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Abstract 

Ultrasound (US) imaging is an essential diagnostic technique in prenatal care, enabling enhanced surveillance 
of fetal growth and development. Fetal ultrasonography standard planes are crucial for evaluating fetal development 
parameters and detecting abnormalities. Real-time imaging, low cost, non-invasiveness, and accessibility make US 
imaging indispensable in clinical practice. However, acquiring fetal US planes with correct fetal anatomical features 
is a difficult and time-consuming task, even for experienced sonographers. Medical imaging using AI shows promise 
for addressing current challenges. In response to this challenge, a Deep Learning (DL)-based automated categoriza-
tion method for maternal fetal US planes are introduced to enhance detection efficiency and diagnosis accuracy. This 
paper presents a hybrid optimization technique for feature selection and introduces a novel Radial Basis Function 
Neural Network (RBFNN) for reliable maternal fetal US plane classification. A large dataset of maternal–fetal screening 
US images was collected from publicly available sources and categorized into six groups: the four fetal anatomical 
planes, the mother’s cervix, and an additional category. Feature extraction is performed using Gray-Level Co-occur-
rence Matrix (GLCM), and optimization methods such as Particle Swarm Optimization (PSO), Grey Wolf Optimiza-
tion (GWO), and a hybrid Particle Swarm Optimization and Grey Wolf Optimization (PSOGWO) approach are utilized 
to select the most relevant features. The optimized features from each algorithm are then input into both conven-
tional and proposed DL models. Experimental results indicate that the proposed approach surpasses conventional DL 
models in performance. Furthermore, the proposed model is evaluated against previously published models, show-
casing its superior classification accuracy. In conclusion, our proposed approach provides a solid foundation for auto-
mating the classification of fetal US planes, leveraging optimization and DL techniques to enhance prenatal diagnosis 
and care.
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Introduction
US imaging is a safe and effective method for monitoring 
the health of the baby and mother during pregnancy [1, 
2]. It is non-invasive, offers real-time imaging capabili-
ties, and is reasonably priced [3]. Commonly used during 
obstetric examinations, it helps achieve the best possible 
outcomes for both the mother and child. The most typi-
cal timing for a prenatal US is during the third trimester, 
typically between weeks 18 and 24 [4]. Obstetricians can 
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measure and track fetal growth and development by cap-
turing normal fetal planes during routine clinical exami-
nations. Most countries provide prenatal care, which 
includes at least one scan in the third trimester to detect 
any anomalies. Fetal weight measurement is crucial for 
diagnosing anomalies and monitoring growth. Obste-
tricians calculate fetal weight using standard fetal US 
planes, which include four biometric parameters: abdom-
inal circumference, femur length, biparietal diameter, and 
head circumference [5]. Maternal–fetal US images are 
frequently used to assess the health of the unborn child 
by evaluating biometric data such as gestational age and 
weight. The majority of fetal medicine institutes adhere 
to international standards established by scientific organ-
izations when obtaining US images of both the mother 
and the unborn child. This ensures reproducible image 
acquisition using standardized approaches. Screening US 
performed in the middle trimester frequently provides 
more than 20 images per session. To enhance clinical 
evaluation, three-dimensional (3D) images, and films are 
sometimes acquired [6]. Fetal specialists select images 
that include structures of interest after analyzing the 
sonographer’s findings. Confirmation by a senior mater-
nal–fetal expert follows a team of certified research tech-
nicians’ initial assessment. However, this procedure is 
challenging, error-prone, and time-consuming due to the 
large number of images in each screening US scan [7, 8]. 
Thus, a low-cost, presumably error-free automated sys-
tem could perform the job. World Health Organisation 
(WHO) data indicate that sonographers in developing 
countries often lack the necessary education to conduct 
fetal US scans [9]. To overcome these challenges, auto-
mated classification of normal maternal–fetal US images 
can be implemented. This will aid inexperienced sonog-
raphers, reduce the burden of obstetricians, and increase 
diagnostic efficiency.

The recent decade has witnessed tremendous improve-
ments in Artificial Intelligence (AI), particularly with the 
introduction of DL, and its success in image recognition 
tasks [10, 11]. DL has proven effective in various medical 
applications, including classifying and segmenting organs 
and lesions in computer tomography and magnetic reso-
nance imaging images. These approaches excel at auto-
matically detecting complex patterns in picture data and 
providing quantitative and qualitative assessments [12]. 
Early diagnosis of abnormalities relies on rapid and accu-
rate assessment of US images to ensure the safety of both 
mother and fetus. This study aims to advance the field by 
presenting a hybrid optimized technique for better fea-
ture selection in maternal–fetal US images, as well as a 
fast RBFNN for accurate classification in this domain.

Gynecologists utilize US images to detect pregnancy 
problems and monitor the progress of a developing fetus. 

US is widely employed in the medical field for categoriz-
ing fetal standard planes. This article describes a unique 
methodology for detecting maternal–fetal planes in US 
images based on the RBFNN architecture. RBFNNs are a 
popular type of neural network used in computer vision 
and image processing. The primary contributions of this 
study are as follows:

1.	 Maternal fetal US images were collected from a large 
publicly accessible dataset.

2.	 Several preprocessing techniques are implemented, 
such as scaling, removing undesirable portions from 
US images, improving image quality, and extracting 
features.

