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Abstract
Background Programmed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in 
guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to 
predict PD-L1 expression in non-small cell lung cancers(NSCLCs).

Methods 259 consecutive patients with pathological confirmed NSCLCs were retrospectively collected and 
divided into the training cohort and validation cohort according to the chronological order. The univariate and 
multivariate analyses were used to build the clinical model. Radiomics and deep learning features were extracted 
from preoperative non-contrast CT images. After feature selection, Radiomics score (Rad-score) and deep learning 
radiomics score (DLR-score) were calculated through a linear combination of the selected features and their 
coefficients. Predictive performance for PD-L1 expression was evaluated via the area under the curve (AUC) of receiver 
operating characteristic, the calibration curves, and the decision curve analysis.

Results The clinical model based on Cytokeratin 19 fragment and lobulated shape obtained an AUC of 0.767(95% CI: 
0.673–0.860) in the training cohort and 0.604 (95% CI:0.477–0.731) in the validation cohort. 11 radiomics features and 
15 deep learning features were selected by LASSO regression. AUCs of the Rad-score were 0.849 (95%CI: 0.783–0.914) 
and 0.717 (95%CI: 0.607–0.826) in the training cohort and validation cohort, respectively. AUCs of DLR-score were 
0.938 (95%CI: 0.899–0.977) and 0.818(95%CI:0.727–0.910) in the training cohort and validation cohort, respectively. 
AUCs of the DLR-score were significantly higher than those of the Rad-score and the clinical model.

Conclusion The CT-based deep learning radiomics signature could achieve clinically acceptable predictive 
performance for PD-L1 expression, which showed potential to be a surrogate imaging biomarker or a complement of 
immunohistochemistry assessment.
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Background
Lung cancer is the second most commonly diagnosed 
cancer worldwide [1, 2]. Although early-stage detection 
through low-dose CT screening and mini-invasive video-
assisted thoracoscopic surgery have improved patients’ 
survival and life quality greatly, lung cancer remains the 
leading cause of cancer-related death due to approxi-
mately 80% of lung cancers being diagnosed at advanced 
stage, which are unresectable and systemic chemotherapy 
is the only option [3, 4]. Only 20-40% of patients response 
to the standard platinum-based chemotherapy [5]. With 
the development of immunotherapy, the management of 
lung cancers has evolved enormously recently. Non-small 
cell lung cancer (NSCLC) accounts for about 85% in all 
lung cancers, including the most common subtypes such 
as lung adenocarcinoma and lung squamous cell carci-
noma [6]. The first-generation antibody-based immuno-
therapy, which targets at blocking the receptor and/or 
ligand interactions of molecules, such as programmed 
cell death protein 1 (PD-1) and its ligand (PD-L1) or 
cytotoxic T lymphocyte antigen-4 can modulate antitu-
mor responses, had shown remarkably response durable 
in NSCLCs [7]. Unfortunately, only 17-21% of patients 
with NSCLCs demonstrated a response to anti–PD-1 
or PD-L1 therapy [8, 9]. Therefore, acknowledgment 
of which patients would benefit from immune check-
point inhibitors (ICIs) is needed in NSCLCs treatment 
strategies. Many studies revealed that tumor mutational 
burden and PD-L1 expression were independent predic-
tive factors for the response of ICIs [10, 11]. However, 
acknowledging these biomarkers requires invasive proce-
dures to obtain tumor tissue specimens for gene sequenc-
ing or immunohistochemistry (IHC) staining, which are 
time-consuming and expensive. Furthermore, obtain-
ing tissue specimens is difficult, even impossible in most 
clinical scenarios for patients with advanced NSCLC.

As a noninvasive technique, CT has been widely imple-
mented in the diagnosis, staging, treatment planning, 
and response assessment of NSCLCs through radiolo-
gists’ visual interpreting, which uses only a few metrics of 
imaging. The development of computer science and arti-
ficial intelligent results into the emergence of radiomics, 
which extracts high-dimensional features from medical 
imaging data to decode imaging phenotype to achieve 
comprehensive clinical goals [12]. In recent years, con-
volutional neural network (CNN) with multiple network 
structures has been widely used in radiological tumor 
research. They can extract a large number of useful deep 
learning (DL) features for tumor grade prediction, lymph 
node metastasis prediction and risk prognosis predic-
tion [13–15]. However, the construction of CNN often 
requires a large number of samples, and most medical 
studies often have a small sample size. Therefore, trans-
fer learning is widely used in the field of medical deep 

learning, which can alleviate the limitation of small 
data sets [16]. Transfer learning involves the use of pre-
trained neural networks on other images and allows 
existing training models to be applied to unsolved prob-
lems, thus greatly reducing the need for a large amount 
of training data. The purpose of this study was to develop 
deep learning radiomics signature as a surrogate imaging 
biomarker for PD-L1 expression of NSCLC, using trans-
fer learning to extract features from CT images, in order 
to provide decision-making support for selecting patients 
who would benefit from ICIs treatment.

Materials and methods
Patients
This study was approved by the Local Hospital Ethics 
Committee of our hospital with the waiver of informed 
consent due to the retrospective nature. We searched 
our hospital’s database for patients who had pathological 
diagnosis of NSCLC via biopsy or surgery receiving CT 
examinations being performed within 3 months before 
biopsy or surgery and IHC staining for PD-L1 expres-
sion. Exclusion criteria were as follows: (1) insufficient 
image quality for nodule segmenting (n = 5); (2) under-
going anti-tumor therapy (radiotherapy, chemotherapy 
or chemoradiotherapy) before biopsy or surgery (n = 7); 
(3) Radiomics feature or deep learning feature extraction 
failed (n = 30). At first, 301 deemed eligible patients were 
identified. After excluding 42 patients, the final study 
cohort included 259 patients.who were divided into a 
training cohort and a validation cohort at a ratio of 7:3 
according to the chronological order (Fig.  1). Patients 
before October 2021 were assigned to training sets(PD-
L1 negative n = 131, PD-L1 positive n = 32), and patients 
after that wereassigned to validation sets (PD-L1 negative 
n = 67, PD-L1 positive n = 29). There was no significant 
difference in the distribution of PD-L1 expression in the 
training set and the validation set (P = 0.053), which could 
be used for model establishment and validation.

