig. 4  Time course of critical COVID-19 patients. The first three rows show the axial, sagittal and coronal views of infection distributions in 9 
stages/groups, along with their 3D renderings shown in the fourth row. The last chart shows the total volume of infection regions (with infection 
probability greater than 35%) in each of 9 stages/groups of critical and moderate patients
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then gradually decrease. The overall variation of severe 
patient is smaller compared to critical patients.

Figure  5 (middle) plots both the ratios of consolida-
tion lesions (i.e., the areas under the curves for HU 
greater than −  300) and the HU values of the GGO 
peaks. The time course of the ratios of consolidation in 
critical patients (the middle-left plot) is consistent with 
the aforementioned progression, absorption, enlarge-
ment, and further absorption stages; and the HU val-
ues of GGO peaks consistently shift after reaching the 
peak (severe) stage. The ratios of consolidation in severe 
patients (the middle-right plot) first increase and then 
gradually decrease, and the GGO peak HU values are 
smaller than those of critical patients and show a trend 
of overall gradual decrease across with time. The videos 

showing time course of COVID-19 (severe stage) are in 
the Additional files 1, 2 and 3.

After grouping the critical cases into the progression 
stage (dashed curves in Fig.  5) and the recovery stage 
(dotted curves in the bottom left of Fig. 5) and calculating 
their average histograms, the p values of K–S tests among 
the three distributions were 0.0004 between progression 
and recovery stages, 0.008 between onset and progres-
sion stages, and 0.36 between onset and recovery stages, 
respectively. After splitting the GGO and consolidation 
parts, the p-values of GGO lesions were 0.0005 between 
progression and recovery stages, 0.0003 between onset 
and progression stages, and 0.26 between onset and 
recovery stages, respectively. For the consolidation 
parts, all the K–S tests showed significant difference (p 

Fig. 5  Comparison of HU distributions, consolidation ratios, and GGO peak HU values of critical (left) and severe (right) patient groups. Top: the HU 
distributions of nine time-course stages; middle: consolidation ratios and the HU of GGO peaks; bottom: HU distribution of the onset, progression, 
and recovery stages
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value < 0.05) for all combinations. These results sup-
ported the possibility of identifying respective image fea-
tures of these stages and correlating them with clinical 
measures. Similar grouping of severe patients is shown in 
the bottom right picture of Fig. 5. We summarized major 
findings obtained from the experiments of this research 
in Table 2.

Discussion
CT imaging is an important supplemental tool to assess 
the severity of COVID-19, but radiologists lack computa-
tional means to quantify the images. This paper presents 
simple yet effective pipeline to first segment the infection 
regions, register the images onto a common template 
space, and then compute the quantitative distributions 
of the infection regions of different types of infection 
regions. The distributions across the disease time course 
can also be visualized and quantified based on the same 
method. The patterns of infection and their changes 
could help better understand the differences between 
corona virus infections and others and also illustrate the 
recovering time course of COVID-19.

The methodology established in this work could also be 
applied to compare between other groups, i.e., subjects 
undergoing different treatments and subjects not recov-
ering from the disease, to better understand the under-
lying difference in terms of imaging features. Similar 
methodology is also applicable to other pathologies.

Beside population-level spatial patterns of the disease, 
HU distributions were examined and compared longitu-
dinally. Nevertheless, although group comparison pro-
vides the knowledge of population and their differences, 

it does not directly indicate automatic identification of 
singular samples using descriptors such as HU distribu-
tion, but pin-points the regions of difference for possible 
classification. In the future works, features derived from 
group comparison could be used for designing a classifier.

Using image segmentation and registration tech-
niques, lung fields and infection regions of different sub-
jects were registered onto a common template space to 
analyze the spatial distribution of infections for a large 
number of subjects. Only lung field masks were used to 
drive the registration in this work. The lungs and infec-
tions were spatially normalized based on the resulting 
deformation fields. Thus, the deformations within the 
lungs are smooth, estimated mainly by lung surfaces. This 
may render alignment discrepancies of internal struc-
tures. However, given a large number of imaging data, 
the group maps still reflect how infections distribute 
within the lung field. In the future, deformable registra-
tion that considers the alignment of internal structures 
such as major normal airways and vessels is needed to 
more accurately align infections across subjects. Infec-
tion regions could be exempted when calculating such a 
registration because of their variability.