3.	 Use the hybrid optimized PSOGWO method to 
choose the most significant features, enhancing the 
classifier’s accuracy.

4.	 The novel DL model, Fast-RBFNN is proposed with 
ε-insensitive loss function and structural risk term. 
This technique not only maintains robust nonlinear 
fitting with easy learning rules, but it also handles 
huge data sets quickly and efficiently.

5.	 Evaluate the proposed DL model against conven-
tional DL models such as Artificial Neural Network 
(ANN), Convolutional Neural Network (CNN), and 
Radial Basis Function (RBF). Additionally, a compari-
son with current works is performed.

The study’s framework is presented below. The "Related 
work" section includes an overview of research associ-
ated with this domain. The "Materials and Methods" 
section details data collection, processing, feature extrac-
tion, selection, and classifiers. The outcome of the pro-
posed model is discussed in the "Results and Discussion" 
section. Finally, the "Conclusion" section discusses the 
effectiveness of the proposed methodology and potential 
areas for future research.

Literature survey
AI systems’ predicting and classifying skills are driv-
ing wider applications in clinical research. As a result, 
they have found widespread application in biomedical 
research and the development of reliable tools for diag-
nosis. Numerous studies have been conducted to classify 
maternal–fetal standard planes using ultrasonography.

Image categorization, facial recognition, and speech 
recognition are just a handful of the challenges that AI 
has helped overcome. However, this strategy will not be 
very effective for classifying and segmenting US images. 
The automatic categorization of anatomic planes from 
fetal US images is complicated by several issues, includ-
ing poor SNR, the mother’s bulk, and the small size of 
the fetus [13]. The problems are made worse by the fact 
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that images in hospital archives are taken with a range 
of equipment types, operators, imaging formats, resolu-
tions, zoom settings, and so forth. Various DL models 
like GoogLeNet [14] and ResNet [15] have been pro-
posed to overcome the above challenges. The use of 
these algorithms in classification tasks involving medical 
images yields excellent results. The study [16] used Deep 
Convolutional Neural Networks (DCNNs) to increase 
recognition accuracy and optimize clinical pipelines by 
identifying fetal facial standard planes (FFSPs). Train-
ing DCNN models with improperly labeled examples 
caused overfitting and performance loss. The study [17] 
proposed a Transfer Learning (TL) strategy to overcome 
the issues of limited training data and diminishing per-
formance. This method involves implanting the knowl-
edge of specific CNN models that have been pre-trained 
on a broad scale with images of natural settings. These 
models are used to localize medical images such as fetal 
abdominal standard planes. When it came to the aux-
iliary task of plane recognition, the metrics measure-
ments demonstrated that DCNN and TL were effective. 
The algorithm’s limitations in real-time manipulation 
and reliance on quantitative medical datasets rendered it 
unsuitable for practical usage. Recent works [18] propose 
a unique 82-layer DL architecture based on residual bot-
tleneck mechanisms. The intended design now includes 
three more blocks, each with highway routes and skip 
connections. Furthermore, before each residual block, 
a convolutional layer has been added. During training, 
several hyperparameters were initialized using Bayes-
ian optimization (BO). The classification is performed 
with deep features taken from the average pooling layer. 
A more efficient Moth Flame Optimization strategy for 
feature selection was proposed to address increased com-
putation time during the classification phase. Next, the 
selected features are used to train neural network clas-
sifiers to categorize the data. During the experimental 
phase, US images were evaluated, with a focus on normal 
mother-fetal images and images of the fetus’s develop-
ing brain. Some limitations are (i) A bias in the dataset 
complicates DL model training; and (ii) the deep layer 
extracts irrelevant data.

The research [19] aims to improve fetal brain US plane 
categorization by investigating and evaluating the use of a 
Generative Adversarial Network (GAN) to generate syn-
thetic US images of the brain. The synthesis of fetal brain 
images utilizing cutting-edge GANs stylegan2-ada was 
compared to baseline classifiers that used GAN-based 
data augmentation. Our experiments suggest that com-
bining GAN-generated data with standard augmentation 
techniques improves accuracy. The focus was solely on 
binary categorization, ignoring all other possible options. 
Using a brain detector, the US images of the developing 