CT acquisition and interpretation
Preoperative chest CT examinations were performed on 
CT scanners (Brilliance iCT, Philips Medical Systems). 
The acquisition parameters were as follows: 0.625 mm x 
128 of a collimation; 120 kVp of tuber voltage; automatic 
exposure control (AEC) of tube current; a reconstruction 
slice thickness of 1.5 mm and a gap of 1 mm; field of view 
of 350 × 350 mm; matrix of 512 × 512.

Two experienced radiologists (2 years and 5 years chest 
CT interpretation experience), who were blinded to 
the clinical and PD-L1 expression, interpreted the thin 
slice CT images in the lung window setting to obtain 
the semantic features of nodules on the PACS (Picture 
Archiving and Communication Systems). In the semantic 
description of nodules, CT characteristics as following 
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were included: vacuolar sign, cavity, pleural thickening, 
pleural indentation, hilar adenopathy, mediastinal ade-
nopathy, vessel convergence, location, lobulated shape, 
spiculation, airbronchial sign, types of nodules and size.

Feature extraction, feature selection and signature 
construction
The thin slice images in Digital Imaging and Communi-
cation in Medicine (DICOM) format derived from PACS 
were transferred to ITK-SNAP 3.8.0 (http://www.itksnap.
org) of a personal computer for tumor segmentation 
and radiomics feature extraction. The regions of interest 
(ROIs) of tumor were manually drew using ITK-SNAP 
software on each thin slice to convert a three-dimensional 
volume of interest (3D-VOIs). Two radiologists with 2 
years and 5 years of experience in thoracic CT interpreta-
tion segmented tumors in 30 randomly selected patients 
independently. The radiologist with 2 years of experience 
segmented all the nodules manually. 1834 radiomics fea-
tures were extracted from the 3D-VOIs using the open-
source software package Pyradiomics (https://github.
com/Radiomics/pyradiomics).

A pre-trained CNN, ResNet 50, was used for trans-
fer learning to extract deep learning features from thin 
CT images of NSCLCs. First, the image with the largest 
tumor area per patient was selected and the grayscale 
values were normalized into the range [− 1,1] using a 
min-max transformation. Then each cropped subregion 
image was resized to 224 × 224, and the resulting image 
was used as model input [17, 18].

Z-Score normalization was implemented to reduce 
the influence of features’ scales. Intraclass correlation 
coefficients (ICC) of interobservers were implemented 
to roll out those radiomics or deep learning features 
with low repeatability (ICC ≤ 0.75). Pearson correlation 
was performed to exclude the radiomics or deep learn-
ing features with high correlations (r > 0.90). Then the 
retained features were introduced into the least absolute 
shrinkage and selection operator (LASSO) regression 
with 5-fold cross-validation to select radiomics or deep 
learning features which were strong association with 
PD-L1. Radiomics score (Rad-score) and deep learn-
ing radiomics score (DLR-score) for each patient were 
calculated through a linear combination of the selected 
features weighted by their coefficient. Feature selection 
procedure was implemented on both radiomics features 
and deep learning features in the training cohort. The sig-
natures trained on the training cohort were applied to the 
validation cohort for testing in independent cases. The 
workflow of model building is shown in Fig. 2.

PD-L1 testing
PD-L1 expression of NSCLCs was assessed using immu-
nohistochemical staining and reported as tumor pro-
portion score (TPS). TPS is defined as the percentage of 
tumor cells stained with PD-L1 membrane of any inten-
sity. The PD-L1 expression was dichotomized according 
to TPS level (TPS < 1% is negative, TPS ≥ 1% is positive). 
Finally, there were 198 PD-L1 negative cases and 61 
PDL1 positive cases.

Fig. 1 Flowchart shows inclusion and exclusion criteria for the study
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Statistical analysis and Model Development
For clinical metrics, univariate analysis (t-test, Mann-
Whitney U rank test, χ2 test, or Fisher’s precise prob-
ability test) was used to select those which were related 
to PD-L1 expression, and then introduced into a multi-
variate logistic regression model. The predictive per-
formances of the clinical model, the Rad-score and the 
DLR-score were assessed by area under the curve (AUC) 
of receiver operating characteristic (ROC) which were 
compared using the DeLong method. The calibration 
effectiveness, the goodness of fit, the net benefit and the 
clinical effectiveness of the better model were evaluated 
using the calibration curve, the Hosmer-Lemeshow and 
the decision curve. ROC analysis of models was per-
formed to obtain the optimal cut-off value [19, 20].

Results
Patient characteristics and clinical model
Demographic characteristics of all patients were showed 
in Table  1. At univariable analysis, Cytokeratin 19 frag-
ment (P = 0.047) and lobulated shape(P = 0.014) were 
related to PD-L1 with statistical significance (Table 2) in 
training cohort. Multivariate logistic regression revealed 
that Cytokeratin 19 fragment and lobulated shape were 
independent risk factors for PD-L1 (Table  2). A clini-
cal model based on these two clinical features yielded 
predictive performance with an AUC of 0.767(95% CI: 
0.673–0.860) for PD-L1 in the training cohort and 0.604 
(95% CI:0.477–0.731) in validation cohort.

