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Abstract 

Background Magnetic Resonance Imaging (MRI) is extensively utilized in clinical diagnostics and medical research, 
yet the imaging process is often compromised by noise interference. This noise arises from various sources, leading 
to a reduction in image quality and subsequently hindering the accurate interpretation of image details by clini-
cians. Traditional denoising methods typically assume that noise follows a Gaussian distribution, thereby neglecting 
the more complex noise types present in MRI images, such as Rician noise. As a result, denoising remains a challeng-
ing and practical task.

Method The main research work of this paper focuses on modifying mask information based on a global mask 
mapper. The mask mapper samples all blind spot pixels on the denoised image and maps them to the same channel. 
By incorporating perceptual loss, it utilizes all available information to improve performance while avoiding identity 
mapping. During the denoising process, the model may mistakenly remove some useful information as noise, result-
ing in a loss of detail in the denoised image. To address this issue, we train a generative adversarial network (GAN) 
with adaptive hybrid attention to restore the detailed information in the denoised MRI images.

Result The two-stage model NRAE shows an improvement of nearly 1.4 dB in PSNR and approximately 0.1 in SSIM 
on clinical datasets compared to other classic models. Specifically, compared to the baseline model, PSNR is increased 
by about 0.6 dB, and SSIM is only 0.015 lower. From a visual perspective, NRAE more effectively restores the details 
in the images, resulting in richer and clearer representation of image details.

Conclusion We have developed a deep learning-based two-stage model to address noise issues in medical MRI 
images. This method not only successfully reduces noise signals but also effectively restores anatomical details. The 
current results indicate that this is a promising approach. In future work, we plan to replace the current denoising 
network with more advanced models to further enhance performance.
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Introduction
Medical imaging technologies are crucial for the diag-
nosis and treatment of patient conditions. However, cer-
tain imaging modalities, such as Computed Tomography 
(CT), Positron Emission Tomography (PET), and Sin-
gle Photon Emission Computed Tomography (SPECT), 
expose patients to radiation, posing potential safety risks 
[1]. In contrast, Magnetic Resonance Imaging (MRI), as a 
non-invasive technique, is widely used in clinical diagno-
sis and medical research. However, MRI is often affected 
by noise during the imaging process. This noise can 
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originate from various sources, including hardware limi-
tations, environmental interference, and patient move-
ment. MRI noise not only reduces image quality and 
affects the ability of physicians to observe image details 
but also potentially leads to diagnostic errors and delays.

Denoising is a common research topic in both the 
medical imaging field and the broader medical commu-
nity. Tomasi et al. [2] proposed the use of bilateral filter-
ing for denoising and edge preservation. This practical 
filtering technique achieves effective image denoising and 
edge retention by considering both the spatial distance 
between pixels and the similarity of pixel values. How-
ever, bilateral filtering involves high computational com-
plexity for each pixel, resulting in slow processing speeds 
for large-scale images. Additionally, it is highly sensitive 
to parameter selection, making the algorithm difficult to 
tune. To address the limitations of adaptability and other 
issues, Buades et al. [3] proposed a denoising algorithm 
based on non-local means (NLM). Unlike bilateral filter-
ing, NLM takes into account the similarity between pix-
els across the entire image rather than just within a local 
neighborhood. It leverages the redundancy of neighbor-
ing pixels to eliminate noise, achieving better denoising 
performance. However, NLM’s dependence on large-
scale search leads to high storage requirements, and its 
performance can be affected when noise levels are high, 
indicating poor robustness to noise intensity. Dabov et al. 
[4] introduced a robust algorithm called BM3D, which 
utilizes block similarity within an image. It first finds 
similar blocks through block matching to construct a 3D 
matrix. After filtering and thresholding, the denoised 3D 
blocks are generated, and noise estimation and process-
ing are performed using the information from neighbor-
ing blocks. However, BM3D also has some limitations; its 
denoising performance is better for Gaussian noise than 
for other types of noise, making it seem like a method 
specifically tailored for Gaussian noise.

You et  al. [5] explored how deep learning techniques 
can be utilized to enhance the quality of MRI images. 
To improve the quality of denoised images, this field is 
primarily divided into supervised and self-supervised or 
unsupervised models. Zhang et al. [6] proposed a feedfor-
ward denoising neural network structure called DnCNN, 
which is a classical supervised denoising method. It intro-
duces the concept of residual learning to achieve end-to-
end learning without relying on specific image types or 
noise models. However, this model may lead to exces-
sive smoothing and distortion in regions with strong 
noise or rich details, and it also requires a large amount 
of training data. Lehtinen et al. [7] proposed Noise2No-
ise (N2N), which performs image denoising without 
the need for noise-free reference images by learning the 
mapping from noisy images to noisy images. The concept 