brain were pre-processed and centered. No evaluation 
was conducted on these architectures’ performance on 
raw US images. The paper [20] proposed a novel frame-
work called FetalBrainAwareNet for generating anatomi-
cally accurate synthetic images of fetal head standard 
planes (FHSPs). This framework enhances the presence 
of desired anatomical features in the generated images. 
It also explores specific regularization factors in the 
adversarial training loss function to control the fetal skull 
shape and improve the distinction of standard planes, 
ensuring that the synthetic images structurally and visu-
ally match real US scans. The framework demonstrates 
its versatility by generating high-quality images of the 
three most common FHSPs. Quantitative and qualitative 
results indicate that the system produces a greater vari-
ety of US images compared to existing methodologies. In 
the article [21], a new U-Net-based network for medical 
image segmentation was developed. This enabled us to 
approach the problem. The architecture of the proposed 
model consists of four layers: two-dimensional convolu-
tional, two-dimensional transposed convolutional, and 
batch normalization. The encoder-decoder path con-
sists of four blocks. The performance of the proposed 
network was tested on a publicly available database for 
fetal head circumference estimation and a newly cre-
ated database for head and belly circumference. The sug-
gested fast network significantly reduced processing time 
when compared to existing U-Nets. The suggested model 
improved segmentation accuracy since it has more train-
able parameters than comparable models. The research-
ers [22] present a method for automatically identifying 
14 distinct fetal characteristics in 2-dimensional fetal 
US images by integrating data from the entire image and 
selected areas of interest (AOI). Our solution uses pre-
trained CNNs to learn two feature extractors on entire as 
well as AOI of US fetal images. Our approach is unique in 
that it combines classification decisions based on global 
and local features without the usage of prior knowledge. 
Furthermore, our method can identify fetal features in 
the image based on the categorization results. In compar-
ison to the other non-fusion-based techniques, the pro-
posed solution is statistically significantly better. Because 
of this limitation, the developed AI algorithms may be 
less effective or generalizable, and they will be unable to 
handle a broader range of clinical circumstances.

To improve the accuracy of classical ultrasonic plane 
detection, graph-enhanced multi-scale structure percep-
tion architectures were used [23]. Specifically, a graph-
based multi-view refinement module was introduced for 
detecting linkages between fetal anatomical components, 
along with a local-to-global multi-granularity ensemble 
module for feature enhancement and noise suppression. 
A confidence assessment loss was added, and several 
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classifiers with branch subnets were employed to pro-
duce fine-grained structure representations. Confidence 
matching enables classifiers to collaborate while gen-
erating choices. The paper [24] proposes an automated 
method for recognizing common fetal US planes using 
a CNN stacking ensemble. This strategy employs three 
CNNs: AlexNet, VGG-19, and DarkNet-19. Predictions 
from these CNNs are extracted using random forest 
and softmax classifiers. The final forecast is determined 
using the absolute majority voting method. The stack-
ing ensemble method was evaluated on a freely avail-
able prenatal US dataset, showing superior performance 
compared to competing approaches and individual CNN 
models. The study [25] explores the effectiveness of Sim-
CLR in scenarios with low and high inter-class variability, 
considering that classification performance varies with 
the number of labels. Various training approaches utiliz-
ing contrastive learning were employed, alongside quan-
titative and qualitative research using industry-standard 
measurements. Contrastive learning proved to be more 
effective for low inter-class variability classification tasks, 
particularly when trained with ImageNet weights, com-
pared to high inter-class variability tasks.

The study [13] proposes an automated approach for 
identifying regularly utilized fetal US planes using the 
DCNN stacking ensemble. All three DCNNs have been 
pre-trained using the stacking ensemble technique. Ran-
dom forest and softmax classification algorithms are 
utilized to make predictions for DCNNs. The final fore-
cast is generated with the majority vote method. The 
stacking ensemble method is evaluated on a freely avail-
able fetal US dataset. The suggested ensemble model for 
fetal US planes establishes six categories in total. The 
experiment results reveal that the stacking ensemble 
method was extremely effective. Training DCNN mod-
els with improperly labeled examples caused overfitting 
and performance loss. Article [24] describes a DL-based 
automated categorization system for fetal US planes to 
improve detection efficiency and accuracy. The suggested 
solution is mostly made up of feature integration and cat-
egorization modules. Following the retrieval of deep fea-
tures using TL models, the global average pooling layer is 
first merged. Merging deep features from multiple CNNs 
produces a more robust feature representation. The next 
stage is to employ a multi-layer perceptron with deep 
features to predict fetal US images. When compared to 
other cutting-edge models that are already available, the 
proposed technique demonstrated higher categorization 
efficiency. This method’s possible downsides include dif-
ficulty with real-time use, overfitting, model generaliza-
tion, and dataset quality [26].

In existing research, many DL models have been devel-
oped, but they still struggle to achieve excellent accuracy 
in classifying fetal organs from US images. These mod-
els can be adversely affected by noise present in medical 
images, and some fail to extract important features from 
US images effectively. Feature extraction is crucial for 
obtaining better results. Additionally, some models suf-
fer from overfitting problems. To address these issues, 
this research presents a hybrid PSOGWO technique 
for effective feature selection and proposes Fast-RBF 
with an ε-ILF and structural risk minimization to avoid 
overfitting.

Proposed methodology
Publicly accessible US image data containing maternal–
fetal US planes are gathered for analysis. Raw US images 
undergo careful pre-processing to enhance their qual-
ity and suitability for classification purposes. The pre-
processing steps are detailed in Section III.B. GLCM is 
employed to extract features, that are effective for texture 
analysis—a crucial aspect in US imaging where texture 
patterns provide significant insights into the anatomi-
cal structures of fetal planes. GLCM extracts 45 distinct 
features from each image, capturing essential texture 
information for classification. To improve classification 
accuracy and speed, optimization techniques are utilized 
to reduce the feature dimension. The PSO algorithm is 
well-known for its ability to solve a variety of real-world 
issues. However, PSO might get caught in local minima. 
To address this problem, the GWO is employed to assist 
PSO, preventing local minima and improving the search 
process. PSO, GWO, and their hybrid, PSOGWO, are 
used to identify the most important features. Through 
this process, the original set of 45 features is reduced to 
25.