Radiomics score and deep learning Radiomics score 
building and evaluation
After ICC and pearson analysis, 205 radiomics fea-
tures were introduced into the LASSO model. 11 fea-
tures were selected to establish the Rad-score as [21]: 
Rad-score = 0.19631901840490795 + 0.002025*exponen-
tial_glszm_SmallAreaEmphasis + 0.022456*lbp_3D_k_
ngtdm_Busyness + 0.030649*lbp_3D_m1_glszm_Size-
ZoneNonUniformity + 0.028801*lbp_3D_m1_glszm_
SmallAreaLowGrayLevelEmphasis + 0.009714*lbp_3D_
m2_firstorder_Median-0.032295*log_sigma_2_0_
mm_3D_glszm_Zone%-0.028661*squareroot_firstorder_
Skewness + 0.024971*wavelet_HHL_glszm_ZoneVari-
ance + 0.020694*wavelet_HLL_glcm_ClusterProminence-
0.002185*wavelet_LHL_firstorder_Median + 0.019159 * 
wavelet_LLL_firstorder_Kurtosis. In deep learning, 2048 
DL radiomics features were extracted. After ICC and 
Pearson analysis, 7 features were found to be excluded. 
Then LASSO regression revealed that 19 DL features 
were strongly associated with PD-L1. Following a rule 
of thumb, we have retained the 15 characteristics that 
are most relevant to PD-L1 [22]. The DLR-score was 
calculated as [17]: DLR-score = 0.19631901840490795- 
0.029073 * DL_85 -0.008362 * DL_87 + 0.019473 * DL_148 
-0.001373 * DL_263 -0.034845 * DL_304 -0.030973 
* DL_414 -0.005602 * DL_456 -0.002396 * DL_642 
-0.004188 * DL_780 + 0.009646 * DL_819 + 0.018088 * 
DL_899 -0.013829 * DL_1011 -0.006451 * DL_1038-
0.012642 * DL_1252 -0.008234 * DL_1681. AUCs of 
Rad-score for PD-L1 expression were 0.849 (95%CI: 

Fig. 2 The models workflow
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variables Training set(n = 163) Validation set (n = 96)
All PD-L1 

negative(n = 131)
PD-
L1positive(n = 32)

P 
Value

All PD-L1 
negative(n = 67)

PD-L1 
positive(n = 29)

P 
Value

Age 56.90 ± 12.09 56.53 ± 12.44 58.41 ± 10.57 0.432 58.60 ± 14.46 57.81 ± 14.61 60.45 ± 14.19 0.414
CK_19 2.25(1.74,3.06) 2.11(1.68,2.92) 2.79(2.08,4.18) 0.001 2.57(1.98,3.77) 2.57(1.63,3.58) 2.56(2.16,4.19) 0.160
CEA 1.72(0.97,2.84) 1.55(0.92,2.53) 2.80(1.66,7.04) < 0.001 2.13(1.30,3.83) 1.84(1.23,3.43) 3.23(1.75,6.60) 0.100
NSE 10.90(9.14,12.70) 10.80(8.98,12.50) 11.40(10.12,13.58) 0.090 11.30(9.54,13.48) 11.85(9.46,14.00) 10.90(9.55,12.30) 0.357
Gender 0.204 0.827
female 100(61.35%) 84(64.12%) 16(50.00%) 53(55.21%) 36(53.73%) 17(58.62%)
male 63(38.65%) 47(35.88%) 16(50.00%) 43(44.79%) 31(46.27%) 12(41.38%)
Smoking 1 1
absence 129(79.14%) 104(79.39%) 25(78.12%) 80(83.33%) 56(83.58%) 24(82.76%)
presence 34(20.86%) 27(20.61%) 7(21.88%) 16(16.67%) 11(16.42%) 5(17.24%)
Family history 0.931 0.115
no cancer 133(81.60%) 107(81.68%) 26(81.25%) 87(90.62%) 63(94.03%) 24(82.76%)
lung cancer 12(7.36%) 10(7.63%) 2(6.25%) 4(4.17%) 1(1.49%) 3(10.34%)
other cancers 18(11.04%) 14(10.69%) 4(12.50%) 5(5.21%) 3(4.48%) 2(6.90%)
TNM 0.630 0.140
I 77(47.24%) 60(45.80%) 17(53.12%) 47(48.96%) 31(46.27%) 16(55.17%)
II 7(4.29%) 5(3.82%) 2(6.25%) 2(2.08%) 0(0.00%) 2(6.90%)
III 7(4.29%) 7(5.34%) 0(0.00%) 5(5.21%) 3(4.48%) 2(6.90%)
IV 9(5.52%) 7(5.34%) 2(6.25%) 3(3.12%) 2(2.99%) 1(3.45%)
unknown 63(38.65%) 52(39.69%) 11(34.38%) 39(40.62%) 31(46.27%) 8(27.59%)
Vacuolar sign 0.677 0.247
absence 134(82.21%) 109(83.21%) 25(78.12%) 69(71.88%) 51(76.12%) 18(62.07%)
presence 29(17.79%) 22(16.79%) 7(21.88%) 27(28.12%) 16(23.88%) 11(37.93%)
Cavity 1.000 0.461
absence 157(96.32%) 126(96.18%) 31(96.88%) 88(91.67%) 60(89.55%) 28(96.55%)
presence 6(3.68%) 5(3.82%) 1(3.12%) 8(8.33%) 7(10.45%) 1(3.45%)
Pleural 
thickening

1.000 1

absence 109(66.87%) 88(67.18%) 21(65.62%) 47(48.96%) 33(49.25%) 14(48.28%)
presence 54(33.13%) 43(32.82%) 11(34.38%) 49(51.04%) 34(50.75%) 15(51.72%)
Pleural 
indentation

0.378 0.221

absence 75(46.01%) 63(48.09%) 12(37.50%) 37(38.54%) 29(43.28%) 8(27.59%)
presence 88(53.99%) 68(51.91%) 20(62.50%) 59(61.46%) 38(56.72%) 21(72.41%)
Hilar 
adenopathy