behind this model is quite simple, but it is only suitable 
for specific noise distributions. If the noise type is already 
known, traditional denoising models can achieve compa-
rable results. Additionally, this model does not consider 
spatial correlations, which limits its effectiveness when 
dealing with structured noise [8]. The aforementioned 
supervised denoising algorithms have high data require-
ments, and obtaining medical MRI images is limited. 
Collecting paired data and heavily relying on clean data is 
extremely challenging in practical medical applications. 
Self-supervised approaches are more suitable for the 
medical imaging field, and many self-supervised mod-
els have been proposed based on Noise2Noise. Fadnavis 
et al. [9] proposed Patch2Self, which is highly adaptable 
and capable of handling complex noise. It employs self-
supervised learning by using different patches within the 
same image. The model learns the noise patterns of the 
image by comparing the relationships between different 
patches. It then uses the learned noise patterns to denoise 
the entire image without requiring clean data as labels. 
However, because it processes multiple patches within 
an image, it can be computationally intensive, espe-
cially when dealing with large, high-resolution images 
that require substantial computational resources. Kim 
et  al. [10] proposed Noise2Score, a model that uses the 
Tweedie distribution for image noise modeling, which 
better fits actual noise distributions. Similar to other self-
supervised models, this model does not require clean 
images as labels and learns the parameters of the noise 
distribution from noisy images through self-supervised 
learning. Blind-spot denoising is a mainstream approach, 
as seen in models like Noise2Void [11], Noise2Self [12], 
and DBSN [13]. These methods assume pixel independ-
ence and mask a portion of pixels, allowing the model 
to estimate and reconstruct clean pixels directly from 
neighboring noisy pixels. However, since some valu-
able information is lost due to the masked blind spots, it 
can affect the model’s denoising capability. Huang et  al. 
[14] proposed Neighbor2Neighbor, which constructs 
two similar sub-images for each noisy image using sub-
sampling and pixel correction. It leverages neighborhood 
information to predict the values of missing pixels and 
reconstructs the original image by inferring denoising 
through a constructed loss function. This model extends 
the Noise2Noise framework into a new denoising para-
digm, improving denoising capability and providing a 
framework for Blind2Unblind [15]. Blind2Unblind intro-
duces a global mask mapper that enhances the design 
of blind-spot denoising networks by making the pixels 
at blind spots visible, thereby avoiding information loss 
caused by masking. It also provides a theoretical analy-
sis of the re-visible loss, presenting both upper and lower 
bounds for loss convergence.
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In recent years, Generative Adversarial Networks 
(GANs) have gained widespread application in the field 
of medical image processing due to their powerful feature 
learning and data generation capabilities, demonstrat-
ing significant advantages in tasks such as image denois-
ing and super-resolution. Li et al. [16] proposed a novel 
image-domain artifact removal method based on GANs 
and variable constraints (MARGANVAC). This method 
introduces a time-varying cost function that relaxes 
fidelity constraints during the early stages of training 
and gradually strengthens them as training progresses, 
thereby significantly improving artifact removal perfor-
mance. You et al. [17] proposed a semi-supervised model 
called GAN-CIRCLE, aimed at super-resolution tasks for 
MRI and CT images. The model enhances cross-domain 
consistency between source and target domains using 
residual networks and cycle consistency. Furthermore, 
You et  al. [18, 19] developed an efficient Low-Dose CT 
(LDCT) image denoising neural network model by inte-
grating CNN, residual learning, and Network in Net-
work techniques. They also proposed a semi-supervised 
method for restoring CT image resolution, showing that 
these methods are suitable for various medical image 
denoising problems. Additionally, a three-dimensional 
denoising method called Structurally-Sensitive Multi-
Scale Deep Neural Network [20] has achieved more 
effective noise suppression and structural information 
preservation by combining GANs. These studies collec-
tively demonstrate the broad application prospects of 
GANs in medical image denoising.

We developed a new denoising and enhancement 
network, named Noise Reduction and Enhancement 
(NRAE), by integrating the Blind2Unblind framework 
with GANs. The core strategy of this network involves 
dividing each noisy image into several patches and ran-
domly selecting specific pixels within each patch as 
“blind spots” to form a global mask. Both the noisy 
image and the masked version are fed into the denois-
ing network for joint training. This design allows the 
network to utilize more contextual information during 
the denoising process, thereby preserving more image 
details. Specifically, for the edges and details within the 
image, we employ a perceptual loss function, which helps 
retain important high-frequency information and pre-
vents detail loss due to excessive denoising. To address 
the issue of blurriness and incomplete local information 
in the denoised images, we leverage a GAN-based model 
that reconstructs image details through an encoder with 
two cascaded adaptive mixed-attention mechanisms. By 
introducing a cycle consistency loss, we ensure consist-
ency in the images reconstructed by the generator in 
the reverse process. Through alternating optimization 
of the generator and discriminator, the NRAE network 

is capable of generating high-quality, detail-rich images 
from relatively low-quality images produced during the 
denoising process, thereby meeting the stringent image 
quality requirements of medical applications. In the 
comparative analysis with existing classical denoising 
techniques, this study utilized a real clinical dataset and 
also evaluated the model on the publicly available IXI 
Dataset. The results indicate that the proposed model 
outperforms existing methods in terms of denoising per-
formance. Notably, the detail enhancement stage of the 
model significantly improves image quality, resulting in 
images that are much closer to the original true images 
compared to those that have undergone only denoising. 
This aspect is particularly important for clinical applica-
tions. The main contributions of this paper can be sum-
marized as follows:

1. This paper proposes an improved self-supervised 
denoising model that effectively avoids the issue of iden-
tity mapping and enhances the clarity of denoised images 
by adjusting the shape of the masking units and introduc-
ing a perceptual loss function.

2. Combining generative adversarial networks (GANs), 
we propose an Adaptive Hybrid Attention Module 
(AHM) that focuses on pixel attention coefficients to pre-
serve features and supplement and reconstruct missing 
pixel information.

3. Extensive evaluation on real clinical datasets dem-
onstrates that compared to current mainstream and 
advanced denoising techniques, our proposed method 
exhibits significant performance improvements. This 
underscores its practical value and potential in clinical 
medical applications.

Related work
Blind spot denoising
Blind-spot denoising is a unique image processing 
method that does not rely on prior knowledge of noise 
types or require clean images as references. Instead, it 
trains a model to predict the unknown pixels at certain 
blind spots in the image. It is worth noting that a similar 
approach is also used in image completion tasks. How-
ever, there are three key differences between blind-spot 
denoising and image completion. First, their target tasks 
differ: image completion aims to predict the content of 
missing or occluded parts to generate visually coherent 
and realistic images. In contrast, blind-spot denoising 
aims to predict the true value based on surrounding pixel 
information without using the target pixel itself, thereby 
removing noise. Second, the nature of the masks used in 
each task is different. For example, in the image comple-
tion task, such as the MAE proposed by Kaiming et  al. 
[21], large-scale masks are used to simulate missing parts 
of the image. Meanwhile, in denoising tasks, the masks 
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are pixel-to-pixel, discrete, and spaced at certain inter-
vals to ensure that contextual information is fully utilized 
during embedding. Finally, the content of the predictions 
also differs: image completion requires generating new 
content that is consistent with the context and conforms 
to the distribution of natural images, while denoising 
focuses on restoring noise-polluted pixels to their origi-
nal true values, emphasizing the recovery of the original 
image details rather than creating new content.

