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Abstract 

Background:  We aimed to construct an artificial intelligence (AI) guided identification of suspicious bone metastatic 
lesions from the whole-body bone scintigraphy (WBS) images by convolutional neural networks (CNNs).

Methods:  We retrospectively collected the 99mTc-MDP WBS images with confirmed bone lesions from 3352 patients 
with malignancy. 14,972 bone lesions were delineated manually by physicians and annotated as benign and malig-
nant. The lesion-based differentiating performance of the proposed network was evaluated by fivefold cross valida-
tion, and compared with the other three popular CNN architectures for medical imaging. The average sensitivity, 
specificity, accuracy and the area under receiver operating characteristic curve (AUC) were calculated. To delve the 
outcomes of this study, we conducted subgroup analyses, including lesion burden number and tumor type for the 
classifying ability of the CNN.

Results:  In the fivefold cross validation, our proposed network reached the best average accuracy (81.23%) in iden-
tifying suspicious bone lesions compared with InceptionV3 (80.61%), VGG16 (81.13%) and DenseNet169 (76.71%). 
Additionally, the CNN model’s lesion-based average sensitivity and specificity were 81.30% and 81.14%, respectively. 
Based on the lesion burden numbers of each image, the area under the receiver operating characteristic curve (AUC) 
was 0.847 in the few group (lesion number n ≤ 3), 0.838 in the medium group (n = 4–6), and 0.862 in the extensive 
group (n > 6). For the three major primary tumor types, the CNN-based lesion identifying AUC value was 0.870 for lung 
cancer, 0.900 for prostate cancer, and 0.899 for breast cancer.

Conclusion:  The CNN model suggests potential in identifying suspicious benign and malignant bone lesions from 
whole-body bone scintigraphic images.
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Background
Bone metastasis commonly appears in the advanced 
stages of cancers [1–4]. It seriously affects the survival 
quality of patients due to the occurrence of adverse skel-
etal-related events [2, 5, 6]. The early diagnosis of bone 
metastasis is beneficial to make appropriate and timely 
treatment of metastatic bone disease, which can improve 
the quality of survival [7–10]. Even after the advent of 
single-photon emission computed tomography combined 
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with computed tomography (SPECT/CT), whole-body 
bone scintigraphy (WBS) is a standard method to survey 
the existence and extent of bone metastasis [11]. How-
ever, the image resolution and the specificity of WBS are 
lacking [12]. And the interpretation of WBS is an expe-
rience-dependent work and the diagnostic agreement of 
inter-observer is not satisfactory [13].

Previously, we had proposed an automated diagnos-
tic system of bone metastasis based on multi-view bone 
scans using an attention-augmented deep neural network 
[14, 15]. While it achieved considerable accuracy in the 
patient-based diagnosis from WBS images, a definitive 
diagnosis for suspicious bone metastatic lesions is still 
crucial for pragmatic decisions, such as precise bone 
biopsy, bone surgery and external beam radiotherapy 
[16]. Thus, a new artificial intelligence (AI) model with 
lesion-based diagnosis from the WBS image is more 
valuable for the clinic. Therefore, we fed a fully anno-
tated WBS images dataset to construct a new AI model 
and evaluated its lesion-based performance in automatic 
diagnosing suspicious bone metastatic lesions.

Methods
This retrospective single-center study was approved by 
the Institutional Ethics Committee of West China Hos-
pital of Sichuan University. The written informed consent 
was waived from the Institutional Ethics Committee of 
West China Hospital of Sichuan University.

Data resource
The WBS images of patients who were identified lung 
cancer, prostate cancer and breast cancer were retrieved 
from our hospital database within the period from Feb. 
2012 to Apr. 2019. The WBS was performed using two 
gamma cameras (GE Discovery NM/CT 670 and Philips 
Precedence 16 SPECT/CT). The patient received 555 
to 740  MBq of technetium-99  m methylene diphospho-
nate (99mTc-MDP; purchased from Syncor Pharmaceuti-
cal Co., Ltd, Chengdu, China) by intravenous injection, 
and the anterior and posterior views WBS images were 
obtained approximately 3  h post-injection. The gamma 
cameras were equipped with low-energy, high-resolution, 
parallel-hole collimators. The scan speed was 16–20 cm/
min, and the matrix size was 512 × 1024. Energy peak 
was centered at 140 keV with 15% to 20% windows.

