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Abstract 

This study addresses the critical challenge of detecting brain tumors using MRI images, a pivotal task in medical diag-
nostics that demands high accuracy and interpretability. While deep learning has shown remarkable success in medi-
cal image analysis, there remains a substantial need for models that are not only accurate but also interpretable 
to healthcare professionals. The existing methodologies, predominantly deep learning-based, often act as black boxes, 
providing little insight into their decision-making process. This research introduces an integrated approach using 
ResNet50, a deep learning model, combined with Gradient-weighted Class Activation Mapping (Grad-CAM) to offer 
a transparent and explainable framework for brain tumor detection. We employed a dataset of MRI images, enhanced 
through data augmentation, to train and validate our model. The results demonstrate a significant improvement 
in model performance, with a testing accuracy of 98.52% and precision-recall metrics exceeding 98%, showcasing 
the model’s effectiveness in distinguishing tumor presence. The application of Grad-CAM provides insightful visual 
explanations, illustrating the model’s focus areas in making predictions. This fusion of high accuracy and explainability 
holds profound implications for medical diagnostics, offering a pathway towards more reliable and interpretable brain 
tumor detection tools.

Keywords  Explainable AI, Brain tumor detection, MRI images, Deep learning, Grad-CAM, ResNet50, Medical image 
analysis

Introduction
Brain tumors, comprising a range of neoplasms within 
the brain, pose significant health risks and challenges in 
medical diagnostics. They are categorized into primary 
tumors, originating in the brain, and secondary tumors, 
which metastasize from other body parts. The global 

incidence of brain tumors underscores a critical need for 
precise diagnostic tools. Brain tumors exhibit heteroge-
neous symptoms ranging from headaches to more severe 
neurological impairments, necessitating early and accu-
rate detection to optimize treatment outcomes [1].

Moreover, the overlapping symptoms of brain tumors 
with other neurological disorders necessitate a diagnostic 
tool that offers both high sensitivity and specificity. Tra-
ditional diagnostic methods, while effective, often require 
invasive procedures or can be limited in their ability to 
detect small or early-stage tumors.

Magnetic Resonance Imaging (MRI) has emerged as 
a cornerstone in the non-invasive diagnosis of brain 
tumors [2], offering detailed images of the brain’s anat-
omy and pathology. MRI provides unparalleled soft tissue 
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contrast, facilitating the distinction between healthy and 
pathological tissues. It is instrumental in assessing the 
tumor’s location, size, and potential impact on adjacent 
brain structures, critical for treatment planning. How-
ever, the interpretation of MRI scans is highly reliant on 
the expertise of radiologists and can be time-consum-
ing, highlighting the need for assistive technologies to 
improve diagnostic accuracy and efficiency.

Deep learning, a subset of machine learning, has 
revolutionized the field of medical image analysis, 
offering substantial improvements in detecting and clas-
sifying various diseases [3]. In brain tumor detection, 
deep learning algorithms can analyze complex MRI 
data, identify patterns imperceptible to the human eye, 
and learn from these patterns to make accurate predic-
tions. These algorithms, particularly convolutional neural 
networks (CNNs), have demonstrated their prowess in 
enhancing the accuracy and speed of brain tumor diag-
nostics, reducing the reliance on human interpretation 
and potentially minimizing diagnostic errors. In Fig.  1, 
some of visual instances of the brain tumor are shown 
from the dataset.

The primary objective of this research is to harness the 
capabilities of deep learning, specifically the ResNet50 
architecture, in conjunction with Gradient-weighted 
Class Activation Mapping (Grad-CAM), to enhance the 
detection and interpretability of brain tumor diagnoses 
from MRI scans. This study aims to: 

1.	 Implement a deep learning model that provides 
state-of-the-art accuracy in detecting brain tumors 
from MRI images.

2.	 Integrate Grad-CAM with the deep learning model 
to offer visual explanations for the model’s predic-
tions, enhancing the interpretability and trustworthi-
ness of the AI system.

3.	 Evaluate the model’s performance using a compre-
hensive set of metrics, ensuring its reliability and 
applicability in a clinical setting.

4.	 Contribute to the body of knowledge by providing 
insights into how AI can be made more transparent 
and assistive in medical diagnostics, particularly in 
the context of brain tumor detection.

Through these objectives, the study aims to bridge the 
gap between advanced AI technologies and clinical appli-
cability, offering a tool that not only excels in accuracy 
but also in providing clarity and insight into its diagnos-
tic processes. This contribution is pivotal in advancing 
the field of medical diagnostics, where trust and trans-
parency are as crucial as accuracy and efficiency.

Related work
Brain tumor detection using MRI images has been a 
focal point of research due to MRI’s capability to provide 
detailed and high-contrast images. Various traditional 
image processing techniques, including segmentation 
and feature extraction, have been employed to differen-
tiate between normal and abnormal brain tissues. How-
ever, these methods often require manual intervention 
and are limited by their reliance on predefined features, 
which may not capture the full complexity of brain tumor 
characteristics.

Fig. 1  Sample Images from Dataset
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Recent advancements have seen a shift toward auto-
matic brain tumor detection methods, leveraging 
machine learning algorithms to improve diagnostic accu-
racy and efficiency. For example, studies have applied 
Support Vector Machines (SVM) and Random Forest 
classifiers to MRI data, demonstrating significant success 
in tumor identification [4]. Yet, these machine learning 
approaches often require meticulous feature engineering, 
which can be labor-intensive and may not generalize well 
across diverse datasets.

Deep learning, particularly convolutional neural net-
works (CNNs), has revolutionized the field of medical 
imaging. Unlike traditional machine learning, deep learn-
ing eliminates the need for manual feature extraction, 
allowing the model to learn features directly from the 
data. This capability has been particularly transformative 
in brain tumor detection [5], where the intricate and var-
ied nature of tumors necessitates a nuanced analysis.

Studies utilizing deep learning for brain tumor detec-
tion have shown remarkable success. CNNs, for instance, 
have been extensively used to classify and segment 
brain tumors in MRI scans [6, 7], achieving substan-
tial improvements in accuracy compared to previous 
methodologies. Some research has also explored the 
use of transfer learning, where pre-trained models on 
large datasets are fine-tuned for specific medical imag-
ing tasks, yielding impressive results even with relatively 
small datasets [8].