1.000 0.312

absence 150(92.02%) 121(92.37%) 29(90.62%) 91(94.79%) 62(92.54%) 29(100.00%)
presence 13(7.98%) 10(7.63%) 3(9.38%) 5(5.21%) 5(7.46%) 0
Mediastinal 
adenopathy

0.705 0.123

absence 148(90.80%) 120(91.60%) 28(87.50%) 88(91.67%) 59(88.06%) 29(100.00%)
presence 15(9.20%) 11(8.40%) 4(12.50%) 8(8.33%) 8(11.94%) 0(0.00%)
Lobulated_
shape

0.180 0.427

absence 60(36.81%) 52(39.69%) 8(25.00%) 17(17.71%) 10(14.93%) 7(24.14%)
presence 103(63.19%) 79(60.31%) 24(75.00%) 79(82.29%) 57(85.07%) 22(75.86%)
Vessel_conver-
gence

0.885 0.491

absence 72(44.17%) 57(43.51%) 15(46.88%) 30(31.25%) 19(28.36%) 11(37.93%)
presence 91(55.83%) 74(56.49%) 17(53.12%) 66(68.75%) 48(71.64%) 18(62.07%)
Spiculation 1.000 0.019
absence 77(47.24%) 62(47.33%) 15(46.88%) 35(36.46%) 30(44.78%) 5(17.24%)

Table 1 Demographic and CT characteristics of all patients
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0.783–0.914) and 0.717 (95%CI: 0.607–0.826) in the 
training cohort and validation cohort, respectively. AUCs 
of DLR-score for PD-L1 expression were 0.938(95%CI: 
0.899–0.977) and 0.818(95%CI:0.727–0.910) in the train-
ing cohort and validation cohort, respectively. The pre-
dictive performance of the DLR-score was significantly 
higher than that of the clinical model and Rad-score in 
both cohorts (Fig. 3). The results of the ROC analysis of 
each model are shown in Table  3. The Youden index of 

the ROC curve determined the optimal cut-off value. The 
optimal cut-off value derived from DLR-score was 0.246, 
with sensitivity, specificity, PPV, NPV and accuracy, of 
90.6%, 87.8%, 64.4%, 97.5%, and 88.3%, respectively. The 
comparison of clinical and CT features between high 
(more than cut-off value) and low ( less than cut-off 
value) DLR-score was shown in Table  4. Intending to 
examine the interpretability of DL features, we also visu-
alize the network by applying a gradient-weighted class 

Table 2 The univariate and multivariate logistic regression of PD-L1 expression based on clinical and CT characteristics in training 
cohort
variables Univariate analysis Multivariate logistic regression

OR value 95%CI P value OR value 95%CI P value
Gender 2.487 0.725-8.600 0.144
Age 0.994 0.947–1.042 0.803
Cytokeratin 19 fragment 1.402 1.036–1.983 0.047 1.511 1.180–2.085 0.006
CEA 1.000 0.985–1.014 0.950
NSE 1.096 0.933–1.285 0.266
Smoking 0.543 0.137–2.346 0.426
Famaily history 0.725 0.312–1.493 0.410
TNM stage 0.709 0.221–1.876 0.514
Vacuolar sign 0.744 0.190–2.628 0.655
Cavity 0.409 0.147–4.672 0.517
Pleural thickening 0.538 0.155–1.702 0.305
Pleural indentation 1.601 0.464–5.695 0.457
Hilar adenopathy 0.616 0.041–6.237 0.697
Mediastinal adenopathy 2.890 0.327–29.307 0.344
Vessel convergence 1.771 0.571–5.805 0.328
Location 1.866 0.550–7.601 0.343
Lobulated shape 4.356 1.479–16.163 0.014 5.409 1.927–19.443 0.003
Spiculation 1.122 0.310–4.138 0.860
Airbronchial sign 2.280 0.695–7.494 0.170
Types of nodule 1.630 0.784–3.482 0.194
Size 1.018 0.946–1.010 0.638
†PD-L1, programmed death ligand 1; CEA, carcinoembryonic antigen; NSE, neuron specific enolase

variables Training set(n = 163) Validation set (n = 96)
All PD-L1 

negative(n = 131)
PD-
L1positive(n = 32)

P 
Value

All PD-L1 
negative(n = 67)

PD-L1 
positive(n = 29)

P 
Value

presence 86(52.76%) 69(52.67%) 17(53.12%) 61(63.54%) 37(55.22%) 24(82.76%)
Airbronchial_
sign

0.914 0.327

absence 131(80.37%) 106(80.92%) 25(78.12%) 74(77.08%) 54(80.60%) 20(68.97%)
presence 32(19.63%) 25(19.08%) 7(21.88%) 22(22.92%) 13(19.40%) 9(31.03%)
Types of 
nodule

0.225 0.914

ground-glass 
nodule

58(35.58%) 48(36.64%) 10(31.25%) 34(35.42%) 23(34.33%) 11(37.93%)

part-solid 
ground-glass 
nodule

54(33.13%) 46(35.11%) 8(25.00%) 26(27.08%) 18(26.87%) 8(27.59%)

solid nodule 51(31.29%) 37(28.24%) 14(43.75%) 36(37.50%) 26(38.81%) 10(34.48%)
Size 12.00(8.50,18.25) 11.50(8.25,17.00) 16.00(11.13,24.31) 0.002 13.63(10.75,19.69) 13.00(9.25,18.50) 15.50(11.38,22.63) 0.139
†CEA, carcinoembryonic antigen; NSE, neuron specific enolase

Table 1 (continued) 
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Fig. 3 The ROC curves of clinical model, Radscore, and DLR-score in training cohort (A) and validation cohort (B), respectively
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activation mapping that can provide a rough position-
ing map to highlight important areas of the classifica-
tion target (Figs. 4 and 5). The calibration curves of the 
radiomics model showed a good calibration effect on 
the predictive efficacy of PD-L1 expression in the train-
ing cohort (Fig.  6A), and the Hosmer-Lemeshow test 
showed nonsignificant statistic in the training cohort 
(P = 0.141), indicating that there was no significant differ-
ence between prediction and pathology result. The deci-
sion curve analysis shows that radiomics model achieved 
a high net benefit at most probability thresholds, indi-
cating that DLR-score could achieve excellent clinical 
effectiveness when the probability of threshold is approx-
imately between 0% and about 80% in the training cohort 
(Fig. 6B).