The selected features from each optimization algo-
rithm are inputted into various DL models, including 
ANN, CNN, RBF, and the proposed DL model. The per-
formance of each combination of the feature selection 
algorithm and DL model is evaluated using appropriate 
metrics. The model achieving the highest classification 
performance based on the evaluation metrics is identi-
fied as the best classifier for maternal fetal US planes. The 
proposed methodology for maternal fetal classification is 
visually represented in Fig. 1.

Data acquisition
The fetal dataset from Zenodo [27] was used for this 
study. The collection consists of 12,400 US pictures. 
Images were divided into five anatomical planes (brain, 
abdomen, femur, thorax, and maternal cervix) that are 
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most commonly used for maternal–fetal screening, 
as well as an "Other" category that includes additional 
planes. Figure 2 shows samples of US images from each 
category. The details of images are listed in Table  2. 
According to this table, the number of images in each 
type ranges from 714 to 4,213. As a result, it appears that 
there is an issue with class imbalance.

Data processing
To learn image-based AI models, images need to be first 
processed. In the absence of pre-processing, Low-qual-
ity input data might cause AI models to underperform. 
Several methods are employed in pre-processing tech-
niques to improve the input data, such as resizing, crop-
ping, noise removal, image enhancement, balancing, and 
encoding.

Variations in image size in raw US images can impair 
model accuracy [28]. Images are scaled down to a stand-
ard resolution while maintaining their aspect ratio 
to ensure consistency and save computing load. The 
image resize process can be described in Eq. (1):

where the raw US image is referred to as the 
OriginalImage . The TargetResolution specifies the ideal 
image resolution to be achieved when resizing.

(1)Resized Image = resize (Original Image, Target Resolution)

Cropping is a typical technique for focusing on a 
specific part of an image and removing distracting 
background components [29]. There is a lot of irrel-
evant information (patient data, system settings, image 
position, etc.) in the provided dataset that ruins the 
images’ ability to show the AOI. Model reliability and 
image readability are improved by cropping. It is a sim-
ple and effective strategy for improving image quality, 
resulting in more relevant and legible data for the sug-
gested models. By reducing superfluous data, our crop-
ping method improves model accuracy and speeds up 
training. When cropping an image, the height (h) and 
width (w) of the edges are first measured. The cropping 
borders are then set, ensuring that the x and y values 
remain within permissible limits. The cropping method 
uses the computed x and y values, as well as h and w 
values.

Image processing techniques are used to improve the 
contrast of US images and uncover previously concealed 
elements. The term "histogram equalization," is in Eq. (2):

Here, the image after cropping is termed as 
CropedImage . The histogram equalization operation is 
represented by histeq.

Normalizing pixel values to a constant range is essen-
tial for reliable model training. Normalizing pixel values 

(2)Enhanced Image = histeq (Croped Image)

Fig. 1  Proposed methodology workflow
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to the [0, 1] range is a common practice in image process-
ing [30]. Each image has an individual number that cor-
responds to the name of the anatomical plane associated 
with it. Since most ML  approaches require numerical 
inputs. The outcome of the pre-processed US image at 
each stage is given in Table 1.

Data augmentation approaches were employed to 
address class imbalance in the dataset’s minority classes. 
Oversampling and undersampling techniques [31] were 
used to overcome this issue, as shown in Table  2. This 
strategy involved boosting and reducing the representa-
tion of minority and majority classes by randomly remov-
ing some cases and duplicating existing samples. Each 
group has been allotted an instance of 1050. This strat-
egy, which distributes the dataset’s classes more evenly, 
can improve the model’s accuracy. Figure  3 depicts the 
US image distribution before and after applying the sam-
pling approaches. This method significantly improves the 
effectiveness of the proposed models by rectifying the 
class imbalance [32].

Feature extraction
The texture is created by spatially alternating grayscale 
values, resulting in a spatial link between two pixels in the 
image separated by a set distance. An accurate approach 
to texture description is examining the spatial connection 
of grayscale values. The GLCM is a popular technique 
for showing the spatial correlation of pixel grayscale 
[33]. It characterizes a picture by taking into account 
the distance between adjacent pixels, the magnitude of 
variation, and the direction of correlation. The essential 
notion is to compute the frequency of occurrence of two 
grayscale pixels in a certain spatial arrangement, which 
can be used to assess the image’s regional relativity and 
consistency. As the distance changes, GLCM evolves 
immediately in fine textures but slowly in coarse tex-
tures. The GLCM defines a square matrix whose magni-
tude corresponds to the likelihood that a gray value g1 is 
separated from another gray value g2 by a fixed spatial 
location connection (dimensions and orientation). Con-
sider f (i, j) as a two-dimensional grayscale image, where 

Fig. 2  Sample US images from the Zenodo dataset
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S is the collection of pixels within the region that have a 
certain spatial relationship and P represents the GLCM, 
which is expressed in Eq. (3)

(3)P i, j =

# i1, j1 , i2, j2 ∈ S|f i1, j1 = g1&f i2, j2 = g2

#S

There are two techniques to obtain pixel information 
from GLCM: distance and angle orientation [34]. When 
the distance is too small, the data in each pixel becomes 
extremely constant. However, going overboard renders the 
data between pixels worthless. The distance d = 5, and the 
scenario encompasses four angles: { 0◦

, 45
◦

, 90
◦

and135
◦

 }. 