Despite these advancements, a critical limitation of 
deep learning models in medical imaging, particularly 
in brain tumor detection, is their “black box” nature. The 
complex architectures of these models make it challeng-
ing to understand the reasoning behind their predictions, 
which is a significant barrier to their acceptance and 
implementation in clinical settings [9]. In Table 1 a sum-
mary of different studies has been given.

While deep learning models have set new benchmarks 
in the accuracy of brain tumor detection from MRI 
images, their lack of interpretability remains a significant 
hurdle. The ability to understand and trust the model’s 
decision-making process is crucial for clinicians to adopt 
these AI-assisted diagnostic tools.

Furthermore, many existing studies focus predomi-
nantly on model accuracy, often overlooking the aspect 
of generalizability. It is crucial for models to not only 
perform well on the data they were trained on but also 
maintain their performance across diverse and unseen 
datasets.

This study addresses these gaps by integrating Grad-
CAM with a deep learning model, specifically ResNet50, 
to offer visual explanations for the model’s predictions. 
Grad-CAM provides a heatmap visualization, high-
lighting the regions in the MRI images that significantly 

influence the model’s decision, thereby offering a win-
dow into the model’s “thought process.” This approach 
not only aims to enhance the model’s interpretability but 
also strives to build trust among clinicians by providing a 
transparent AI tool that can assist in diagnostic decisions 
[20].

Additionally, this research emphasizes evaluating the 
model’s generalizability by testing its performance on 
a separate, unseen dataset, ensuring that the proposed 
solution is robust and applicable in real-world clinical 
settings [21]. Through these efforts, the study aims to 
contribute a more transparent, understandable, and reli-
able AI-based tool for brain tumor detection, addressing 
critical gaps in the current landscape of medical imaging 
analysis.

Methodology
The methodology of this study is structured to lever-
age deep learning for brain tumor detection from MRI 
images, with a specific focus on enhancing the inter-
pretability of the model using Grad-CAM. This involves 
a comprehensive process that includes dataset prepara-
tion, data preprocessing, model training with ResNet50 
[22], application of Grad-CAM for interpretability, and 
evaluation of the model’s performance. Each step is 
meticulously designed to ensure that the model not only 
achieves high accuracy but also provides insights into its 
decision-making process, crucial for clinical acceptabil-
ity. Figure 2 depicts the workflow of the proposed model.

Description of the dataset
The dataset used in this study comprises MRI brain 
images labeled as ‘tumor’ or ‘no tumor’, facilitating a 
binary classification task. These images are sourced from 
a publicly accessible medical imaging dataset [23], ensur-
ing the study’s reproducibility. Each image is annotated 
by expert radiologists, providing a reliable ground truth 
for model training and evaluation. Figure 3 shows some 
basic pre-processed images.

Table 2 provides a summary of the dataset.
Figure 4 presents the data distribution.
The dataset includes a diverse range of images to 

encompass various tumor types, sizes, and locations, 
aiming to enhance the model’s generalizability. It con-
tains thousands of images, split into training, validation, 
and test sets. The training set is used to train the model, 
the validation set to tune the hyperparameters and pre-
vent overfitting, and the test set to evaluate the model’s 
performance on unseen data.

Data preprocessing steps
In the context of neuroimaging research, particu-
larly in the realm of brain tumor analysis, meticulous 
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preprocessing methodologies are fundamental for 
optimizing the integrity and utility of the dataset uti-
lized for subsequent model training and validation. The 
initial preprocessing step involves image standardi-
zation, whereby all MRI scans are subjected to rigor-
ous resizing and rescaling operations to conform to a 
standardized dimension and spatial orientation. This 
ensures homogeneity across the dataset [24], facilitat-
ing consistent data processing and feature extraction 
procedures. Following standardization, intensity nor-
malization (Eq. 1) techniques are applied to recalibrate 

the intensity values of MRI images onto a uniform 
scale.

By mitigating the influence of inherent variations in 
imaging parameters, such normalization enhances the 
model’s sensitivity to subtle anatomical nuances and 
pathological features, thereby optimizing its discrimina-
tory capacity.

Concomitantly, data cleaning protocols are rigorously 
executed to eliminate corrupt or extraneous images 
that may introduce noise or bias into the learning pro-
cess. This entails comprehensive quality control checks, 
including the identification and rectification of artifacts 
such as motion artifacts, scanner-related distortions, 
or other anomalies that could confound model train-
ing. Through meticulous data curation, the integrity and 

(1)xnorm =
x − µ

σ

Fig. 2  Workflow of the proposed model

Fig. 3  Basic Pre-Processed Image

Table 2  Dataset description

Original Augmented

Tumor 155 1240

No Tumor 98 784
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reliability of the dataset are upheld, ensuring that subse-
quent stages of model development are founded upon a 
robust and representative data sample.

Furthermore, advanced preprocessing methodologies 
may encompass the utilization of sophisticated algo-
rithms for image registration, segmentation, and artifact 
correction. Image registration facilitates the spatial align-
ment of MRI scans from different subjects or time points 
onto a common anatomical template, enabling meaning-
ful inter-subject comparisons and longitudinal analyses. 
Segmentation algorithms delineate regions of interest 
within the brain, facilitating precise delineation of tumor 
boundaries and enabling quantitative characterization 
of tumor morphology and volume. Additionally, artifact 
correction strategies leverage advanced signal processing 
techniques to mitigate the effects of noise, distortion, or 
other imaging artifacts, thereby preserving data fidelity.

The preprocessing of MRI images is a pivotal step in 
ensuring that the input data is conducive to the learning 
process of deep learning models. Each preprocessing step 
is deliberately chosen and applied to optimize the mod-
el’s ability to detect brain tumors with high accuracy and 
reliability.