The visible bone lesion in WBS images was manually 
delineated by human experts and annotated into malig-
nant and benign according to the following criteria [17, 
18]:

Malignant: bone lesion with increased 99mTc-MDP 
were identified as malignant (1) when computed tomog-
raphy (CT), magnetic resonance imaging (MRI), positron 
emission tomography-computed tomography (PET/CT), 

etc. presented bone destruction; (2) when it appeared 
newly but couldn’t be ruled out as malignant in follow-up 
bone scan; (3) when it presented flare phenomenon; (4) 
when it enlarged and thickened significantly after at least 
3 months follow-up.

Benign: bone lesion with increased 99mTc-MDP were 
identified as benign (1) when CT, MRI and PET/CT, etc. 
demonstrated fracture, bone cyst, osteogeny, osteophyte, 
bone bridge, degenerative osteoarthrosis; (2) when it 
appeared around the bone joint; (3) when it confirmed as 
trauma.

The diagram of manual delineation and annotation 
was shown in Fig.  1. Additionally, the patient-based 
WBS image was assigned to malignant once a lesion was 
identified as malignant. Finally, from the 3352 patients, 
14,972 visible bone lesions were identified as benign or 
malignant. According to the total number of lesions per 
WBS image [19], we divided all cases into three groups: 
few lesions group: 1–3 lesions; medium lesions group: 
4–6 lesions; extensive lesions group: > 6 lesions.

Model architecture
We implemented 2D CNN to automatically identification 
of bone metastatic lesions. Our network is based on the 
architecture of ResNet50 [20]. The CNN model was pre-
trained on ImageNet, and fine-tuned on our own dataset. 
Before training the network, a pre-processing step was 
performed for data curation. The WBS and correspond-
ing lesion mask were resized to 512 × 256. Considering 
the diagnosis of bone lesions was tremendously corre-
lated to the location and burden extent, we stacked the 
full-sized images and the corresponding lesion mask on 
channel, instead of only inputting ROI of lesions. The data 
consisted of the original WBS image, the corresponding 
lesion mask and the qualitative of the lesion was used 
for CNN training. The fivefold cross validation was per-
formed for evaluating the ability of the trained network 
model to achieve the qualitative task of bone scan lesions. 
Additionally, three state-of-the-art CNNs that included 
Inception V3 [21], VGG16 [22] and DenseNet169 [23] 
were compared with the proposed network.

The developed network was implemented using 
PyTorch [24], and trained using Adam [25] as the opti-
mizer with a learning rate of 0.001 for 300 epochs. The 
mini-batch size was fixed 8. During the training process, 
random horizontal flipping with a probability of 0.5 was 
applied to the input to increase the diversity of the data. 
The detailed network architecture is shown in Fig. 2.

Statistical analysis
The performance of AI was evaluated using diagnostic 
sensitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV) and the area 
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under the receiver operating characteristic curve (AUC). 
The Chi-square test was performed to compare differ-
ences in the AI performance between different number of 

lesions and different primary tumor types. The confusion 
matrix showed the numbers of true positive, true nega-
tive, false positive and false negative. All analyses were 

Fig. 1  The diagram of manual annotation in WBS image. All visible bone lesions were delineated and annotated as benign and malignant. Red 
areas represent malignant lesions, while green areas represent benign lesions

Fig. 2  Architecture of convolutional neural network for AI model
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conducted using statistical software SPSS22.0 (SPSS Inc, 
Chicago, Illinois, USA). P values less than 0.05 were con-
sidered statistically significant.