Blind spot denoising algorithms, such as blind spot 
random masking or deletion [12, 22–24], use artifi-
cial masking strategies to create noisy pairs with blind 
spots. This masking approach is not optimal, as it pre-
vents the denoising model from fully learning how to 
remove noise effectively, thus impairing the denoising 
performance. Fundamentally, blind spot-based denois-
ing networks are affected by the network design or input 
data, leading to the loss of valuable information, which 
can reduce the upper limit of the denoising quality. Ide-
ally, we want to learn how to remove noise directly from 
the original noisy image while preserving as much valu-
able information as possible. The key is that the model 
needs to be taught how to learn denoising effectively. The 
challenge in this process is the issue of “identity map-
ping”, where the model might simply output the input 
image unchanged without effectively removing the noise. 
Wang et al. [15] proposed using a “masked input” strat-
egy to block gradient updates to the model, preventing 
identity mapping. This masked input approach makes 
the pixels at blind spot locations visible, fully utilizing 
all available information to improve performance. Spe-
cifically, the method employs a dual-branch processing 
strategy. First, by introducing a mask, the noisy image is 
divided into multiple blind spot images, which are then 
input into the denoising network to allow precise predic-
tion and denoising of the masked regions. The core of 
this step lies in achieving targeted denoising for specific 
regions through visually invisible blind spots. Second, a 
mask mapper is introduced to effectively aggregate the 
images processed by the blind spot network, generating 
a complete denoised image. Meanwhile, another branch 
directly inputs the noisy image into the denoising net-
work. The role of this branch is to compensate for the 

information loss caused by blind spot processing, thereby 
enhancing the overall denoising effect. Notably, during 
the training process of this branch, no gradient back-
propagation is performed to avoid identity mapping of 
the noisy image. This design enables the two branches 
to complement each other, achieving both targeted pro-
cessing of specific areas and enhancing the clarity of the 
entire image, as illustrated in Fig. 1.

Attention mechanisms
Attention mechanisms have garnered widespread atten-
tion in the field of computer vision and have demon-
strated excellent performance across various tasks. The 
core idea is to adaptively allocate resources to highlight 
important features while suppressing irrelevant infor-
mation, thereby enhancing the model’s representation 
capability and decision-making accuracy [25–28]. Atten-
tion mechanisms initially achieved remarkable success 
in natural language processing, especially with the intro-
duction of attention-based models (such as Transformers 
[29]) in machine translation tasks.In image processing 
tasks, attention mechanisms are broadly categorized 
into channel attention mechanisms and spatial attention 
mechanisms. Channel attention mechanisms adjust the 
weights of different channels to emphasize important fea-
ture channels. For example, SE-Net [30] involves a chan-
nel attention mechanism that uses global average pooling 
and fully connected layers to learn the weight distribu-
tion of each channel, thereby improving image classifica-
tion performance. On the other hand, spatial attention 
mechanisms capture important features in the spatial 
dimension, enhancing the model’s focus on details. 
Attention mechanisms also play a significant role in med-
ical image processing. CASTformer [31] is a 2D medical 
image segmentation model that combines GANs with 
attention mechanisms. The model uses a pyramid struc-
ture to build multi-scale representations and introduces 
a Perception Transformer module to more effectively 
learn discriminative regions with semantic structures. 
This approach overcomes common challenges faced by 
traditional Transformer models in medical imaging tasks, 
such as information loss due to single-scale representa-
tions and segmentation results lacking rich semantic 

Fig. 1 Blind Spot Denoising Diagram



Page 5 of 16Liu et al. BMC Medical Imaging          (2024) 24:259  

context and anatomical accuracy. By incorporating atten-
tion mechanisms, CASTformer demonstrates significant 
advantages in multi-scale feature fusion and fine segmen-
tation, leading to substantial improvements in the perfor-
mance and accuracy of medical image segmentation.

Hybrid attention mechanisms combine multiple types 
of attention mechanisms to further enhance model per-
formance. Woo et al. [32] proposed the CBAM, a typical 
hybrid attention mechanism that sequentially processes 
channel and spatial attention in a cascaded manner, 
achieving better results in capturing important features. 
Cui et al. [33] introduced the Dual-Domain Strip Atten-
tion, composed of a Spatial Strip Attention (SSA) unit 
and a Frequency Strip Attention (FSA) unit. The SSA 
unit learns weights through convolution operations by 
leveraging contextual information from adjacent posi-
tions in the same row or column of each pixel, while the 
FSA unit refines features in the frequency domain using 
simple pooling techniques for frequency separation and 
modulation.Chen et al. [34] embedded spatial and chan-
nel hybrid attention modules in the latent layers of the 
network to capture contextual information of neighbor-
ing pixels and refine inter-channel features. They utilized 
an adaptive control module to dynamically fuse spatial 
and channel information, allowing the model to empha-
size important features adaptively during the restoration 
process. Zhao et  al. [35] proposed Pixel Attention for 
image super-resolution tasks, which adjusts the weight of 
each pixel locally and adaptively. Compared to traditional 
global attention mechanisms, this approach only per-
forms weighting operations on local pixels, resulting in 
lower computational complexity.Chen et  al. [36] argued 
that the potential of Transformers has not been fully 
exploited in existing networks. To activate more input 
pixels for better reconstruction, they proposed a new 
Hybrid Attention Transformer that combines both chan-
nel attention and window-based self-attention schemes. 
By leveraging the complementary strengths of both, it 
achieves a balance between global statistics and local fit-
ting capabilities. To better aggregate cross-window infor-
mation, they introduced an Overlapping Cross-Attention 
Module to enhance the interaction between adjacent 
window features. Zafar et al. [37] combined channel and 
pixel attention to propose a new efficient single-stage 
adaptive network for image restoration. The adaptive 
module robustly enhances spatial and contextual feature 
representations, significantly improving texture informa-
tion and edge features.