All MRI images are resized to a standard dimension 
to ensure uniformity in input size for the model. This is 
essential because convolutional neural networks (CNNs) 
require a fixed input size. Rescaling the pixel values to a 
range of 0 to 1 assists in stabilizing the training process 
as it normalizes the gradient updates during backpropa-
gation, leading to faster convergence. MRI images can 
vary in contrast and brightness due to different scanning 
protocols. Intensity normalization brings all images to a 
common intensity scale, which helps the model focus on 
structural information rather than variations caused by 
the imaging process. This step is crucial for improving the 
model’s sensitivity to the actual pathological features of 

brain tumors. The removal of images with artifacts, such 
as motion blur or scanner-induced noise, is necessary to 
prevent the model from learning irrelevant or mislead-
ing features. Clean datasets enhance the model’s ability 
to generalize by learning from high-quality, artifact-free 
images. Data augmentation, including rotation, flipping, 
scaling, and elastic deformations, artificially expands the 
dataset and introduces a variety of transformations that 
the model might encounter in real-world scenarios. This 
is particularly important for medical imaging tasks, as it 
simulates variability in tumor appearance and location, 
thereby enhancing the model’s robustness and ability to 
generalize.

The expected impact of these preprocessing steps on 
model performance is multifaceted. Primarily, they aim 
to improve the model’s accuracy by providing it with 
quality data that is representative of the various mani-
festations of brain tumors. Secondly, these steps help in 
preventing overfitting by ensuring the model does not 
learn noise or artifacts, which can be common in medical 
images. Finally, preprocessing enhances the model’s gen-
eralizability, enabling it to perform well across datasets 
with different imaging characteristics.

The judicious application of these preprocessing steps 
is anticipated to yield a model that is not only highly 
accurate in detecting brain tumors but also efficient in 
training and effective across diverse imaging environ-
ments. The uniformity and quality of preprocessed data 
directly contribute to the model’s learning efficacy, ulti-
mately resulting in a tool that is both reliable and clini-
cally valuable.

Data Augmentation Techniques
In the domain of brain tumor analysis, where the intrica-
cies and heterogeneity of tumor morphology present sig-
nificant challenges, the utilization of data augmentation 

Fig. 4  Dataset distribution
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techniques becomes imperative to bolster the dataset’s 
richness, thereby augmenting the model’s robustness and 
generalization capabilities. These augmentation method-
ologies encompass a range of transformative processes, 
each designed to introduce diverse variations reflective 
of real-world tumor scenarios. Rotation serves as a foun-
dational technique, facilitating the generation of images 
from multiple angles to emulate the diverse perspectives 
encountered in clinical imaging [20]. In Fig. 5 some aug-
mented images are shown.

In conjunction, flipping operations horizontally and 
vertically diversify image orientations, effectively mim-
icking the varying spatial arrangements of tumors within 
the brain. Scaling manipulations further contribute by 
resizing images to simulate the spectrum of tumor sizes 
encountered in clinical practice, thereby enhancing the 
model’s ability to discern tumors of varying dimensions. 
Translation operations, both vertically and horizontally, 
spatially displace images to train the model in tumor 
localization, regardless of their position within the brain. 
Figure 6 shows one image after different steps.

Elastic deformation, a sophisticated augmentation 
technique, introduces realistic distortions to images, 
thereby emulating the diverse morphological irregulari-
ties observed in actual tumor structures. Additionally, 
adjustments to brightness and contrast levels simulate 

the range of imaging conditions encountered in clini-
cal settings, ensuring the model’s adaptability to diverse 
scanning environments. Collectively, these augmentation 
strategies transcend mere dataset expansion, imbuing the 
dataset with a comprehensive representation of tumor 
diversity crucial for robust model training.

In essence, data augmentation serves as a pivotal 
mechanism for fortifying the model’s resilience and 
adaptability to the complexities of brain tumor analysis. 
By encapsulating the myriad manifestations of tumors 
within the dataset, these augmentation techniques enable 
the model to generalize effectively across a spectrum of 
clinical scenarios. Thus, data augmentation emerges not 
only as a computational strategy but as a fundamental 
component in refining the diagnostic capabilities of neu-
roimaging models [25, 26], ultimately advancing the fron-
tiers of brain tumor detection and characterization.

Overview of the Deep Learning Model (ResNet50) and its 
relevance
ResNet50 is a variant of the Residual Network (ResNet) 
architecture, which is designed to train extremely deep 
neural networks with 50 layers effectively. ResNet intro-
duces the concept of residual learning, which tackles 
the vanishing gradient problem, allowing the network 
to learn faster and more effectively, even as the network 

Fig. 5  Augmented images
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depth increases. This is achieved through the use of skip 
connections, or shortcut connections, that allow the gra-
dient to be directly backpropagated to earlier layers.

ResNet50, a prominent convolutional neural network 
architecture, is characterized by its depth and intricate 
design elements tailored to facilitate rich feature extraction 
and gradient propagation. Comprising 50 layers, ResNet50 
integrates convolutional layers, rectified linear unit (ReLU) 
(Eq.  2) activation layers, batch normalization layers, and 
fully connected layers. Equations 3,10 consists of the vari-
ous equations used in the model building process.

(2)f (x) = max(0, x)

(3)Softmax(xi) =
exi

je
xj

(4)Cross Entropy Loss = −
∑

i
yilog(pi)

(5)BatchNormalization =
x − E[x]√
Var[x]+ ǫ

γ+ β

This architecture’s fundamental premise revolves 
around the notion of constructing a deep network capa-
ble of acquiring hierarchical representations of input data, 
essential for intricate pattern recognition tasks. Central 
to ResNet50’s efficacy are its residual blocks, wherein the 
input to a block is directly added to its output, thus estab-
lishing a shortcut connection. This mechanism alleviates 
the vanishing gradient predicament by facilitating the 
unimpeded flow of gradients during backpropagation, 
thereby enabling the successful training of deep networks.