Results
Baseline characteristics of patients
3352 cancer patients (Age: 61.61 ± 12.69y; Gender: 1758 
males and 1594 females) were retrospectively included 
in the study and 43.85% of all patients presented bone 
metastasis. A total of 14,972 visible bone lesions were 
recognized in all WBS images and 51.23% of them were 
identified metastasis. The lesion-based metastasis rate 
was 50.13% in lung cancer, 57.39% in prostate cancer, and 
44.61% in breast cancer, respectively. The detailed infor-
mation was listed in Table 1.

The performance of the proposed network
After fivefold cross validation, the CNN model dem-
onstrated an average sensitivity, specificity, accuracy, 
PPV and NPV for all visible bone lesions were 81.30%, 
81.14%, 81.23%, 81.89% and 80.61%, respectively. When 

compared with the other three start-of-art CNNs, our 
proposed network achieved the best accuracy in identifi-
cation the bone lesions at bone scintigraphy (Tables 2, 3).

Subgroup analysis of proposed network
Based on the number of lesions per image, we found that 
the AI model reached the highest sensitivity (89.56%, 
P < 0.001), accuracy (82.79%, P = 0.018) and PPV (87.37%, 
P < 0.001) in the extensive lesions group as shown 
in Table  4. Whereas, the highest specificity (89.41%, 
P < 0.001) and NPV (86.76%, P < 0.001) of the AI model 
were captured in few lesions group. We also calculated 
the AUC to evaluate the diagnostic performance of the 
AI model, which was 0.847 in the few lesions group, 0.838 
in the medium lesions group, and 0.862 in the extensive 
lesions group. And the confusion matrix directly demon-
strated the true labels and predicted labels in the three 
groups (Fig. 3).

The detailed results based on the primary tumor types 
were shown in Table  5, the results demonstrated the 
highest diagnostic sensitivity (84.66%, P = 0.002) in the 
prostate cancer group. Albeit slightly higher accuracy 
(82.30%) in the prostate cancer group, there was no sta-
tistical significance (P = 0.209) comparing with the lung 
cancer group (79.40%) and breast cancer group (81.82%). 
The specificity in lung cancer (82.52%), prostate can-
cer (79.07%) and breast cancer (81.78%) group also did 
not indicate statistical significance between each other 
(P = 0.354). Furthermore, the AUC was 0.870 for lung 

Table 1  The summary of patient-based and lesion-based 
analysis in all WBS images

Lung cancer Prostate 
cancer

Breast cancer Total

Patient-based

Total 1253 1017 1082 3352

Malignant 567 466 437 1470

Benign 686 551 645 1882

Metastasis 
rate

45.25% 45.82% 40.39% 43.85%

Lesion-based

Total 4937 5623 4412 14,972

Malignant 2475 3227 1968 7670

Benign 2462 2396 2444 6812

Metastasis 
rate

50.13% 57.39% 44.61% 51.23%

Table 2  The fivefold cross validation results of the proposed network

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Number of patients 
(benign/malignant)

669 (376/293) 669 (376/293) 671 (376/295) 669 (376/293) 674 (378/296)

Number of lesions 
(benign/malignant)

2986 (1505/1481) 2952 (1389/1563) 3084 (1468/1616) 2897 (1475/1422) 3053 (1465/1588)

Sensitivity 83.19 83.11 79.89 76.79 83.5

Specificity 78.07 82.58 82.7 82.78 79.59

Accuracy 80.61 82.86 81.23 79.84 81.62

PPV 78.87 84.3 83.56 81.13 81.6

NPV 82.51 81.29 78.88 78.72 81.65

Table 3  The comparison of the proposed network and other 
three networks

Sensitivity Specificity Accuracy PPV NPV

Our model 81.30 81.14 81.23 81.89 80.61

InceptionV3 77.29 84.02 80.61 83.53 78.00

VGG16 78.73 83.51 81.13 83.39 79.14

DenseNet169 67.90 85.73 76.71 83.17 72.16



Page 5 of 9Liu et al. BMC Med Imaging          (2021) 21:131 	

cancer, 0.900 for prostate cancer, 0.899 for breast can-
cer. The confusion matrix directly demonstrated the true 
labels and predicted labels in the three groups (Fig. 4).