Discussion
In this study, we probed whether deep learning signa-
ture derived from preoperative CT could be used to 
predict PD-L1 expression. We developed and validated 
three models, clinical, radiomics, and DLR-score, for 
predicting PD-L1 expression by quantitative analysis of 
CT images of NSCLCs. In the training and validation 
cohorts, the DLR-score showed the best predictive per-
formance compared to other models. The AUCs of DLR-
score were 0.938(95%CI: 0.899–0.977) in the training 
cohort and 0.818(95%CI:0.727–0.910) in the validation 
cohort. DCA showed that the DLR-score can improve 
the predictive performance of PD-L1 expression. The 
high predictive performance of the DLR-score showed 
the possibility to be a noninvasive surrogate biomarker 
for PD-L1 facilitating the selection of patients who would 
benefit from ICIs treatment.

PD-L1 plays an important role in guiding immunother-
apy of lung cancer. When the PD-L1 of tumor cells binds 
to the PD-1 on the surface of immune cells, a negative 
immune response will occur, resulting in the escape of 
tumor cells and promoting the occurrence, development 
and metastasis of tumors [23]. PD-1/PD-L1 inhibitors kill 

tumor cells by blocking the binding of the PD-1/PD-L1 
pathway, relieving the negative regulation of immune 
cells and preventing immune escape [24]. PD-1/PD-L1 
inhibitors were included in the first category of recom-
mendations in NSCLC’s NCCN guidelines [25, 26]. 
When stratified analysis of PD-L1 in tumor tissue, it was 
found that PD-1/PD-L1 inhibitor was more effective in 
patients with PD-L1 positive [27–29]. Therefore, there 
is an urgent need for screening patients who might be 
most likely to benefit from ICIs treatment. Recent studies 
showed that PD-L1 expression, tumor mutational bur-
den and tumor immune microenvironment can be used 
as predictive biomarkers to predict the response of ICIs 
treatment, but these require not only invasive procedures 
to obtain tissue specimens, but also time-consuming and 
expensive laboratory tests [7, 30]. Therefore, these bio-
markers are not broadly available in clinical scenarios, 
especially in patients with advanced NSCLCs for tissue 
specimens are difficult to obtain sometimes, even impos-
sible. Furthermore, malignancies are heterogenetic, and 
tissue specimens, especially those through biopsy, may 
harbor sample errors. Therefore, clinicians still con-
front the challenge to choose suitable patients for ICIs 
treatment.

Radiomics is a data-driven discipline based on widely 
available imaging data that can be used to improve diag-
nosis, prognosis, and clinical decision support [31]. In 
order to provide decision support of ICIs treatment, sev-
eral studies have investigated the association between 
radiomics signature with PD-L1 expression and tumor 
immune microenvironment in several kinds of solid 
tumors [32–34]. Regarding PD-L1 expression in NSCLC, 
Jiang et al [35] derived radiomics signatures from CT, 
PET, and PET/CT, which achieved predictive perfor-
mance to identify PD-L1 expression over 1% with AUC 
of 0.86, 0.62, and 0.85, respectively. Using the same algo-
rithm, Sun et al [36] reported preoperative CT-derived 
radiomics signature obtained AUCs of 0.786 and 0.807 
in the training and validation cohort, respectively. When 

Table 3 The performance of deep transfer learning radiomics signature to predict PD-L1 expression
models cohort AUC P value* cut-off value sensitivity specificity PPV NPV accuracy
Clinical
model

training 0.767
( 0.673–0.860)

< 0.001 -1.431 87.5% 61.8% 35.9% 95.3% 66.9%

validation 0.604
(0.477–0.731)

0.004 -1.431 82.8% 38.8% 36.9% 83.9% 52.1%

Rad-score training 0.849
(0.783–0.914)

0.012 0.125 93.8% 64.1% 39.0% 97.7% 69.9%

validation 0.717
(0.607–0.826)

0.059 0.125 75.9% 59.7% 44.9% 85.1% 64.6%

DLR-score training 0.938 (0.899–0.977) - 0.246 90.6% 87.8% 64.4% 97.5% 88.3%
validation 0.818

(0.727–0.910)
- 0.246 62.1% 86.6% 66.7% 84.1% 79.2%

*The P value of the clinical model and Rad-score were obtained by performing DeLong test in two cohorts with reference to the AUC of DLR-score respectively

PPV: Positive predictive value; NPV: Negative predictive value
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variables DLRadscore P value
Low (n = 187) High (n = 72)