(6)Residualxout = f (x, {Wi})+ x

(7)
AdamOptimizer Update Rule(First Moment)mt = β1mt−1 + (1− β1)gt

(8)
AdamOptimizer Update Rule(Second Moment)vt = β2vt−1 + (1− β2)g

2

t

(9)

AdamOptimizer Weight Updateθt+1 = θt −
ηmt√
vt + ǫ

(10)Learning Rate Decayηnew = ηold × decay_rate

Fig. 6  Image after pre-processing steps
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Furthermore, ResNet50 incorporates a bottleneck 
design within its blocks to mitigate computational com-
plexity while maintaining efficacy. This design entails 
employing a sequence of operations within each block: 
first, a 1 × 1 convolution is utilized to reduce the dimen-
sionality of the input feature maps; subsequently, a 3 × 3 
convolution is applied to capture intricate spatial pat-
terns; finally, another 1 × 1 convolution is employed 
to restore the original dimensionality. By strategically 
employing these bottleneck structures, ResNet50 opti-
mizes computational efficiency without compromis-
ing the network’s capacity to capture complex features, 
thereby enabling proficient training and inference across 
diverse applications in computer vision and beyond.

ResNet50 emerges as a pivotal tool owing to its deep 
architecture and adeptness in extracting intricate features 
from medical imaging data. Leveraging its hierarchical 
feature learning capabilities, ResNet50 excels in discern-
ing subtle and complex patterns within MRI images that 
signify the presence of tumors. Moreover, the application 
of transfer learning augments its utility in medical imag-
ing tasks, where limited dataset sizes pose challenges for 
training deep networks from scratch. By pre-training on 
extensive datasets like ImageNet and subsequently fine-
tuning on MRI images, ResNet50 harnesses the knowledge 
of generic features acquired from larger datasets to adapt to 
the nuances of tumor detection, thereby enhancing its per-
formance and generalization capacity.

Furthermore, the integration of interpretability tech-
niques such as Gradient-weighted Class Activation 
Mapping (Grad-CAM) with ResNet50 contributes to 
its utility in clinical settings. This methodology ena-
bles the visualization of salient regions within input 
images that influence the model’s decision-making 
process, thereby enhancing interpretability. Clinicians 
gain insights into the rationale behind the model’s pre-
dictions, as Grad-CAM elucidates the areas deemed 
indicative of tumor presence. This not only bolsters 
confidence in the model’s diagnoses but also facilitates 
collaborative decision-making processes between cli-
nicians and AI systems, ultimately enhancing patient 
care and treatment planning.

ResNet50 is adapted for the binary classification task 
of detecting brain tumors. The final fully connected 
layer of the standard ResNet50 model, typically used for 
1000-class classification, is replaced with a new layer 
tailored to distinguish between two classes: ‘tumor’ and 
‘no tumor’. This adaptation is crucial for tailoring the 
pre-trained model to the specific task at hand.

The model is trained on the augmented MRI dataset, 
leveraging backpropagation to minimize the loss function 
and update the weights. During training, the effectiveness 
of ResNet50’s residual blocks is leveraged to capture the 

intricate details necessary for accurate tumor detection. 
Grad-CAM is then applied to the trained model, providing 
visual explanations that highlight the regions in the MRI 
images most influential to the model’s predictions, thus 
offering a transparent view into the model’s operational 
mechanics.

The algorithm 1 provides a structured approach to lev-
eraging ResNet50 combined with Grad-CAM for the task 
of brain tumor detection from MRI images, emphasizing 
both accuracy in classification and transparency in model 
decision-making through visual explanations.

Algorithm 1. Brain Tumor Detection Using ResNet50 with Grad-CAM
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Training, validation and testing process
The training process for the ResNet50 model in brain 
tumor detection entails a meticulous sequence of steps 
aimed at optimizing its performance and robustness. 
Commencing with model initialization, pre-trained 
weights from datasets like ImageNet are often leveraged 
to kickstart the learning process, facilitating transfer 
learning and expediting convergence towards task-spe-
cific objectives. Subsequently, a suitable loss function, 
typically binary cross-entropy for binary classification 
tasks, is selected to quantify the disparity between pre-
dicted outputs and actual labels. An optimizer, such 
as SGD or Adam, is then chosen to iteratively update 
the network’s weights based on feedback from the loss 
function.

Batch processing is employed to partition the training 
dataset into manageable subsets, enabling incremental 
weight updates and enhancing computational efficiency. 
During each training iteration, a forward pass propa-
gates data through the network, generating predictions. 
Following this, a backward pass, known as backpropaga-
tion, computes the gradient of the loss with respect to the 
network weights, facilitating weight updates by the opti-
mizer to minimize the loss.

The training process unfolds over multiple epochs, 
with each epoch representing a complete pass through 
the entire training dataset. Techniques like dropout or L2 
regularization may be employed to mitigate overfitting, 
ensuring the model generalizes well to unseen data.

Concurrently, the validation process occurs at the end 
of each epoch, where the model’s performance is evalu-
ated on a separate validation set. This assessment offers 
insights into the model’s generalization capabilities and 
informs hyperparameter tuning decisions. Hyperparam-
eters such as learning rate and batch size are adjusted 
based on performance metrics such as accuracy, preci-
sion, and recall. Furthermore, early stopping criteria 
may be implemented to halt training if the model’s per-
formance on the validation set deteriorates, mitigating 
overfitting by preventing the model from learning noise 
from the training dataset. Through this iterative training 
and validation regimen, the ResNet50 model is honed to 
achieve optimal performance and reliability in the task of 
brain tumor detection.

The testing process for the developed deep learning 
model in brain tumor detection involves several rigor-
ous steps to ascertain its reliability, effectiveness, and 
interpretability. Following the completion of training and 
validation phases, the model undergoes final evaluation 
using a designated test set comprising data that remains 
unseen during prior phases. This critical step serves to 
assess the model’s real-world applicability and perfor-
mance under novel conditions.

A comprehensive array of performance metrics, includ-
ing accuracy, precision, recall, F1-score, and confusion 
matrices, are meticulously computed to quantitatively 
evaluate the model’s efficacy in detecting brain tumors. 
Particularly within the realm of medical diagnostics, 
metrics such as sensitivity and specificity hold significant 
importance, providing insights into the model’s ability to 
correctly identify both positive and negative cases.

In addition to quantitative assessments, the interpreta-
bility aspect is addressed through the generation of Grad-
CAM visualizations for test images. These visualizations 
offer qualitative insights into the areas of focus within the 
input images that significantly influence the model’s pre-
dictions. Such interpretability is paramount for garner-
ing clinical acceptance, as it furnishes practitioners with 
comprehensible and trustworthy AI-driven insights.