Additionally, we also evaluated the lesion-based diag-
nostic performance of the AI model according to the dif-
ferent number of lesions per image (few, medium and 
extensive lesions group) in lung cancer, prostate cancer 
and breast cancer, respectively. The results were sup-
ported as Additional file 1: Table 1 and Additional file 2: 
Figs. 1, 2, and 3.

Discussion
The definitive identification of abnormal bone lesions 
is beneficial to proper personalized treatment and sub-
serves the patients who were suffering from advanced 
malignant cancers [26]. However, the precise differen-
tiation of suspicious bone lesions is still tricky based on 

Table 4  The lesion-based diagnostic performance of AI model 
in testing cohort and the comparison of the AI performance 
among few, medium and extensive lesion groups

Chi-square test was performed to compare the performance of AI model among 
different groups of the number of lesions. Few lesions group: 1–3 lesions 
per image; Medium lesions group: 4–6 lesions per image; Extensive lesions 
group: > 6 lesions per image

Group for number of lesions χ2 P value

Few Medium Extensive

Sensitivity 58.63 64.34 89.56 163.41  < 0.001

Specificity 89.41 85.24 62.85 108.69  < 0.001

Accuracy 81.78 78.03 82.79 8.06 0.018

PPV 64.89 69.67 87.37 83.70  < 0.001

NPV 86.76 82.04 67.93 49.24  < 0.001

Fig. 3  The confusion matrix of few lesions group (A), medium lesions group (B), extensive lesions group (C). The ROC of the three groups in the 
lesion-based diagnosis (D)
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the WBS images only [27]. In light of the superiority of 
artificial intelligence in image feature extraction and big 
data analysis, we developed a new AI model using the 2D 
CNN to explore the potential for automatically definitive 
identification of suspicious bone metastatic lesions from 
WBS images.

In general, our AI model achieved moderate per-
formance in the identification of suspicious bone 
lesions with a sensitivity of 81.30% and specificity 
of 81.14%. We found that AI indicated significantly 
higher accuracy in the extensive-lesions group (n > 6, 
accuracy = 82.79%) than that in the few-lesions group 
(n ≤ 3, accuracy = 81.78%, p < 0.05) and medium-lesions 
group (n = 4–6, accuracy = 78.03%, p < 0.05), this might 

Table 5  The lesion-based diagnostic performance of AI model 
in the testing cohort and the comparison of the AI performance 
among lung, prostate and breast cancers

Chi-square test was performed to compare the performance of AI model among 
different tumor types

Group for primary tumor types χ2 P value

Lung cancer Prostate 
cancer

Breast 
cancer

Sensitivity 76.16 84.66 81.65 12.88 0.002

Specificity 82.52 79.07 81.78 2.08 0.354

Accuracy 79.40 82.30 81.82 3.13 0.209

PPV 81.12 84.43 78.33 6.52 0.038

NPV 77.70 79.52 85.05 8.85 0.012

Fig. 4  The confusion matrix of lung cancer group (A), prostate cancer group (B), breast cancer group (C). The ROC of the three groups in the 
lesion-based diagnosis (D)
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be beneficial from the deep neural network which imi-
tating human thinking model. Originally, classification 
of every single lesion is judged independently, regard-
less of the other lesions that appeared in the same 
image. However, nuclear medicine physicians usually 
take other lesions and additional cues into account 
when determining one single lesion itself. For example, 
an isolated lesion without other nearby lesions would 
be more difficult to assert benign or malignant, while 
multiple lesions that occur within a narrow region 
would be more likely malignant. We input correspond-
ing lesion masks to the CNN and take the whole WBS 
image into account, and this might be a possible rea-
son for the improved accuracy of the extensive-lesions 
group.