Model ensemble
Model ensemble integrates multiple models in a spe-
cific sequence to form a more complex and function-
ally enriched model, emphasizing the complementarity 

between different models. This approach is not only 
theoretically innovative but also demonstrates excellent 
performance in practical applications. For example, 
as shown in Fig. 2, Model A is used for denoising, and 
Model B for enhancing image details. By first reducing 
noise levels and then enhancing image details, more 
accurate and clearer medical images can be obtained. 
Compared to a single model, this method is more 
effective in image quality processing and improve-
ment, particularly in detail preservation and clarity 
enhancement.

To further enhance detail preservation and bound-
ary refinement in images, You et  al. [38] proposed a 
method named MORSE, which leverages the Mixture-
of-Experts strategy. This method utilizes a stochastic 
gating mechanism to achieve parallel optimization of 
multi-scale pixel-level features and adaptively refines 
boundary regions. In addition, [39] embeds images into 
a shared content space to capture cross-domain shared 
feature information while preserving domain-specific 
appearance spaces. By utilizing the Wasserstein dis-
tance, this method better learns complete information 
representation, thereby improving image processing 
performance.

Wolterink JM et  al. (2017) [40] first utilized a CNN 
to estimate standard-dose CT images from low-dose, 
noisy CT images, effectively reducing noise. Then, 
a well-trained generator of GANs was employed to 
transform low-dose images into standard-dose images, 
while a trained discriminator was used to distinguish 
between the output and real images. By incorporating 
adversarial network training on top of the CNN, this 
approach not only improved the similarity between 
the model’s output images and standard-dose images 
but also validated the feasibility of model fusion for 
enhancing image quality in medical imaging tasks. To 
extract more detailed information from low-resolu-
tion images, [41] proposed using a GAN-based medi-
cal architecture. This architecture includes multi-scale 
shallow feature extraction, deep feature extraction 
using ResNet34, and gradual upscaling of feature maps, 
effectively preserving detail information. It demon-
strated superior similarity compared to state-of-the-art 
models across various modalities of medical images. 
This also confirmed the excellence of the GAN-based 

Fig. 2 Model ensemble
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medical architecture in MRI image detail restoration 
tasks.

Methods
Network architecture
Building upon the research in [15], we propose NRAE, 
a denoising model specifically designed for MRI image 
denoising and enhancement. The detailed architecture is 
shown in Fig. 3. This section first provides an overview of 
NRAE, followed by an in-depth discussion of the model’s 
denoising phase and detail enhancement phase.

NARE Overview Firstly,the input noisy image 
y ∈ R

H×W×3 undergoes processing where �y and h(·) 
serve as the mask processing and mask mapper, respec-
tively. These two components are used in conjunction. 
First, the noisy image is processed through the mask pro-
cessing operation, and the processed image is then passed 
to the denoising network. The mask mapper is used to 
sample global blind spot pixels. Meanwhile, to fully lev-
erage all available information and enhance model per-
formance, another branch of the image y directly passes 
through the denoising network but does not participate 
in the backpropagation process. This prevents the denois-
ing network from merely learning an identity mapping. 
By integrating this dual-branch structure, the problem 
of information loss in blind-spot networks is addressed, 

resulting in an effective blind-spot denoising strategy. 
Furthermore,the generator G consists of two recur-
rently connected networks,using the denoised images 
ŷ and ŷ2 as inputs. The discriminator D is guided by real 
clean data to train G to generate MRI images with recon-
structed details that are indistinguishable from reality.

Image denoising
In Fig. 3, the image denoising part employs a dual-branch 
strategy. Specifically, the blind-spot denoising described 
in “Blind spot denoising” section is the core component 
of the denoising process. It mainly consists of the mask, 
mask mapper, and visible loss. Here, we will discuss the 
mask and mask mapper, while the visible loss is covered 
in “Denoising loss” section.

Mask/Mask mapper The network based on blind 
spot denoising suffers significant information loss dur-
ing input or network transmission, which markedly 
reduces the denoising performance of the network due 
to the absence of valuable information. To overcome 
this issue, Blind2UnBlind introduces a globally mask-
ing mapping. The approach involves dividing each 
noisy image into patches and designating specific pixels 
within each patch as blind spots to create a global mask 
for input. These global masks are then fed into the net-
work in batches. The global mask mapper samples noise 

Fig. 3 Overview of the NRAE Architecture. a The structure of the overall model. b The structure of the generator used in the detail enhancement 
operation, featuring the Adaptive Hybrid Model (AHM). c The structure of the AHM, consisting of the Hybrid Attention Block (HAB) and convolution 
operations. d The HAB, which includes both channel attention and pixel attention mechanisms
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at the blind spot locations and projects these samples 
onto a common plane for the denoising operation. To 
better leverage the information in the original image y 
and enhance denoising performance, we optimized the 
image partitioning strategy. Specifically, we increased 
the size of the grid from 2× 2 to 3× 3 and assigned dif-
ferent mask weights to each of these smaller grids. This 
adjustment allows for more comprehensive utilization 
of the information present in the original image. The 
detailed steps are as follows:

(1) The noisy image y ∈ R
H×W×3 is first divided 

into H
s × W

s  blocks, where s = 3 , with each small 
cell A being a 3× 3 grid. The pixels in each cell A are 
masked in four directions ( 0◦ , 45◦ , 90◦ , 135◦ ) with black 
representing masked pixels and different weights are 
assigned to the remaining pixels.

(2) After masking y, we obtain 
[

H
s

]

×
[

W
s

]

 images with 
blind spots, denoted as �y . �y are then fed into the 
denoising network f� , resulting in multiple denoised 
outputs f�(�y) . In these denoised outputs, the gray 
areas represent the pixels corresponding to the blind 

spot locations before denoising. The task of the mask 
mapper h(·) is to extract all these gray pixels and com-
bine them according to their relative positions in the 
original image to form a new image, h(f�(�y)).