Age 57.06 ± 13.38 58.74 ± 12.01 0.355
Gender 0.034
female 118(77.1%) 35(22.9%)
male 69(65.1%) 37(34.9%)
Smoking 0.073
absence 156 (74.6%) 53(25.4%)
presence 31 (62.0%) 19(38.0%)
Family history 0.684
no cancer 161(73.2%) 59(26.8%)
lung cancer 11(68.8%) 5(31.3%)
other cancers 15(65.2%) 8(34.8%)
Cytokeratin 19 fragment 2.33(1.71,3.07) 2.52(1.85,3.79) 0.039
CEA 1.72(1.00,2.84) 2.57(1.36,3.98) 0.190
NSE 10.90(9.21,12.80) 11.30(9.94,13.35) 0.098
TNM stage 0.253
I 91(73.4%) 33(26.6%)
II 9(77.8%) 0(0.0%)
III 10(83.3%) 2(16.7%)
IV 8(66.7%) 4(33.0%)
unknown 69(67.6%) 33(32.4%)
Vacuolar sign 0.597
absence 145(71.4%) 58(28.6%)
presence 42(75.0%) 14(25.0%)
Cavity 0.027
absence 181(73.9%) 64(26.1%)
presence 6(42.9%) 8(57.1%)
Pleural thickening 0.037
absence 120(76.9%) 36(23.1%)
presence 67(65.0%) 36(35.0%)
Pleural indentation 0.011
absence 90(80.4%) 22(19.6%)
presence 97(66.0%) 50(34.0%)
Hilar adenopathy 0.006
absence 179(74.3%) 62(25.7%)
presence 8(44.4%) 10(55.6%)
Mediastinal adenopathy 0.001
absence 177(75.0%) 59(25.0%)
presence 10(43.5%) 13(56.5%)
Vessel_convergence 0.920
absence 74(72.5%) 28(27.5%)
presence 113(72.0%) 44(28.0%)
Lobulated_shape 0.001
absence 67(87.0%) 10(13.0%)
presence 120(65.9%) 62(34.1%)
Spiculation 0.001
absence 93(83.0%) 19(17.0%)
presence 94(63.9%) 53(36.1%)
Airbronchial sign 0.089
absence 153(74.6%) 52(25.4%)
presence 34(63.0%) 20(37.0%)
Types of nodule 0.003
ground-glass nodule 73(79.3%) 19(20.7%)

Table 4 The comparison of clinical and CT features between high DLRad-score and low DLRad-score
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combined with clinicopathological features, the predic-
tive performance increased to 0.829 and 0.848, respec-
tively. However, the authors did not evaluate whether the 
difference was statistically significant. Our present study 
achieved a similar predictive performance with these two 
studies. In our study, the AUC of our clinical model and 
the radiomics score were 0.767 (95%CI: 0.673–0.860) and 
0.849 (95% CI: 0.783–0.914), respectively, which was sim-
ilar with the results of the above two studies.

Deep learning has made significant progress in the 
field of medical image analysis by mining high-through-
put information from medical images for recognition of 
images or prediction of gene expression [37–40]. Wang 
et al. developed an end-to-end deep learning model 
based on CT images, which obtained AUCs of 0.85 (95% 
CI 0.83–0.88) in the primary cohort and 0.81 (95% CI 
0.79–0.83) in the independent validation cohort to pre-
dict EGFR mutation status in lung cancers, respectively 

[38]. Chen et al. developed a deep learning-based 
method for the automatic segmentation of meningio-
mas from multiparametric MR images, and the AUC 
of the radiomics model with automatic segmentation 
was comparable to the AUC of the manual segmenta-
tion model in the internal (0.95 vs. 0.93, p = 0.176) and 
external (0.88 vs. 0.91, p = 0.419) test cohort [37]. In this 
study, a pre-trained CNN, ResNet 50, was implemented 
to extract 2048 deep learning features from CT images 
of NSCLCs, and 15 features were found to be strongly 
associated with PD-L1 expression. Compared to the 
clinical model and radiomics model, the DLR-score dem-
onstrated the highest predictive performance for PD-L1 
expression with AUCs of 0.938(95%CI: 0.899–0.977) and 
0.818(95%CI:0.727–0.910) in the training cohort and 
the validation cohort, respectively. The optimal cut-off 
value derived from DLR-score was 0.246 achieved sen-
sitivity, specificity, PPV, NPV, and accuracy, of 90.6%, 

Fig. 4 A 51-year-old man with NSCLC. (A) Axial CT image shows a solid nodule of the left upper lobe. DLR-score 0.839. (B) The Photomicrograph shows a 
positive expression of PD-L1(IHC; x400). (C) Grad-CAM visualization. Grad-CAM, gradient-weighted class activation mapping

 

variables DLRadscore P value
Low (n = 187) High (n = 72)

part-solid ground-glass nodule 67(83.8%) 17(21.5%)
solid nodule 51(58.6%) 36(41.4%)
Size 11.75(8.75,17.25) 15.750(11.00,21.50) 0.001

Table 4 (continued) 
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87.8%, 64.4%, 97.5%, and 88.3%, respectively, which were 
more improved than the other two models. The decision 
curve analysis also showed that the clinical net benefit 
of the DLR-score was higher than that of clinical models 
and radiomics score, both in the training and validation 
cohort.

Several limitations of this study need to be acknowl-
edged. First, this was a retrospective study with a small 
sample size and no external validation cohort. Second, 
the imbalance distribution between PD-L1 positive and 
negative expression may impact on the predictive per-
formance of the model. Third, to avoid overfitting, trans-
fer learning often requires a large sample size, and the 
sample size in this study was clearly not sufficient for 3D 
analysis, so we used the image of the largest tumor area, 
rather than using 3D whole tumor volume to extract DL 
features [17]. However, this approach is time-saving and 
may be more clinically appropriate. Finally, owing to sur-
gical confirmed cases at an early stage and a short follow-
up period, only several patients received ICIs treatment 
after surgery due to recurrence or metastasis at present. 
Therefore, the predictive performance of the CT-based 
deep learning radiomics signature for treatment response 
was not evaluated at this study.

Conclusion
In conclusion, this study developed clinical, radiomics 
and deep learning models to predict PD-L1 expression 
in NSCLCs non-invasively. It showed the CT-based deep 
learning radiomics model could achieve clinically accept-
able predictive performance in both training and vali-
dation cohorts. The deep learning radiomics signature 
could offer a surrogate imaging biomarker or a comple-
ment for IHC analysis, which could facilitate clinical 
decision support in identifying NSCLC patients who are 
likely to benefit from ICIs treatment.