Power analysis showed that, in order to obtain 90% 
statistical power from K–S test at a significant level of 
0.05, forty-five samples were required. In this study, we 
grouped the time course of 457 images of 83 subjects into 
9 groups, with some groups having large sample size. As 
a result, the p-values across different time course stages 
were not computed. On the other hand, the numbers 
of samples for comparisons between COVID-19 and 
CAP and also their HU histograms provide sufficient 

Table 2  A summary of major information obtained from this research

Studies Major findings from the experimental results in our cohort of patients

Comparison of infection distributions of COVID-19 and CAP The locations and sizes of COVID-19 infections are prevalently and significantly dif-
ferent from CAP in the lung

COVID-19 mostly distributed on peripheral, posterior, and middle-lower pulmonary 
lobes

CAP infections are smaller in size or number, and tend to be peripheral and close to 
the diaphragm

Comparison of GGO and consolidation distributions between 
COVID-19 and CAP

In COVID-19, GGO infections hold a large percentage of infected regions and spread 
more widely than consolidation infections. The maximum probability of GGO and 
consolidation are 26.1% and 10.7%, respectively

In CAP, these two types of infections were relatively mild, with the maximum prob-
ability of 7.9% in GGO and 5.1% in consolidation

Comparison of onset stages in severe and critical COVID-19 cases The two distribution maps are similar
The region with significant difference was small (counting for 0.1% of the lung 

volume)
The right lung, especially the right-lower lobe, has relative difference in the two 

distributions

Time course of critical COVID-19 cases GGO and consolidation changes are clearly associated with the disease time course
The critical COVID-19 patients showed 4 subsequent patterns: progression, absorp-

tion, enlargement, and further absorption, with remarkable concurrent HU pat-
terns for GGO and consolidations
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statistical power (> 90%) for voxel-wise X 2 test and K–S 
test, respectively. For example, for a middle effect size of 
0.3, we need 117 samples for two category X 2 test at sig-
nificance level 0.05. In this paper, we have 2954 COVID-
19 and 1343 CAP image samples, and the statistical 
power is close to 1. These results did stably show regions 
with significantly different spatial distribution patterns 
of infections between COVID-19 and CAP, and between 
severe and critical COVID-19, as well as consistent HU 
shifting in GGO and the amount shifting in consolida-
tion during the disease time courses of critical COVID-
19 patients.

The proposed lesion maps can be considered as the 
normalized counts of all the warped lesion masks, which 
could be affected by multiple factors, including the num-
ber and size of masks, number of samples, as well as their 
shapes. Therefore, bigger probability at a voxel location 
could indicate that the voxel location occurs more often 
inside the infection regions, and also a continuous region 
with higher probability in the distribution maps could 
be contributed either by bigger lesions or spread smaller 
lesions covering that region.

As mentioned in Background, CT imaging patterns 
of COVID-19 patients include vascular and bronchial 
pathology beside infections. In this study, as our objective 
was to analyzing the spatial and temporal distribution 
patterns of infection regions by automatically segmenting 
and aligning images, we only compared the infection dis-
tributions between COVID-19 and CAP, between severe 
and critical in COVID-19 onset stages, as well as the time 
course of critical COVID-19 patients. We will analyze 
other imaging patterns in the future work.

Conclusions
Population-based infection maps were constructed in 
this paper by employing a pipeline of automatic seg-
mentation, registration and distribution computing, for 
different infection regions of the lung. Using statisti-
cal tests the distributions of COVID-19 and CAP were 
compared. Additional distribution maps were also con-
structed, corresponding to onset stages of severe and 
critical COVID-19, and for individual stages along the 
time course of critical COVID-19. Comparisons among 
these maps showed that the infection regions of COVID-
19 were more widely spread in the lung than those of 
CAP, although both distributions are peripheral. The 
time course of critical COVID-19 demonstrated progres-
sion, absorption, enlargement, and absorption stages in 
CT images, showing rapid acceleration and slow recov-
ery, with consistent shifting of GGO and consolidation, 
while the relative mild group demonstrate only gradual 
increase and degrease stages during the disease course. 
Severe and critical patients had similar population-level 

distribution of lesions at onsets yet with small areas of 
significant difference, rendering possible but difficult for 
severity prediction in early assessment of the disease.
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