Previous studies also reported AI for bone lesion 
identification from WBS images. The authors used a 
ladder network to pre-train a nerual network with an 
unlabeled dataset [28]. On the metastasis classification 
task, It reached a sensitivity of 0.657 and a specificity 
of 0.857. Another similar study also build a model to 
detect and identify bone metastasis from bone scintig-
raphy images through negative mining, pre-training, 
the convolutional neural network, and deep learning 
[29]. The mean lesion-based sensitivity and precision 
rates for bone metastasis classification were 0.72 and 
0.90, respectively. In our study, the lesion-based sen-
sitivity, specificity and precision values for metastasis 
classification were 0.813, 0.811 and 0.819, respectively. 
It is difficult to compare the difference of algorithms, all 
studies have used in-house datasets of a gold standard 
and these datasets were not open. We were not able to 
try other datasets using our algorithm. Therefore, the 
performances reported by other researchers can only 
be used as references, rather than for objective com-
parison. It is worth mentioning that the aforemen-
tioned AI was focused on the chest image instead of the 
whole body. This strategy excluded the influence from 
keen osteoarthritis, degenerative changes of lumbar/
cervical vertebrae, but it was limited to analyzing the 
metastases in other regions such as the pelvis, sacrum, 
iliac joints and other distant lesions. Addittionaly, we 
stacked the WBS and the corresponding lesion mask in 
channel and input it into the network. Thus, this CNN 
approach could select any suspicious bone lesion that 
needs to be input manually and obviate missed lesion 
detection and wrong lesion detection.

Three common kinds of primary cancers were investi-
gated in this study. The different sensitivity among pri-
mary cancer types seemed to be affiliated to osteoblastic 
and osteolytic activity. The highest sensitivity appeared 

in the prostate cancer group and it is consistent with 
other former studies [17]. The probable reason is due to 
the typical osteoblastic metastasis principally in prostate 
cancer, though it is also associated with the osteoclastic 
process and bone resorption [30]. On the other hand, 
lung cancer and breast cancer group showed more signif-
icant osteolytic changes and corresponding mild radioac-
tivity in lesions [31, 32].

Generally, our AI model achieved a moderate accuracy, 
sensitivity and specificity in the lesion-based diagno-
sis of WBS images, the false-positive lesions and false-
negative lesions still could not be avoided. It is limited to 
the substantive character and specificity of 99mTc-MDP 
imaging technology. Most pathological bone conditions, 
whether of infectious, traumatic, neoplastic or other ori-
gin could demonstrate as an increased radioactive signal 
in WBS images [33]. There are still several limitations in 
the current study. Firstly, since it is impossible to obtain 
the pathological result of each lesion, we made the “gold 
labels” based on the patients’ medical records, the follow-
up bone scans, CT, MRI, PET/CT images, etc., which 
may not be totally correct for every lesion. Secondly, the 
labeled lesions on WBS images were all visible, which 
means only the “hotspots” were included, whereas some 
“cold lesions” were missed. Then, at present, this AI 
model was constructed by those non-quantitative images, 
the indraught of anatomical localization parameter and 
quantitative index might further improve the property, all 
of which would be paid attention in our future studies. 
Even though the AI model is not always correct, it still 
can be used by nuclear medicine physicians for assisting 
the bone lesions analysis and the final interpretation of 
an examination, especially for the patients who could not 
be performed SPECT/CT timely due to the poverty of 
resource devices.

Conclusions
The AI model based on CNN reached a moderate lesion-
based performance in the diagnosis of suspicious bone 
metastatic lesions from WBS images. Even though the 
AI model is not always correct, it could serve as an effec-
tive auxiliary tool for diagnosis and guidance in patients 
with suspicious bone metastatic lesions in daily clinical 
practice.
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emission computed tomography combined with computed tomography; CT: 
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emission tomography-computed tomography; CNN: Convolution neural 
networks; PPV: Positive predictive value; NPV: Negative predictive value.
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