Fig. 5 A 78-year-old man with NSCLC. (A) Axial CT image shows a ground glass nodule of the left lower lobe, DLR-score 0.141. (B) The Photomicrograph 
shows a negative expression of PD-L1(IHC; x400). (C) Grad-CAM visualization. Grad-CAM, gradient-weighted class activation mapping
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Fig. 6 The calibration curves of the DLR-score in the training cohort (A). The decision curve analyses of the three models in training cohort (B). The DLR-
score can achieve a greater net effect than the other two models
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PD-L1  Programmed cell death ligand 1
Rad-score  Radiomics score
ROI  Regions of interest
TPS  Tumor proportion score

Acknowledgements
Thanks to all authors for their contribution to this article.

Author contributions
Ting Xu: Formal analysis, Writing–original draft; Xiaowen Liu: 
Conceptualization; Jingshan Gong: Funding acquisition, Methodology, Writing 
– review & editing; Yaxi Chen: Data curation; Changsi Jiang: Data curation; 
Shuxing Wang: Data curation.

Funding
This study has received funding by the National Natural Science Foundation of 
China (82172026) (Jingshan Gong).

Data availability
The datasets analyzed during the current study are available from the 
corresponding author on reasonable request.

Declarations

Ethical approval
This study was approved by the Shenzhen People’s Hospital Ethics Committee 
with waiver of informed consent due to the nature of retrospective study (NO. 
LL-KY-2021058). All methods were conducted ethically in accordance with the 
World Medical Association Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors of this manuscript declare no relationships with any companies, 
whose products or services may be related to the subject matter of the article.

Received: 5 August 2023 / Accepted: 26 July 2024

References
1. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. 

Cancer statistics in China and United States, 2022: profiles, trends, and deter-
minants. Chin Med J (Engl). 2022;135(5):584–90.

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 
F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and 
Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

3. Sands J, Tammemagi MC, Couraud S, Baldwin DR, Borondy-Kitts A, Yankelevitz 
D, Lewis J, Grannis F, Kauczor HU, von Stackelberg O, et al. Lung screening 
benefits and challenges: a review of the data and outline for implementation. 
J Thorac Oncol. 2021;16(1):37–53.

4. Houston KA, Henley SJ, Li J, White MC, Richards TB. Patterns in lung 
cancer incidence rates and trends by histologic type in the United States, 
2004–2009. Lung Cancer. 2014;86(1):22–8.

5. Santabarbara G, Maione P, Rossi A, Palazzolo G, Gridelli C. The role of pembro-
lizumab in the treatment of advanced non-small cell lung cancer. Ann Transl 
Med. 2016;4(11):215.

6. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-
small cell lung cancer. Nature. 2018;553(7689):446–54.

7. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski 
A, Long N, Sauter JL, Rekhtman N, et al. Molecular determinants of response 
to Anti-programmed Cell death (PD)-1 and anti-programmed death-ligand 
1 (PD-L1) blockade in patients with non-small-cell Lung Cancer profiled with 
targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41.

8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott 
DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activ-
ity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 
2012;366(26):2443–54.

9. Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, Park K, 
Gorbunova V, Kowalyszyn RD, Pikiel J, et al. Ramucirumab plus Docetaxel 
versus placebo plus docetaxel for second-line treatment of stage IV non-
small-cell lung cancer after disease progression on platinum-based therapy 
(REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 
2014;384(9944):665–73.

10. Kluger HM, Zito CR, Turcu G, Baine MK, Zhang H, Adeniran A, Sznol M, Rimm 
DL, Kluger Y, Chen L, et al. PD-L1 studies across Tumor types, its Differential 
expression and predictive value in patients treated with Immune Checkpoint 
inhibitors. Clin Cancer Res. 2017;23(15):4270–9.

11. Shi WJ, Zhao W. Biomarkers or factors for predicting the efficacy and adverse 
effects of immune checkpoint inhibitors in lung cancer: achievements and 
prospective. Chin Med J (Engl). 2020;133(20):2466–75.

12. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, 
Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. Decoding tumour 
phenotype by noninvasive imaging using a quantitative radiomics approach. 
Nat Commun. 2014;5:4006.

13. Liu Y, Balagurunathan Y, Atwater T, Antic S, Li Q, Walker RC, Smith GT, Massion 
PP, Schabath MB, Gillies RJ. Radiological image traits Predictive of Cancer 
Status in Pulmonary nodules. Clin Cancer Res. 2017;23(6):1442–9.

14. Ehteshami Bejnordi B, Veta M, van Johannes P, van Ginneken B, Karssemeijer 
N, Litjens G, van der Laak J, the, Hermsen CC, Manson M et al. QF : Diagnostic 
Assessment of Deep Learning Algorithms for Detection of Lymph Node 
Metastases in Women With Breast Cancer. JAMA 2017, 318(22):2199–2210.

15. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, 
Ye W, Corrado G, et al. End-to-end lung cancer screening with three-dimen-
sional deep learning on low-dose chest computed tomography. Nat Med. 
2019;25(6):954–61.

16. Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Mul-
tisource transfer learning with convolutional neural networks for lung pattern 
analysis. IEEE J Biomed Health Inf. 2017;21(1):76–84.

17. Zheng Y-m, Che J-y, Yuan M-g, Wu Z-j, Pang J, Zhou R-z, Li X-l, Dong C. A CT-
Based Deep Learning Radiomics Nomogram to predict histological grades of 
Head and Neck squamous cell carcinoma. Acad Radiol. 2023;30(8):1591–9.

18. Zeng Q, Li H, Zhu Y, Feng Z, Shu X, Wu A, Luo L, Cao Y, Tu Y, Xiong J et al. 
Development and validation of a predictive model combining clinical, 
radiomics, and deep transfer learning features for lymph node metastasis in 
early gastric cancer. Front Med 2022, 9.