(3) On the other hand, another branch directly passes 
the noisy image y through the denoising network f� to 
obtain the denoised image f�(y) . During training, both 
h(f�(�y)) and f�(y) are required.

For specific operations, refer to Fig. 4.

Detail enhancement
In Fig. 3, the detail enhancement part employs two net-
works stacked togethe, resembling the structure of UNet, 
as the generator G. Specifically, it samples low-resolution 
images to generate images with complete information. 
The discriminator D distinguishes between real images 
and images generated by G,adversarially training the 
model G and D until reaching a convergence balance. An 
illustrative diagram of the adversarial process is shown in 
Fig.  5.

Fig. 4 The masker �ij
y hides three points within each 3× 3 cell,forming a set of nine masked cells �ij

y for each image yi (where i takes values 
from {1, 2, 3, 4} ). These masked cells represent blind spots in the image. Subsequently, input them into a denoising network, the mask mapper 
h(·) samples fθ (�y) . During the sampling process, the mapper constructs the final denoised image unit h(fθ (�y)) based on the position and pixel 
values of each sampled point. This process enables the model to fully perceive and handle blind spots in the image

Fig. 5 A0 is the low-resolution image obtained by blurring operation P from A
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Generator It consists of a recurrent U-Net architec-
ture, with each layer being an Adaptive Hybrid Module 
(AHM), as illustrated in Fig.   3. This module employs a 
combined channel and pixel attention mechanism. The 
pixel attention mechanism enhances the efficiency and 
accuracy of image feature extraction by balancing the 
processing of local details and global context through 
localized attention allocation. This significantly boosts 
the model’s perceptual capability and computational 
efficiency. The channel attention mechanism focuses 
on adjusting the importance of different channels in 
the feature map, improving the model’s focus on spe-
cific features by learning the weights for each channel. 
By integrating both attention mechanisms, the model 
retains distant pixel and channel information, effectively 
capturing both global and local features. The introduc-
tion of adaptive weights allows for the effective fusion of 
long-range channel features, addressing the limitations of 
traditional fixed attention mechanisms. Through pixel-
level correspondence and adaptive weight allocation, the 
model enhances its sensitivity to edge details and texture 
variations.

Adaptive Hybrid Module (AHM) As shown in Fig. 3c, 
The image to be processed is first normalized. Then, a 
1× 1 convolution is used to extract low-level features 
F1 , which typically contain basic information and fine 
structures of the image. Next, a 3× 3 depthwise separa-
ble convolution encodes the low-level features to capture 
local features while considering spatial context within the 
channel dimension. The Hybrid Attention Block (HAB) 
is then utilized to extract deep features F2 , which bet-
ter represent the abstract characteristics and high-level 
structures of the image. These deep features are mapped 
into a residual image using a 1× 1 convolution to aid in 
restoring the original image. As shown in Fig.  3b, the 
model employs skip connections to effectively combine 
features from different levels by element-wise addition, 
thereby efficiently merging encoder and decoder features. 
uring downsampling, a 3× 3 convolution with a stride of 
2 is used to reduce the image resolution. In the upsam-
pling phase, a 1× 1 convolution is employed to adjust 
the channel depth and enhance feature representation, 
followed by pixel shuffle operations. This rearranges the 
pixel information in the feature map channels to larger 
spatial dimensions, improving the feature representation 
capability.

Hybrid Attention Block (HAB) As shown in Fig. 3d, 
the Hybrid Attention Block (HAB) consists of two 
branches: adaptive channel attention and adaptive pixel 
attention.

As shown in Fig.   3d, the Hybrid Attention Block 
(HAB) consists of two branches: adaptive channel atten-
tion and adaptive pixel attention. In the channel attention 

branch, the input image first undergoes a pooling opera-
tion to reduce the spatial dimensions, encoding the global 
contextual information. After pooling, the dimensions 
become C × 1× 1 , where each dimension represents the 
information of all channels in the feature map. Next, we 
analyze the interdependencies between the convolutional 
feature maps. By using the softmax activation function, 
we calculate the importance weights for each channel. 
These weights reflect the contribution of each channel to 
the overall feature representation, thereby achieving inte-
gration of information across channels.

In Eq.  (1) represents the probability that vector A 
belongs to the jth category, where W dentes the channel 
attention weights.

In Eq. (2) represents the weighted feature map obtained 
after processing the input feature map F. Initially, the 
pooled vector is passed through the first fully connected 
layer, resulting in dimensions of C1 × 1× 1 where C1 
denotes the number of channels in the intermediate layer. 
The output is then subjected to the ReLU function, fol-
lowed by the second fully connected lay C2 and its output 
is further processed using the sigmoid function to obtain 
channel attention weights. These weights are element-
wise multiplied with the original input features, enhanc-
ing each channel’s features based on their importance 
and thereby capturing contextual information from dis-
tant channels. Next, the feature map F is reshaped into 
dimensions C ∗HW  to extract global features across the 
entire image spatial dimension. A 3× 3 convolution is 
applied to the reshaped features to obtain output F1 These 
features are multiplied with adaptive weights σ and inte-
grated with pixel features. During training, the network 
dynamically learns the weight allocation mechanism. The 
output of the adaptive channel attention module repre-
sents the weighted combination of features across chan-
nels, allowing the network to focus on significant features 
while suppressing less relevant ones.