Table 1  Pre-processed image outcome at each stage
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The scenario applies to all patch images due to the pres-
ence of multipatch images. Feature extraction using GLCM 
retrieves data associated with specific variables, including 
energy, correlation, dissimilarity, homogeneity, and con-
trast. After converting RGB images to grayscale, GLCM 
extracts pixel information. GLCM utilizes two orienta-
tions: angle and distance. The co-occurrence matrix will 
be updated before the GLCM variable is computed. Divide 
the total number of recorded co-occurrences by the speci-
fied normalization. As previously stated, the variables will 
be calculated after normalization. This is a reference to the 
Haralick publications, which were critical to the develop-
ment of GLCM [35]. Each of the variables is defined in 
Eq. (4–13).

(4)Contrast =

Ng−1
∑

i,j=0

p
(

i, j
)(

i − j
)2

(5)Dissimilarity =

Ng−1
∑

i,j=0

p
(

i, j
)∣

∣i − j
∣

∣

(6)Homogenity =

Ng
∑

i=1

Ng
∑

j=1

p
(

i, j
)

1+
(

i − j
)2

(7)Energy =
∑

i

∑

j

{

p
(

i, j
)}2

(8)ASM =

∑

i

∑

j

{

p
(

i, j
)}4

(9)Correlation =

∑Ng

i=1

∑Ng

j=1

[(

ij
)

p
(

i, j
)]

− µxµy

σxσy

(10)Entropy = −

N
∑

i

N
∑

j

P
(

i, j
)

lgP
(

i, j
)

(11)Mean = µi =

N−1
∑

i,j=0

i
(

Pi,j
)

,µj =

N−1
∑

i,j=0

j
(

Pi,j
)

(12)Variance = σ 2
i =

N−1
∑

i,j=0

Pi,j(i − µi)
2
, σ 2

j =

N−1
∑

i,j=0

Pi,j
(

j − µj

)2

(13)StandardDeviation = σi =

√

σ 2
i , σj =

√

σ 2
j

Table 2  US fetal image distribution

Classification Actual After balancing

Fetal Brain 3092 1050

Fetal Abdomen 711 1050

Fetal Femur 1040 1050

Fetal Thorax 1718 1050

Maternal Cervix 1626 1050

Other 4213 1050

Fig. 3  Distribution percentage of US images before and after sampling
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The GLCM co-occurrence matrix element p(i, j) is nor-
malized and symmetric in relation to (i, j)th . Contrast is 
defined as the intensity of the pixels surrounding the ref-
erence pixel at a given angle and distance. In general, 
great contrast indicates a lively image. Dissimilarity will 
calculate the spacing between any two items in the area 
of interest, as represented by pixels. A higher value 
implies that there is a considerable difference in intensity 
between adjacent pixels. The homogeneity of a pixel’s dis-
tribution in a GLCM is measured. The relationship 
between contrast and value will be inverse. The contrast 
decreases as the degree of homogeneity increases. ASM 
measures the regularity of pixels in GLCM. The higher 
the ASM number, the more similar the pixels are. ASM 
provides 100% of GLCM’s power. ASM’s base is energy. 
The correlation demonstrates a local gray-level depend-
ency on the texture picture through the linear depend-
ency of the gray-level value in the GLCM. A comparable 
gray-level area can produce stronger correlation results. 
The ultimate purpose of all of the equations is to supply 
six texture features per image patch to train the deep 
neural network. All four of these angles 
(

0
◦

, 30
◦

, 45
◦

, 90
◦

and135
◦

)

 represent the location of the 
focus pixels. Meanwhile, the distance between the refer-
ence and nearby pixels is d = 5 . The position is deter-
mined first, and then each variable is calculated. A total 
of 45 features were collected from GLCM. The hyperpa-
rameters used in this study are detailed in Table 3.

Feature selection
PSO
In the research [36], the PSO algorithm was used for 
feature selection in COVID detection and achieved bet-
ter results. Based on this, we decided to choose PSO. 
The algorithm 1 demonstrates how PSO represents the 
evolution of understanding of social behavior and the 
dynamics of group communication during the exchange 
of secret information regarding migration, flocking, or 
hunting [37]. Together, they form a solution; the former 
is called a swarm, while the latter is called particles. 
Particles can modify their positions by utilizing both 
their own and the information of their neighbors [38].

To begin, the swarm generates a set of random particles 
dependent on positions and velocities. The procedure for 
updating the particles’ locations and velocity is repre-
sented by Eqs. (14) and (15):

Here, t represents the current iteration and w is an 
inertia weight, used to expedite population convergence. 
When the position of the i-th particle in the j-th dimen-
sion is denoted by xij and its velocity by vij . Additionally, 
c1 and c2 are acceleration coefficients, constant values. 
The previous best position of particle i in the j-th dimen-
sion is represented by xp(t)ij  and xg(t)ij  respectively. The 
parameters r1 and r2 can take values between 0 and 1. 
Then, the main loop of PSO evaluates each particle using 
a fitness function and compares the results with both 
local and global best values.