Moreover, the performance on the test set serves as a 
robust measure of the model’s generalizability, gauging its 
potential effectiveness and reliability in real-world clini-
cal settings. Through this meticulous training, validation, 
and testing process, the deep learning model undergoes 
refinement to ensure not only accuracy but also reliabil-
ity and interpretability, thereby aligning with the critical 
requirements of medical imaging analysis. This compre-
hensive approach underscores the commitment to deliv-
ering robust and clinically applicable solutions in the 
domain of brain tumor detection.

Performance metrics used for evaluation
The evaluation of a deep learning model’s performance, 
such as ResNet50, demands a meticulous selection of 
performance metrics to ascertain its effectiveness, reli-
ability, and clinical applicability. The chosen metrics play 
a pivotal role in offering insights into the model’s predic-
tive prowess and its capacity to discern between tumor 
and non-tumor instances. Accuracy (Eq.  11), defined 
as the ratio of correctly predicted observations to total 
observations, provides a fundamental measure of the 
model’s overall correctness. Precision (Eq.  12), recalling 
the ratio of correctly predicted positive observations to 
the total predicted positives, is crucial in medical diag-
nostics to minimize false positives, while recall (Eq. 13), 
quantifying the ratio of correctly predicted positive 
observations to all actual positives, ensures the model’s 
capability to detect as many true tumor cases as possible. 
TP is for True Positive, TN is for True Negative, FP is for 
False Positive and FN is for False Negative.

(11)Accuracy =
TP+ TN

TP+ FP+ FN+ TN



Page 11 of 19M et al. BMC Medical Imaging          (2024) 24:107 	

The F1 score (Eq.  14), being the harmonic mean of 
precision and recall, balances their trade-off and is 
particularly useful in uneven class distributions. Speci-
ficity, delineating the proportion of actual negatives 
correctly identified, complements recall in ensuring 
accurate diagnoses by minimizing false negatives.

The confusion matrix, incorporating true positives, 
false positives, true negatives, and false negatives, pro-
vides a holistic view of the model’s performance across 
different classes. Receiver Operating Characteristic 
(ROC) curve (Eq. 15) and Area Under the Curve (AUC) 
offer insights into the model’s ability to distinguish 
between classes across various threshold settings, crucial 
in assessing its discriminative capacity. Mean Squared 
Error (MSE) (Eq. 16) ,Root Mean Squared Error (RMSE) 
(Eq. 17) & Mean Absolute Error (MAE) (Eq. 18) typically 
used in regression tasks, provide quantitative insights 
into the magnitude of the model’s error.

F2-Score (Eq. 19) and Cohen’s Kappa (Eq. 20) is also 
calculated further.

(12)Precision =
TP

TP+ FP

(13)Recall =
TP

TP+ FN

(14)F1 = 2×
Precision× Recall

Precision+ Recall

(15)ROC-AUC =
∫ 1

0
TPR

(
f (T )

)
d
[
FPR

(
f (T )

)]

(16)MSE =
1

n

n∑

i=1

(
Yi − Ŷi

)2

(17)RMSE =
√
MSE

(18)MAE =
1

n

n∑

i=1

∣∣∣Yi − Ŷi

∣∣∣

(19)F2 =
(
1+ β2

)
×

Precision× Recall

β2 × Precision+ Recall

Additionally, interpretability metrics like Grad-CAM 
visualizations serve as qualitative assessments, elu-
cidating the model’s focus areas during prediction, 
thereby validating its decision-making process in a clin-
ical context. Collectively, these highly technical metrics 
ensure a comprehensive evaluation of the deep learn-
ing model’s performance, reinforcing its reliability and 
efficacy in clinical applications of brain tumor detection 
from MRI images.

Experimentation and results
The deep learning model developed for brain tumor 
detection underwent rigorous training and testing within 
a robust computational environment, leveraging Python 
as the programming language for its extensive machine 
learning and data processing libraries. PyTorch served 
as the primary deep learning framework, chosen for its 
dynamic computation graph and efficient memory utili-
zation, particularly conducive to training complex neu-
ral networks like ResNet50. Essential libraries included 
torchvision for model access and image transformations, 
PIL for image file operations, NumPy for numerical com-
putations, and matplotlib/Seaborn for visualization. Aug-
mentation techniques significantly expanded the dataset 
from an initial 253 images to 2024, encompassing rota-
tions, flips, scaling, translations, elastic deformations, 
and brightness/contrast adjustments, thereby enhancing 
model generalization and mitigating overfitting risks. The 
training process spanned 10 epochs, with a batch size of 
16 and dynamic learning rate adjustments based on vali-
dation set performance. Notable epoch-wise progress 
showcased consistent improvement, culminating in a test 
accuracy of 98.52%. In Fig. 7 the training loss and accu-
racy as per epochs is shown.

Precision and recall metrics for tumor and no-tumor 
classes exceeded 97% and 98%, respectively, while 
F1-score averaged around 98%. Interpretability was 
enhanced through Grad-CAM visualizations, correlat-
ing model predictions with radiological markers of brain 
tumors, reinforcing clinical trust. These comprehensive 
results underscore the model’s effectiveness in detecting 
brain tumors from MRI images, elucidating its training 
process, performance metrics, and interpretive capa-
bilities for clinical adoption. During the validation and 
testing phases, crucial assessments were conducted to 
evaluate the model’s performance and its ability to gener-
alize to unseen data. Throughout the validation process, 
the model demonstrated exceptional accuracy, peaking 
at 100% by the eighth epoch, affirming its proficiency 
in classifying MRI images into ‘tumor’ and ‘no tumor’ 

(20)κ =
Po − Pe

1− Pe
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categories accurately. Precision, recall, and F1-score 
metrics further underscored the model’s reliability, with 
values nearing 100% by the eighth epoch, indicative of 
robust performance in identifying true positive cases 
while minimizing false positives and negatives. On the 
test set, the model exhibited an impressive accuracy of 
98.52%, complemented by high precision and recall val-
ues for both ‘no tumor’ and ‘tumor’ classes, confirming 
its effectiveness in discerning between pathological and 
healthy states. Visualization of Grad-CAM results pro-
vided an additional interpretive layer to the model’s pre-
dictions, generating heatmaps overlaid on MRI images 
to highlight regions significantly influencing predictions. 
These visualizations, instrumental for clinicians, vali-
dated the model’s attention to clinically relevant features, 
enhancing trust and reliability. In conclusion, the combi-
nation of quantitative metrics and qualitative Grad-CAM 
visualizations offers a comprehensive evaluation frame-
work, affirming the model’s efficacy in brain tumor detec-
tion while ensuring transparency and trustworthiness 
crucial for clinical adoption.