19. Zhang Y, Ko C-C, Chen J-H, Chang K-T, Chen T-Y, Lim S-W, Tsui Y-K, Su M-Y. 
Radiomics Approach for Prediction of Recurrence in Non-functioning Pitu-
itary Macroadenomas. Front Oncol. 2020;10:590083.

20. Zhu F, Yang C, Xia Y, Wang J, Zou J, Zhao L, Zhao Z. CT-based radiomics 
models may predict the early efficacy of microwave ablation in malignant 
lung tumors. Cancer Imaging: Official Publication Int Cancer Imaging Soc. 
2023;23(1):60.

21. Wang Y, Bi Q, Deng Y, Yang Z, Song Y, Wu Y, Wu K. Development and valida-
tion of an MRI-based Radiomics Nomogram for Assessing Deep Myome-
trial Invasion in Early Stage Endometrial Adenocarcinoma. Acad Radiol. 
2023;30(4):668–79.

22. Halligan S, Menu Y, Mallett S. Why did European Radiology reject my radiomic 
biomarker paper? How to correctly evaluate imaging biomarkers in a clinical 
setting. Eur Radiol. 2021;31(12):9361–8.

23. He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in Tumor 
Immune Microenvironment and Treatment for Non-small Cell Lung Cancer. 
Sci Rep. 2015;5:13110.

24. Steven A, Fisher SA, Robinson BW. Immunotherapy for lung cancer. Respirol-
ogy. 2016;21(5):821–33.



Page 14 of 14Xu et al. BMC Medical Imaging          (2024) 24:196 

25. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios 
CH, Morise M, Felip E, Andric Z, Geater S, et al. Atezolizumab for First-
Line treatment of PD-L1-Selected patients with NSCLC. N Engl J Med. 
2020;383(14):1328–39.

26. Gadgeel S, Rodriguez-Abreu D, Speranza G, Esteban E, Felip E, Domine 
M, Hui R, Hochmair MJ, Clingan P, Powell SF, et al. Updated analysis from 
KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for 
previously untreated metastatic nonsquamous non-small-cell Lung Cancer. J 
Clin Oncol. 2020;38(14):1505–17.

27. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel 
SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus Docetaxel 
in patients with previously treated non-small-cell lung cancer (OAK): a 
phase 3, open-label, multicentre randomised controlled trial. Lancet. 
2017;389(10066):255–65.

28. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim 
JH, Arvis CD, Ahn MJ, et al. Pembrolizumab versus Docetaxel for previously 
treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): 
a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

29. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes 
EE, Felip E, Holgado E, et al. Nivolumab versus Docetaxel in Advanced Non-
squamous Non-small-cell Lung Cancer. N Engl J Med. 2015;373(17):1627–39.

30. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, 
Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al. Clonal neoantigens 
elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. 
Science. 2016;351(6280):1463–9.

31. Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O’Connor JPB, Papan-
ikolaou N, Messiou C, Koh DM, Orton MR. Radiomics in Oncology: a practical 
guide. Radiographics. 2021;41(6):1717–32.

32. Wen Q, Yang Z, Zhu J, Qiu Q, Dai H, Feng A, Xing L. Pretreatment CT-
Based Radiomics Signature as a potential imaging Biomarker for Predict-
ing the expression of PD-L1 and CD8 + TILs in ESCC. Onco Targets Ther. 
2020;13:12003–13.

33. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue 
L, Brandao D, Lancia A, Ammari S, et al. A radiomics approach to assess 

tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immu-
notherapy: an imaging biomarker, retrospective multicohort study. Lancet 
Oncol. 2018;19(9):1180–91.

34. Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing 
PD-L1 expression level via Preoperative MRI in HCC based on integrating 
Deep Learning and Radiomics features. Diagnostics (Basel). 2021;11(10):1875.

35. Jiang M, Sun D, Guo Y, Guo Y, Xiao J, Wang L, Yao X. Assessing PD-L1 expres-
sion level by Radiomic features from PET/CT in Nonsmall Cell Lung Cancer 
patients: an initial result. Acad Radiol. 2020;27(2):171–9.

36. Sun Z, Hu S, Ge Y, Wang J, Duan S, Song J, Hu C, Li Y. Radiomics study for 
predicting the expression of PD-L1 in non-small cell lung cancer based on CT 
images and clinicopathologic features. J Xray Sci Technol. 2020;28(3):449–59.

37. Chen H, Li S, Zhang Y, Liu L, Lv X, Yi Y, Ruan G, Ke C, Feng Y. Deep learning-
based automatic segmentation of meningioma from multiparametric MRI for 
preoperative meningioma differentiation using radiomic features: a multicen-
tre study. Eur Radiol. 2022;32(10):7248–59.

38. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y et 
al. Predicting EGFR mutation status in lung adenocarcinoma on computed 
tomography image using deep learning. Eur Respir J 2019, 53(3).

39. Tian P, He B, Mu W, Liu K, Liu L, Zeng H, Liu Y, Jiang L, Zhou P, Huang Z, et al. 
Assessing PD-L1 expression in non-small cell lung cancer and predicting 
responses to immune checkpoint inhibitors using deep learning on com-
puted tomography images. Theranostics. 2021;11(5):2098–107.

40. Zhu Y, Man C, Gong L, Dong D, Yu X, Wang S, Fang M, Wang S, Fang X, Chen 
X, et al. A deep learning radiomics model for preoperative grading in menin-
gioma. Eur J Radiol. 2019;116:128–34.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer
	Abstract
	Background
	Materials and methods
	Patients
	CT acquisition and interpretation
	Feature extraction, feature selection and signature construction
	PD-L1 testing
	Statistical analysis and Model Development

	Results
	Patient characteristics and clinical model
	Radiomics score and deep learning Radiomics score building and evaluation

	Discussion
	Conclusion
	References