GWO
The GWO algorithm simulates the leadership structure 
and hunting strategies of grey wolves [39]. The alpha (α), 
beta (β), delta ( δ ), and omega (Ω) packs of grey wolves 
serve as a model for the organizational structure. Addi-
tionally, the algorithm incorporates the three main com-
ponents of hunting: seeking out prey, encircling prey, and 
attacking prey [40]. Algorithm 2 presents the pseudocode 
for the GWO algorithm.

(14)x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij

(15)v
(t+1)
ij = wv

(t)
ij + c1r1

(

x
p(t)
ij − x

(t)
ij

)

+ c2r2
(

x
g(t)
ij − xtij

)

Table 3  GLCM Hyperparameters

Hyperparameter Values

Patches 1000

Distance 5

Angles 0
◦

, 30
◦

, 45
◦

, 90
◦

and135
◦

Number of Features 45
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Here is a brief rundown of the grey wolf hunting 
method: The α, β, and δ are likely the most knowledge-
able about the potential whereabouts of prey. Alpha rep-
resents the best candidate solution. By retaining the top 
three results, it can be ensured that all search agents, 
including the omegas, will be compelled to adjust their 
positions to match those of the top search agents. Grey 
wolves use these formulas from Eq. (16–18) to keep track 
of their positions.

The distances between each δ,β , and α and the prey are 
represented by −→x1,−→x2 , and −→x3.

PSOGWO
Figure  4 depicts the overall structure of PSOGWO for 
optimized feature selection. PSOGWO combines PSO 
and GWO wrapping algorithms. At this point, testing 
the effectiveness of the two algorithms, GWO and PSO, 
which employ different search methodologies, is desired. 
When it comes to feature selection algorithms, PSO is a 
favorite among researchers. The PSO’s update mecha-
nism is integrated into the fundamental design of GWO. 
The first two stages of PSOGWO are parameterization 
and population formation, which cover a wide range of 
problem solutions (feature selection). Calculating the 
fitness function for each solution and selecting the best 
one helps us to assess their utility. The next stage of the 
PSOGWO algorithm involves updating the population 
with the concurrent GWO and PSO algorithms. Follow-
ing that, the grey wolf fitness function is compared to 
the best in the world, and the variables are adjusted as 

(16)Dα =

∣

∣

−→c1 .
−→
xα −

−→
x
∣

∣,Dβ =

∣

∣

−→c2 .
−→
xβ −

−→
x
∣

∣,Dδ =
−→c3 .

−→
xδ −

−→
x

(17)−→
x1 =

−→
xα −

−→

A1.
−→

Dα ,
−→
x2 =

−→
xβ −

−→

A2.
−→

Dβ ,
−→
x3 =

−→
xδ −

−→

A3.
−→

D3

(18)−−−−−→

x(t + 1) =

−→
x1 +

−→
x2 +

−→
x3

3

Fig. 4  Working of PSOGWO algorithm for feature selection
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needed. Equation (19) is utilized to determine the fitness 
function.

where tot_feat is the total features in the agent, sel_feat 
is the features selected by the agent, and accuracy(agent) 
is the agent’s classification accuracy. The parameters are 
then revised to reflect the new positions, and the grey 
wolves and global best adjust to match. Once the final 
requirements are met, the process is repeated. The ulti-
mate result is a vector of integers indicating whether 
characteristics were selected or removed. As illustrated in 
Algorithm 3, the PSOGWO technique is recommended.

Classifiers
Figure 5 depicts the three layers that comprise RBFNN: 
Input Layer (IL), Hidden Layer (HL), and Output Layer 
(OL) [41]. This includes xi ∈ Rd and y ∈ R , with M hid-
den layer nodes, and the RBFNN executes the nonlinear 
mapping f : Rd

→ R . The training US images are fed into 
the RBFNN’s input layer, while the HL nodes conduct a 
nonlinear transformation using the RBF for mapping the 
input and  new space. When constructing a Gauss-
ian function, the variables in the RBF reflect the centre 
(ci ∈ Rd) and kernel width ( δi ). The function is described 
in the Eq. (20):

(19)
fitness = weightacc ∗ accuracy

(

agent
)

+ weight−feature ∗
tot− feat − sel−feat

tot− feat A linear weighted combination is applied in the new 
space by the OL’s nodes. For the mapping function 
from Rd

→ R , let’s assume φ(∎) is the RBF and wi is the 
connection weight between the HL and OL.

With the use of a linear model and an RBFNN. As 
stated in the introduction, three parameters are needed 
for the RBFNN. The parameters are the centre vector 
of the RBFNN ci = [ci1, ci2, . . . , cid]

T  , the width of the 
kernel δi , and the weight of the OL wi . Whereas wi and 
δi are determined by gradient descent learning [42] and 
fuzzy C-means (FCM) technique. Equations  (22) and 
(23) represent the centre of the RBF (cik) and the kernel 
width (δi) , respectively.

where, n represents the training US image samples, M 
represents the Total HL nodes, and µji represents the 
outcome of FCM. The input sample is mapped to the 
new space f : Rd

→ RM , and the transformation from 
the IL to the HL creates a nonlinear mapping. The net-
work operation is expressed in Eq. (26) and let’s assume 
p = [w1,w2, . . .wM]T .