During the validation and testing phases, the model’s 
performance and generalization ability were meticu-
lously scrutinized, yielding comprehensive insights into 
its efficacy in brain tumor detection. Validation accuracy 
emerged as a pivotal metric, with the model achieving a 
remarkable peak accuracy of 100% by the eighth epoch, 
underscoring its proficiency in correctly classifying MRI 
images into ‘tumor’ and ‘no tumor’ categories. Precision, 
recall, and F1-score metrics further elucidated the mod-
el’s reliability, with precision and recall values nearing 
100% by the eighth epoch, translating into an F1-score 
of approximately 100%. These metrics underscored the 
model’s capacity to identify true positive cases while min-
imizing false positives and negatives, essential for precise 

medical diagnostics. In the subsequent testing phase, 
the model exhibited a commendable accuracy of 98.52%, 
slightly lower than the validation accuracy but still indic-
ative of stellar performance. Precision metrics for both 
‘no tumor’ and ‘tumor’ classes exceeded 98%, while recall 
values surpassed 97% and 99%, respectively, affirming the 
model’s proficiency in correctly identifying actual posi-
tive and negative cases. The balanced F1-score around 
98% for both classes corroborated the model’s ability to 
maintain equilibrium between precision and recall, cru-
cial for diagnostic tasks where erroneous classifications 
carry significant ramifications. Table 3 provides the per-
formance metrics.

Figure 8 class wise performance metrics is shown.
Figure 9 depicts the confusion matrix of the proposed 

model.
The Table  4 gives insights of the error metrics of the 

model.
Figure 10 depicts the Error Metrics of the model.
Cohen’s Kappa and F2 Score value is shown in Table 5.
Cohen’s Kappa and F2 Score has been depicted epoch 

wise in Fig. 11.
Augmenting the quantitative metrics, the utilization 

of Gradient-weighted Class Activation Mapping (Grad-
CAM) added an interpretive layer to the model’s predic-
tions. Grad-CAM generated heatmaps superimposed on 
MRI images, spotlighting regions significantly influenc-
ing the model’s decisions. In images depicting tumors, 
the heatmaps predominantly highlighted tumor regions, 
validating the model’s attention to clinically relevant fea-
tures. Beyond mere visualization, these heatmaps offered 
invaluable insights to clinicians, providing a visual affir-
mation that the model’s decisions were grounded in 
relevant pathological markers rather than extraneous 
image features. Such interpretive aids fostered trust and 

Fig. 7  Accuracy and Loss During Training
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reliability among medical practitioners, ensuring that the 
model’s decision-making aligned with clinical expecta-
tions and knowledge. Figure 12 depicts grad cam visuali-
zation of some sample images.

The amalgamation of quantitative metrics and quali-
tative Grad-CAM visualizations furnished a compre-
hensive evaluation framework, elucidating the model’s 
efficacy in brain tumor detection while offering insights 
into its decision-making rationale. This multifaceted 
evaluation not only substantiated the model’s diagnostic 
accuracy but also augmented its transparency and trust-
worthiness, paramount for garnering acceptance and 
adoption in clinical settings.

Discussion
The evaluation of the ResNet50 model, augmented with 
Grad-CAM for interpretability, in detecting brain tumors 
from MRI images unveils its outstanding performance 
and clinical significance. With a testing accuracy reach-
ing 98.52%, the model showcases remarkable robustness 
and reliability. Precision and recall metrics, soaring to 
exceptionally high levels, underscore the model’s pro-
ficiency in accurately identifying tumor presence while 

minimizing false diagnoses—a critical aspect in medi-
cal contexts where every misdiagnosis carries significant 
consequences.

When compared with baseline models or previous 
studies, which often exhibit lower accuracy levels for sim-
ilar tasks, the ResNet50 model’s performance stands out 
prominently. Traditional machine learning approaches or 
earlier deep learning models typically struggle to achieve 
such high precision and recall levels, particularly in the 
nuanced and complex task of brain tumor detection from 
MRI images. The incorporation of Grad-CAM further 
distinguishes this study, offering a layer of interpretability 
often absent in conventional approaches. Table  6 com-
prises of comparison with baseline studies.

The effectiveness of data augmentation emerges as a 
pivotal factor in enhancing the model’s generalization 
capability. By introducing diverse transformations, the 
model learns to recognize tumors across various pres-
entations, mitigating the risk of overfitting to the train-
ing data’s specific characteristics. This holds significant 
importance in medical imaging, where variability across 
patients and imaging conditions is ubiquitous.

The selection of ResNet50 as the model architec-
ture significantly contributes to the high performance 
observed. Its deep layered structure, coupled with resid-
ual connections, empowers the model to learn intricate 
features from MRI images, essential for accurate tumor 
detection. The success of this architecture in this context 
reaffirms its efficacy and adaptability to various image 
recognition tasks, including those in the medical domain.

Table 3  Performance Metrics

Precision Recall F1 Score

No Tumor 0.99 0.97 0.98

Tumor 0.98 0.99 0.99

Fig. 8  Classification Report
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A critical factor in the adoption of AI-driven diagnos-
tic tools is their ability to provide interpretative outputs 
that resonate with expert clinical judgment. To this end, 
the proposed study employs Gradient-weighted Class 
Activation Mapping (Grad-CAM) to generate visual 

explanations for the model’s predictions. The previous 
research works carried out in this field along with the 
survey’s carried out signifies that grad cam is better for 
the model’s interpretative visualizations align with expert 
radiological assessments.