Traditional pixel attention mechanisms [35] capture 
pixel-level contextual features by calculating the atten-
tion weights for each pixel in the feature map. They 
typically use 1× 1 convolutions and sigmoid functions 
to generate attention maps. However, due to the high 
redundancy of convolution operations in large-scale 
networks, the effectiveness of traditional pixel attention 
can be reduced. Adaptive pixel attention [37] introduces 
a method to capture contextual information more effec-
tively by generating a three-dimensional matrix and using 

(1)W(y=j)=
eAj

∑

k
k=1e

Ak

(2)CA(F)=F⊙ σ (FC2(ReLu(Fc1(Pool(F)))))
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1× 1 convolutions to produce low-complexity attention 
features. Our adaptive pixel attention mechanism first 
encodes the feature map using a 3× 3 convolution layer, 
simultaneously reducing dimensionality by halving the 
number of channels to lower computational complexity. 
The output from the 1× 1 convolution layer is element-
wise multiplied, and the sigmoid activation function is 
used to compute the attention weights for each pixel, 
allowing the network to focus on more important pixels. 
The attention information is reintegrated into the fea-
ture map through another 1× 1 convolution layer. The 
attention-weighted feature map is then combined with 
the original feature map and further processed using a 
3× 3 convolution to achieve feature fusion. This process, 
coupled with residual connections that merge the results 
with the feature map from the previous layer, enhances 
the attention mechanism’s effectiveness while retaining 
the original features.

In Eq.  (3), where F represents the input feature map, 
Wp denotes the pixel attention output and W1 signifies 
the 3× 3 convolution output, with the adaptive weight δ 
effectively fusing the channel features.

Loss function
In this section, our proposed model covers two key 
stages:initial denoising inference and subsequent image 
detail reconstruction. Accordingly,the model’s loss func-
tion is designed into two main parts: the first part is for 
the denoising loss in the initial stage, aimed at evaluat-
ing the effectiveness of the denoising process; the second 
part is for the reconstruction loss in the subsequent stage, 
focusing on the ability to recover detail information in 
the reconstructed image. Next, we will analyze in detail 
the composition and function of these two loss functions:

Denoising loss
Blind2UnBlind utilizes a blind spot structure for self-
supervised denoising, followed by leveraging all infor-
mation to enhance its performance. Since the visible loss 
is optimized for blind spots and visible points through a 
single back-propagatable variable, this optimization pro-
cess is highly unstable. Therefore, they introduce a regu-
larization term to constrain blind spots and stabilize the 
training process. The final visible loss is as follows:

(3)Fsum = F +Wp(F)+ δ[W1(

j
∑

k=1

(
eAj

∑

k
k=1e

Ak
)F

j
k)]

(4)

L = Lrev + ηLreg

Lreg = �h(fθ (�y))− y�22

Lrev = �h(fθ (�y))+ �f̂θ (y)− (�+ 1)y�22

In Eq. (4), �y represents the noise mask,h() is the global 
perceptual mask mapper. To achieve visualization of 
blind spot pixels, f�(y) does not participate in backprop-
agation, resulting in denoised original noise image, repre-
sented as �(y) , which indirectly participates in gradient 
updates.

In Eq.  (5), the weighted sum represents the optimal 
solution for X,where the upper and lower limits corre-
spond to the denoising of the input original image using 
method f̂θ (y) and a denoising method similar to N2V 
[11] denoted as h(fθ (�y)),respectively.

Perceptual loss Research [42–45] has indicated 
that using perceptual loss to guide tasks such as image 
denoising helps preserve the original structural details 
of the image to enhance image quality. Inspired by 
this research,in this paper, a pretrained VGG-19 net-
work (excluding the last three fully connected layers) is 
employed as the perceptual feature extractor. Five sets of 
feature maps are extracted at different levelsand finally 
combined into a multi-perceptual loss, encouraging the 
network to focus on perceptual visual quality for restor-
ing noise-free images. It is represented as follows:

In Eq.  (6), �i represents the feature map obtained 
from block i, where CHW denotes the channels, height 
and width, respectively. y and ŷ denote the ground truth 
image and the denoised result, respectively.

Overall, in the initial denoising inference stage, the 
model involves the following loss functions:

Reconstruction loss
Generator G aims to reconstruct the image after denois-
ing to restore detailed information, while the discrimi-
nator D is tasked with distinguishing between real MRI 
images and reconstructed images generated by the gen-
erator G. The system is optimized through adversarial 
training until it reaches a state of convergence balance. 
During this process,adversarial loss and consistency loss 
are two key components. Next, we will provide a detailed 
analysis and discussion of these two types of losses:

Adversarial Loss Our training aims to use the genera-
tor G to transform the denoised but incomplete image 
s0 into a detailed and rich reconstruction image s. To 
achieve this goal, we introduce the discriminator D, 

(5)x =
h(fθ (�y))+ �f̂θ (y)

�+ 1

(6)LPL(y, ŷ) =
1

CHW

5
∑

i=1

∥

∥∅i(y)− ∅i(ŷ)
∥

∥

2

(7)Ldetotal = �1L+ �2LPL
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which is tasked with distinguishing whether an image is 
generated by the generator G (considered fake) or directly 
reconstructed from s0 (considered real). This process 
adopts a strategy based on deception and discrimination, 
continuously optimizing the generation ability of the gen-
erator G while enhancing the discriminator D’s accuracy 
in judging the authenticity of images. During training, 
the parameters of the generator and discriminator are 
optimized using the following defined adversarial loss 
function:

In Eq. (8), log[1− logD(G(s0))] encourages the genera-
tor G to generate more realistic images that are difficult 
for the discriminator D to distinguish. logD(s) enables 
the discriminator D to better distinguish between real 
images and fake images generated by the generator G. 
M is the set of real data and s is the set of images to be 
recovered and reconstructed.

Consistency Loss To strengthen the connection 
between s0 and s, the consistency loss ensures that the 
images generated by the generator during the learn-
ing reconstruction in the cyclic structure, denoted as si 
(images between s0 and s), maintain a high degree of vis-
ual consistency with the original image m. In the experi-
mental setup, this objective is achieved by using distance 
measurement methods, particularly mean squared error 
(MSE). This method aims to minimize the difference 
between si and m, ensuring that the generator accurately 
reproduces the details and structural features of the orig-
inal image, thereby improving the quality and authentic-
ity of the reconstructed image.