The network’s output can be transformed into a lin-
ear model by calculating the RBF’s HL, as illustrated in 
Eq. (26).

Fast‑RBFNN
The RBF linear model’s ε-insensitive loss function (ILF) 
is introduced through the fast-RBF search principle. The 
ε-ILF refers to a loss function that reduces sensitivity to 
noise or variations in data, enabling more important fea-
tures to be identified. Unlike common loss functions such 

(20)ϕ(�x − ci�) = exp

(

−

�x − ci�
2

δi

)

(21)y = f (x) =

M
∑

i=1

wiϕ(�x − ci�)

(22)cik =

∑n
j=1µjixjk
∑n

j=1µji

(23)δi =

∑n
j=1µji�xj − ci�

2

∑n
j=1µji

(24)Let˜xi = ϕ(�x − ci�), i = 1,2, . . . ,M

(25)˜x =

[

˜x1,˜x2, . . . ,˜xM
]T

(26)y = pT˜x
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as cross-entropy, which aim to minimize overall predic-
tion error, this function prioritizes robustness, making it 
more suitable for medical imaging tasks. By determining 
the significance of the constraint term ε, the optimiza-
tion seeks to minimize the ε-ILF. The RBFNN optimiza-
tion model is constructed using the Gaussian kernel and 
incorporates the structural risk term with large-sample 
processing. The structural risk term acts as a regulariza-
tion component in the loss function, controlling model 
complexity. It helps mitigate overfitting by penalizing 
excessively complex models, ensuring better generaliza-
tion to new data, and enhancing overall performance. 
The processes are detailed below.

1.	 Equations  (22) and (23) yield the values of ci and δi , 
respectively, while Eq. (5) yields the model input ˜x.

2.	 The loss function unaffected by ε is presented. The 
definition of the ε-ILF is as follows:

Equation  (26)’s linear model can have its equivalent 
ε-ILF written as

The output value of the neural network is denoted by 
yoi  , while yi represents the actual output value. When the 
constraints of pT˜xi − yi < ε and yi − pT˜xi < ε are not 
always satisfied, the relaxation factors ξi and ξ∗i  are added.

(27)Lε
(

x, y, f
)

=

∣

∣y− f (x)
∣

∣

ε
= max

(

0,
∣

∣y− f (x)
∣

∣

ε

)

, x ∈ Rd
, y ∈ R

(28)
n

∑

i=1

∣

∣yoi − yi
∣

∣

ε
=

n
∑

i=1

max
(

0,
∣

∣yoi − yi
∣

∣− ε
)

=

n
∑

i=1

max
(

0,

∣

∣

∣
pT˜xi − yi

∣

∣

∣
− ε

)

To minimize the value of the ε-ILF, represented by 
Eq.  (8), this algorithm exists. The ε-insensitive param-
eter’s value has a direct impact on the precision of the 
models. Therefore, the optimization problem incor-
porates the parameter λ and utilizes ε as the constraint 
term. When the optimization problem is coupled with 
Eq. (29), the resulting expression remains the same and it 
is represented in Eq. (27)

The condition that ξi, ξ∗i ≥ 0 is automatically met, and 
µ is the equilibrium factor.

3.	 Introducing kernel functions and structural risk 
items: A support vector machine (SVM) is one 
method for minimizing structural risk [43, 44]. This 
work presents a strategy for learning how to design 
a SVM and incorporating a regularization to reduce 
algorithmic risk. SVMs use the kernel strategy to 
enhance the computational capabilities of linear 
learners. The proposed technique in this paper also 
involves the use of a kernel function [45]. Employ-
ing the regularization and kernel function can help to 
represent the optimization problem and it is given in 
Eq. (28).

(29)
{

yi − pT˜xi < ε + ξi, ξi ≥ 0

pT˜xi − yi < ε + ξ∗i , ξ
∗

i ≥ 0

(30)

min2�ε +
�

µn

n
∑

i=1

(

ξ2i , ξ
∗
2

i

)

, s.t

{

yi − pT˜xi < ε + ξi
pT˜xi − yi < ε + ξ∗i

Fig. 5  RBFNN Architecture
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4.	 Formula derivation: The Lagrangian function can be 
written as a function of time when the Lagrange mul-
tiplier is introduced.

The related dual problem of Eq. (29) has the following 
matrix form:

where α,α∗ and ˜K  represents Lagrange coefficients and 
kernel function.

where K  represents the Gaussian kernel. The solution’s 
variable values are

5.	 Classification: The classifier function is illustrated in 
the Eq. (35)

A fetal brain, abdomen, femur, thorax, maternal cervix 
and other is associated with a y-value that falls anywhere 
from 0 to 5.