The Grad-CAM visualizations offer compelling 
insights into the model’s decision-making process. By 
spotlighting areas of focus during predictions, these 
visualizations validate that the model is not only learn-
ing but also focusing on the correct features within 
MRI images. For instance, the concentration of heat-
map activations over tumor regions aligns with clinical 

Fig. 9  Confusion Matrix

Table 4  Error Metrics

Metrics Value

MSE 0.015

RMSE 0.122

MAE 0.015

Fig. 10  Error Metrics
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expectations, providing a reassuring confirmation that 
the model’s detections are based on relevant patho-
logical features rather than spurious correlations. 
To understand this more Fig.  13 enhances the visual 
interpretation.

In clinical practice, such visual explanations hold 
immense potential to enhance collaboration between 

Table 5  Advanced Metrics

Metrics Value

F2 Score 0.99

Cohen’s Kappa 0.97

Fig. 11  Epoch Wise Cohen’s Kappa and F2 Score

Fig. 12  Grad-CAM Visualization
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AI systems and medical professionals. They facilitate 
a more informed and nuanced understanding of AI-
assisted diagnoses, empowering clinicians to trust and 
effectively integrate AI tools into their diagnostic pro-
cess. This ensures that the technology acts as a reliable 
aid rather than an opaque and uninterpretable black 
box. Table  7 encapsulates the loss and accuracy per-
formance metrics of different Convolutional Neural 
Network (CNN) architectures when applied to the task 
of brain tumor detection in MRI images. These archi-
tectures are benchmarked to provide a comprehensive 
overview of their effectiveness, allowing for informed 
decisions on the optimal model for deployment in clini-
cal settings.

The data presented in Table  7 showcases the variabil-
ity in performance across different deep learning mod-
els, with the Proposed architecture displaying a notable 
edge in accuracy. These results suggest that the Proposed 

model, with its distinctive approach to convolutional 
operations, outperforms other widely used architec-
tures for this specific task. It is essential to note that the 
model’s architecture is not the sole determinant of per-
formance; factors such as dataset complexity, data pre-
processing, and augmentation strategies also play critical 
roles in achieving high accuracy and low loss in brain 
tumor detection algorithms.

Limitations of the dataset and implications 
for Generalizability
The current study has employed a dataset that, while 
sufficiently large to train a deep learning model with 
high accuracy, presents certain limitations that must be 
addressed to understand the full scope of the model’s 
applicability. Notably, the dataset’s size and diversity are 
constrained, which may impact the model’s ability to 
generalize its findings beyond the scope of the study. The 

Table 6  comparison with baseline studies

Study Technique Accuracy

Khan et al. (2023) [27] Brain tumor detection using deep learning 95.94%

Kumar et al. (2023) [28] Brain tumor classification using CNN models 96.2%

Hossain et al. (2023) [5] Multiclass brain tumor classification using DL architectures 96.94%

Anaya-Isaza et al. (2023) [29] Brain tumor classification and detection using DL architectures and Cross-Transformer 97%

Pillai et al. (2023) [30] Brain tumor detection using deep transfer learning models 91.58%

Sharma et al. (2023) [31] Brain tumor detection using Modified ResNet50 with HOG features 88%

Pedada et al. (2023) [32] Brain tumor segmentation using modified U-Net with residual networks 93.40%

Rahman and Islam (2023) [33] Brain tumor classification using parallel deep convolutional neural network (PDCNN) 97.33%

Proposed Model Optimized Resnet50 with Gradcam 98.52%

Fig. 13  Epoch wise Gradcam
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dataset, comprising a finite number of MRI images, is not 
expansive enough to encapsulate the full heterogeneity 
of brain tumors. Although deep learning models, such 
as the one we have implemented, are capable of learning 
complex patterns in data, their performance is inherently 
tied to the quantity and quality of the training data. The 
size of the dataset limits the model’s exposure to the wide 
range of variations that occur in brain tumors, poten-
tially hindering its predictive performance in clinical sce-
narios that are not represented in the training data. The 
dataset predominantly includes MRI images from a lim-
ited demographic and may not adequately represent the 
diversity seen in the global population. Brain tumors vary 
significantly in their appearance, not only due to biologi-
cal factors but also due to demographic variations. There-
fore, a dataset with greater demographic diversity would 
likely improve the model’s generalizability and reliability 
across different populations. These limitations under-
score the need for caution when extrapolating the study’s 
findings to the general population. The high accuracy and 
precision demonstrated by our model may not fully pre-
dict its effectiveness in a clinical setting, where the range 
of tumor appearances and patient backgrounds is consid-
erably broader. Future research should focus on acquiring 
and incorporating a more diverse and extensive dataset 
that can better represent the global incidence of brain 
tumors. This would enable the development of a model 
with enhanced generalizability, more accurately reflect-
ing the performance one might expect in diverse clinical 
environments.

While the present study provides valuable insights 
into the capabilities of deep learning for brain tumor 
detection, it also highlights the need for continual 
improvement in dataset collection and model training 

methodologies. By addressing these limitations, future 
work can lead to more robust and widely applicable diag-
nostic tools, ultimately contributing to improved patient 
care and outcomes in the domain of medical imaging.