In Eq.  (9), the consistency loss, is specifically targeted 
towards the generator G. By making the images gen-
erated in each iteration of the loop in Fig.  5 similar to 
the original image m, it ensures that the model training 
adheres more closely to the desired criteria.

In summary, during the fine reconstruction stage, we 
involve two adversarial training operations aimed at min-
imizing the following losses as much as possible:

Experiments
Details
Training Details During the training process of 
our model for denoising in real-world environ-
ments, all models are trained using the same settings. 
Specifically,the batch size is set to 4, Adam optimizer 

(8)min
G

max
D

V (D,G) = E
m∈M

[logD(s)] + E
s0∈S

[1− logD(G(s0))]

(9)Lcyc(G) = d(s[j], s̄[j])

(10)Lentotal = V (D,G)+ αLcyc(G)

is employed with weight decay set to 1e-8. The initial 
learning rate of the models is 0.0003 and every 20 train-
ing epochs, the learning rate is multiplied by 0.25 to 
facilitate better convergence. Additionally,images are 
randomly cropped into patches of size 128x128 pixels 
and masked as shown in Fig. 4. During the fine-tuning 
training stage, we set the hyperparameter α to 10, also 
utilizing the Adam optimizer with an initial learning 
rate of 1e-4 and the entire training process lasts for 
500 epochs. The detailed architecture of the models 
is illustrated in Fig.  3. All experiments are conducted 
on a system equipped with NVIDIA Tesla A30 GPU, 
using Python 3.8.0 and PyTorch 1.2.1 environment for 
training.

Denoising Dataset In this study, we utilized NIFTI 
(Neuroimaging Informatics Technology Initiative) 
format datasets obtained from clinically real cardiac 
regions. The NIFTI format is a commonly used data 
format in multidimensional neuroimaging, capable of 
accurately reflecting metadata including directional 
information. We converted these multidimensional 
data into two-dimensional RGB images, with pixel 
sizes ranging from 256×256 to 512×512 for each image.
Among these, 7600 clean images were used for training, 
while the validation and test sets were approximately 
divided in a ratio of 70:15:15. To obtain more accurate 
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Struc-
tural Similarity Index) metrics, we performed 10 calcu-
lations on the test set and took the average.

Table 1 Quantitative results of denoising on synthesized 
datasets. The highest PSNR/SSIM among denoising methods is 
highlighted in bold, while the second highest is underlined. The 
last column represents the number of network parameters

Method PSNR/SSIM Params (M)

Rician ( σ = 25)

BM3D 35.93 / 0.805 -

N2N 35.78 / 0.795 1.90

N2V 35.82 / 0.828 1.86

Patch2self 36.04 / 0.809 1.64

NBR2NBR 36.27 / 0.854 1.91

Blind2Unblind 36.54 / 0.908 1.84

Ours 37.13 / 0.893 2.07

Rician ( σ ∈ [5, 50])

BM3D 35.69 / 0.837 -

N2N 35.50 / 0.784 1.90

N2V 35.59 / 0.811 1.86

Patch2self 35.87 / 0.872 1.64

NBR2NBR 35.96 / 0.887 1.91

Blind2Unblind 36.11 / 0.896 1.84

Ours 36.74 / 0.885 2.07
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Additionally, this study utilizes the publicly available 
IXI Dataset, which is a multi-modal, diverse, and high-
quality MRI dataset widely used in medical imaging 
research. We use the T1-weighted MRI brain images 
from this dataset for our experiments. The dataset com-
prises 581 sets of MRI images. These multidimensional 
data were sliced along the coronal plane from multiple 
angles to enhance the dataset. The remaining preproc-
essing steps are consistent with the methods described 
for the previous dataset.

Noise treatment In medical MRI images, the pre-
dominant type of noise is Rician noise, which differs 
from Gaussian noise. Rician noise is a signal-dependent 
noise, meaning its distribution is influenced not only by 
the hardware noise of the imaging device but also by the 
intensity of the original signal. Rician noise can be con-
sidered a type of noise formed by the amplitude opera-
tion of two independent Gaussian noise components. It 

describes the distribution characteristics of the ampli-
tude of a complex-valued signal affected by noise. The 
calculation of Rician noise is given in Eq. (11)

In Eq. (11), X and Y  are independent Gaussian noise 
components with a standard deviation of σ , S is the 
actual amplitude of the signal, and R represents Rician 
noise. First, two independent Gaussian noise matri-
ces of the same size as the image are generated. These 
matrices are then added to the real and imaginary parts 
of the image, respectively.

The noise settings for this experiment are as follows:

• (1) Rician noise generated with Gaussian noise of 
σ = 25;

• (2) Rician noise generated with Gaussian noise where 
σ ∈ [5, 50].

(11)R =
√

(S + X)2 + Y 2

Fig. 6 Comparison of model performance metrics for different noise types

Fig. 7 Visual comparison of denoising MRI images under the setting of σ = 25
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Fig. 8 Visual comparison of denoising MRI images under the setting of σ ∈ [5, 50]

Fig. 9 In the IXI dataset, Visual comparison of denoising MRI images under the setting of σ = 25

Fig. 10 In the IXI dataset, Visual comparison of denoising MRI images under the setting of σ ∈ [5, 50]

Fig. 11 Visual comparison of whether post-denoising processing with detail enhancement is performed under the setting of σ = 25
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Experimental Details To comprehensively evaluate 
the denoising method, we use PSNR and SSIM as per-
formance metrics. For fairness, the method is compared 
with traditional denoising algorithms (such as BM3D [4]) 
as well as several self-supervised denoising algorithms 
(including N2N [7], N2V [11], Patch2self [9], NBR2NBR 
[14], and Blind2Unblind [15]). All comparison meth-
ods are implemented using their official versions and 
retrained on our dataset. Additionally, to provide a more 
thorough assessment, we also consider the performance 
of each method at different noise levels and their capa-
bility to handle specific medical image features, such as 
detail and structural preservation.