Ethical considerations in the deployment of AI for clinical 
diagnostics
As we stand on the precipice of a new era in medi-
cal diagnostics, propelled by advancements in artificial 
intelligence (AI), it is imperative to address the ethical 
considerations that accompany the deployment of such 
technologies. The use of sensitive patient data to train 
AI models demands stringent adherence to privacy reg-
ulations such as the Health Insurance Portability and 
Accountability Act (HIPAA) and the General Data Pro-
tection Regulation (GDPR). We advocate for robust 
de-identification processes to ensure that patient data 
remains confidential and secure, thereby upholding the 
privacy of individuals. Protecting the data from unau-
thorized access and breaches is crucial. The deployment 
of AI in clinical settings must be accompanied by state-
of-the-art cybersecurity measures to safeguard against 
potential data leaks, ensuring the security and integrity 
of patient information. While AI has the potential to 
significantly improve diagnostic accuracy, there remains 
the risk of misdiagnosis. It is essential to establish clear 
protocols for human oversight, where AI acts as a deci-
sion support tool rather than a definitive diagnostician. 
This ensures that the ultimate responsibility for diagno-
sis remains with trained medical professionals, mitigat-
ing the risk of misdiagnosis due to AI errors.: Patients 
must be informed about the role of AI in their diagnostic 
process, and consent should be obtained with full trans-
parency about the use of AI tools. This promotes trust 
and allows patients to make informed decisions about 
their healthcare. AI models can inadvertently perpetu-
ate biases present in the training data, leading to unequal 
healthcare outcomes. It is critical to use diverse datasets 
for training and validate models across different demo-
graphics to ensure the equitable application of AI in 
clinical diagnostics. Post-deployment, AI systems must 
be continuously monitored and validated to ensure they 
perform as expected over time. This is especially impor-
tant as AI models may degrade or become less accurate 
as patient populations and disease presentations evolve. 
The ethical deployment of AI in healthcare is a shared 
responsibility that requires collaboration between tech-
nologists, healthcare providers, ethicists, and policymak-
ers. By proactively addressing these ethical concerns, we 
can steer the course of AI towards augmenting health-
care delivery while maintaining the highest standards of 
patient care and safety.

Table 7  Comparative Performance Metrics of Various Convolutional 
Neural Network Architectures

CNN Loss 0.5071

Accuracy 80.16%

EfficientNetB0 Loss 0.4281

Accuracy 86.51%

Densenet201 Loss 0.3953

Accuracy 80.16%

Inception Loss 0.3982

Accuracy 81.75%

Xception Loss 0.412

Accuracy 85.71%

Mobilenet Loss 0.3439

Accuracy 84.13%

Proposed Model Loss 0.0702

Accuracy 98.30%
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Future research directions and clinical integration
Proposed research marks a significant step forward in 
the application of AI for brain tumor detection. How-
ever, the path from research to clinical implementation 
is multifaceted, necessitating further investigation. A 
primary direction for future research is the exploration 
of how AI tools can be seamlessly integrated into exist-
ing clinical workflows. This involves the development of 
user-friendly interfaces that allow radiologists to easily 
interact with AI predictions, the establishment of pro-
tocols for when and how AI recommendations are to be 
considered, and the assessment of the impact of AI tools 
on diagnostic accuracy and time efficiency in live clini-
cal environments. It is imperative to conduct longitudi-
nal studies and clinical trials to evaluate the efficacy and 
safety of AI-assisted diagnostics over extended periods. 
This will not only validate the long-term reliability of AI 
tools but also identify any unforeseen issues that may 
arise in a real-world setting. In concert with technologi-
cal advancements, there is a need for developing clear 
regulatory and ethical guidelines that govern the use of 
AI in medical diagnostics. Future research should focus 
on contributing to policy discussions and the creation of 
comprehensive guidelines that ensure patient safety, data 
privacy, and equitable care. To advance the deployment 
of AI in clinical settings, interdisciplinary collaboration 
is essential. Future research should aim to foster part-
nerships between AI researchers, clinicians, ethicists, 
and policy-makers to ensure that the development of 
AI tools aligns with clinical needs and ethical standards. 
Preparing the next generation of healthcare providers to 
work alongside AI is critical. Future research should also 
focus on educational programs and training modules that 
equip medical professionals with the necessary skills to 
effectively utilize AI in their practice. Finally, research 
should continue to advance the technology itself, improv-
ing the accuracy, interpretability, and generalizability 
of AI models. This includes the exploration of novel AI 
architectures, the development of more advanced inter-
pretability techniques, and the expansion of datasets to 
include a wider array of pathologies and patient demo-
graphics. The future of AI in medical diagnostics is a 
promising yet complex journey. By setting clear research 
trajectories, we can ensure that our advancements in AI 
not only push the boundaries of technology but are also 
thoughtfully and effectively translated into improved 
clinical care. This entails not only a deep understanding 
of the technology but also a conscientious effort to align 
with clinical goals, ethical considerations, and regulatory 
requirements, ultimately leading to the delivery of better 
patient outcomes.

The application of a deep learning model like ResNet50, 
augmented with data augmentation techniques and com-
plemented by Grad-CAM for interpretability, presents 
a powerful tool for brain tumor detection from MRI 
images. The model’s high performance, coupled with the 
transparency provided by Grad-CAM, not only advances 
the field of medical imaging analysis but also paves the 
way for more widespread acceptance and use of AI in 
clinical settings.

Conclusion
This study presents the promising application of a deep 
learning model, particularly ResNet50 augmented with 
Grad-CAM, for brain tumor detection in MRI images. 
Achieving a testing accuracy of 98.52% alongside high 
precision and recall metrics underscores the model’s 
efficacy in identifying brain tumors accurately. Leverag-
ing data augmentation techniques significantly bolstered 
the model’s robustness and generalization capabilities 
across diverse imaging scenarios. Moreover, the integra-
tion of Grad-CAM provided valuable insights into the 
model’s decision-making process by highlighting relevant 
areas within the images that influenced its predictions, 
crucial for building trust and interpretability in medical 
AI applications. Despite these promising results, several 
limitations and areas for improvement are recognized. 
Firstly, the study acknowledges the relatively limited 
dataset size and diversity, emphasizing the need for 
larger and more varied datasets encompassing a broader 
spectrum of tumor presentations. Exploring alternative 
architectures like EfficientNet or DenseNet could offer 
insights into optimizing model complexity and compu-
tational efficiency. Additionally, future research direc-
tions include clinical validation to ensure alignment with 
expert assessments and integration into real-world clini-
cal workflows to evaluate diagnostic impact and patient 
outcomes. Refining explainability methods such as Grad-
CAM and integrating multimodal data sources could 
further enhance the model’s diagnostic capabilities and 
foster trust among medical professionals. Overall, while 
this study marks a significant advancement in AI-driven 
brain tumor detection in MRI images, ongoing research 
efforts aim to enhance accuracy, interpretability, and 
clinical applicability, paving the way for improved patient 
care in medical imaging analysis.
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