Results Comparison Quantitative comparisons of 
Rician noise denoising are shown in Table  1 and Fig.  6. 
Our denoising method generally outperforms several 
classic comparison methods for both fixed and variable 
noise levels. Figures 7, 8, 9, and 10 illustrate the denois-
ing results for two MRI datasets under settings of σ = 25 
and σ ∈ [5, 50] , respectively. Objectively, our method 
demonstrates strong denoising capability. Compared 
to the baseline model, our SSIM metric is slightly lower 
than the original model, but it is worth noting that the 
PSNR improves by approximately 0.6dB. Subjectively, 
the method offers better restoration of image details. 

Figures  11 and 12 show the comparison of informa-
tion loss and recovery in specific detail areas during the 
denoising process, contrasting between simple denoising 
and subsequent detailed enhancement operations.

Ablation experiment
  Loss Function Ablation Study Table  2 compares the 
PSNR and SSIM results obtained from training with three 
different loss functions under two noise-adding condi-
tions. The third method, which incorporates perceptual 
loss and cyclic loss, achieves the best results. Figure  13 
shows a comparison of image detail information obtained 
from training with the three different loss functions.

Ablation Study on Masking and Attention Table  3 
presents the ablation comparison of different masking 
methods and the improved structure of the Adaptive 
Hybrid Module (AHM) during the detail enhancement 
phase.

Discussion
We have demonstrated that the dual-stage approach of 
NRAE effectively addresses the quality issues of MRI 
image denoising. However, when compared with clas-
sic denoising models such as BM3D, N2N, N2V, and 
NBR2NBR, we observed some significant differences.

Firstly, supervised models like Noise2Noise typically 
require paired datasets and have high demands for data 
scale, which may pose limitations in medical applica-
tions. In contrast, self-supervised models like Noise2Void, 
which use a blind-spot strategy, tend to lose some infor-
mation, resulting in poorer denoising performance. 
Although Blind2Unblind effectively avoids the loss of 

Fig. 12 In the IXI dataset, Visual comparison of whether post-denoising processing with detail enhancement is performed under the setting 
of σ = 25

Table 2 Loss Function Ablation Study. LA, LB and LC represent 
Eqs. 4,  6 and  10, respectively. The highest PSNR/SSIM is 
highlighted in bold, while the second highest is underlined

Loss Type σ = 25 σ ∈ [5, 50]

LA 36.59 / 0.901 36.07 / 0.890
LA + LB 36.76 / 0.870 36.39 / 0.853

LA + LB + LC 37.13 / 0.893 36.74 / 0.885
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blind-spot information through masked mappers and 
dual-branch joint training, there is still room for improve-
ment in detail restoration. In terms of denoising perfor-
mance, the NRAE network outperforms classic methods 
like BM3D, which is mainly attributed to the superior 
denoising capability of our baseline model. For detail 
enhancement, NRAE combines the advantages of self-
supervised denoising models and GANs, inheriting the 
strengths of the baseline model while leveraging GANs for 
detail reconstruction. This significantly improves image 
quality and detail richness during the denoising process.

In comparisons with models such as Blind2Unblind, 
we observed some performance differences, which may 
stem from the varying adaptability of the models to data 
characteristics. Medical MRI images have high demands 
for contrast and detail, so the NRAE model focuses more 
on detail information during the denoising process. This 
emphasis may lead to a decrease in the SSIM metric, sug-
gesting that NRAE may retain some noise to better pre-
serve image details during denoising.

However, we must also honestly acknowledge some 
shortcomings of the NRAE model. Firstly, our noise 

addition method may not fully simulate the complex 
noise characteristics of medical MRI images, especially 
in contrast to common image noise. Secondly, con-
sidering that MRI images come in various sequences 
applicable for examinations in different parts of the 
body, further validation of the model’s generalization 
performance across different MRI sequences could 
be pursued in the future.Lastly, replacing the denois-
ing network with more complex structures might con-
tribute to enhancing the denoising performance of the 
model, which is one of the directions for our future 
research to further enhance the practicality and per-
formance of the NRAE model.

Conclusion
In order to improve MRI image denoising performance 
and mitigate information loss, this paper introduces a two-
stage denoising enhancement model named NRAE, which 
is based on Blind2Unblind and incorporates GANs. This 
method not only successfully reduces noise but also effec-
tively restores anatomical details. It achieves lossless denois-
ing through the use of a masked mapper and dual-branch 
joint training. By incorporating perceptual loss, cyclic loss 
and an adaptive hybrid attention mechanism, the model 
enhances local detail richness during the refinement stage.

Experiments show that in terms of denoising, our 
method achieves an improvement of nearly 0.7 dB 
in PSNR and about 0.07 in SSIM compared to classi-
cal methods. Notably, our detail information recovery 
demonstrates a PSNR improvement of approximately 
1.4 dB over classical methods and an increase of about 
0.6 dB in PSNR compared to the baseline method, with 
only a 0.015 decrease in SSIM. From a visual perspec-
tive, NRAE can more effectively restore the details in 

Fig. 13 Comparison of image details obtained from training with three different loss functions under the setting of � = 25 . Model A, A+ and A++ 
correspond to loss functions LA, LA+LB and LA+LB+LC, respectively

Table 3 Comparison under the setting of σ = 25 . Mask-1 refers 
to the method described in [15], while Mask-2 corresponds to 
Fig. 4. CA is channel attention, PA is pixel attention, CA+PA is pixel 
channel hybrid attention, HAB is adaptive hybrid attention

Mask-1 PSNR/SSIM Mask-2 PSNR/SSIM

CA 34.29/0.768 CA 34.42/0.773

PA 34.14/0.760 PA 34.20/0.764

CA+PA 34.90/0.829 CA+PA 35.36/0.848

HAB 36.49/0.867 HAB 37.13/0.893
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the image, resulting in richer and clearer image detail 
representation.
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