(31)
min

p, ε, ξi , ξ
∗

i

�p�2 + 2�ε +
�

µn

n
�

i=1

�

ξ2i + ξ∗
2

i

�

, s.t















yi − pT ϕ
�

�xi
�

< ε + ξi ,

pT ϕ�xi − yi < ε + ξ∗i ,

i = 1,2, .., n

(32)
L = �p�2+2�ε+

�

µn

n
∑

i=1

(

ξ2i + ξ∗
2

i

)

+

n
∑

i=1

αi

(

yi − pTϕ
(

˜xi
)

− ε − ξi

)

+

n
∑

i=1

α∗

i

(

pTϕ
(

˜xi
)

− yi − ε − ξ∗i

)

(33)
{

max
[

αTα∗
T
]

[

2
�
y

−
2
�
y

]

−

[

αTα∗
T
]

˜K
[ α

α∗

]

, s.t
[

αTα∗
T
]

1 = 1,α,α∗
≥ 0

(34)y =







y1
...

yn






,α =







α1
...

αn






,α∗

=







α∗

1
...

α∗

n







(35)˜K =

[

˜k
(

˜xi,˜xj
)

]

=

[

K +
µn
�
I −K

−K K +
µn
�
I

]

(36)







p = �
�n

i=1

�

αi − α∗

i

�

ϕ
�

�xi
�

ξi = αiµn
ξ∗i = α∗

i µn.

(37)
y = sign

(

pT ϕ
(

˜xtest
)

)

= �

n
∑

i=1

(

αi − α∗

i

)

ϕT
(

˜xi
)

ϕ
(

˜xtest
)

= �

n
∑

i=1

(

αi − α∗

i

)

˜K
(

˜xi ,˜xtest
)

Result and discussion
Experimental setup
A novel methodology for identifying fetal organs in US 
images is introduced, utilizing the Zendo dataset. After 
pre-processing, features are extracted using GLCM tech-
niques. These features are then inputted into conventional 
DL models, including ANN, CNN, RBF) and our proposed 
fast RBFNN. The experimental environment configuration 
setting used in this research is displayed in Table 4.

Evaluation metrics
Assessing DL model performance is critical, achieved 
through various metrics such as Accuracy, Specificity, 
Sensitivity, Precision, F1 score, and Matthews Correla-
tion Coefficient (MCC), False Rejection Rate (FRR) and 
False Acceptance Rate (FAR). Table 5 details the formula 
for each metric. In these formulas, TP represents True 

Table 4  Experimental environment

Model Accuracy

Operating System Windows 11

CPU Intel(R) Xeon(R) Gold 6330

GPU NVIDIA GeForce RTX

RAM 32 GB

Programming Language Python

Environment Anaconda – JupyterNotebeook

Proposed 96.37

Table 5  Evaluation metrics

Metrics Formula

Accuracy TP+TN

TP+TN+FP+FN

Specificity TN

TN+FP

Sensitivity TP

TP+FN

Precision TP

TP+FP

F1 score TP.TN−FP.FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC TP

TP+FN

FRR FN

TP+FN

FAR FP

TN+FP
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Positives, TN  represents True Negatives, FP represents 
False Positives, and FN  represents False Negatives in the 
classification of fetal organs in US images.

Experimental outcome
Table  6 gives the performance metrics attained by the 
convention and proposed DL models using GLCM fea-
tures. Our proposed model exhibits the highest perfor-
mance metrics, with Accuracy, Specificity, Sensitivity, 
Precision, F1 score, and MCC at 96.37%, 97.08%, 95.67%, 
97.02%, 96.34%, and 92.75%, respectively, and minimal 
FRR and FAR of 4.33 and 2.92 using GLCM features.

To enhance model performance, essential features are 
selected using optimized algorithms like PSO, GWO, and 
a hybrid PSO-GWO approach. The performance of both 
conventional and proposed DL models, utilizing features 
selected by these algorithms, is presented in Tables 7, 8 
and 9. The combination of hybrid PSOGWO-selected 
features with our proposed model yields the most satis-
factory performance, achieving 98.07% Accuracy, 98.12% 
Specificity, 98.03% Sensitivity, 98.18% Precision, 98.10% 
F1 score, and 96.15% MCC.

Figures  6 and 7 illustrate a comparison of DL models 
based on positive and negative metrics using various 
feature extraction techniques, including GLCM, PSO, 
GWO, and hybrid approaches. The figures highlight that 
the proposed model, which utilizes hybrid features, out-
performs other DL models and feature extraction tech-
niques in terms of both positive and negative metrics. 
This demonstrates the superior performance and effec-
tiveness of the proposed framework.

The speckle noise removal is an important pre-process-
ing step. The outcome of the DL models using Hybrid 
PSOGWO-selected features gives better results in fetal 

organ classification. To demonstrate the importance of 
the pre-processing step, the DL model is evaluated using 
the Hybrid PSOGWO-selected features with the input 
image containing speckle noise. The outcome of the DL 
model using Hybrid PSOGWO-selected features with-
out noise removal is presented in Table 10. By comparing 
Tables 9 and 10, the DL model achieves the highest posi-
tive metrics and lower negative metrics on input images 
without noise.

The performance of the proposed model in classify-
ing each organ from US images is evaluated, with results 
summarized in Table  11. The proposed model exhibits 
high accuracy across various organs: 97.69% for the brain, 
98.15% for the abdomen, 99.07% for the femur, 97.69% 
for the thorax, 97.22% for maternal cervix, and 98.61% 
for other organs. In addition to accuracy, other metrics 
for each organ are also provided in Table  11, offering a 
comprehensive assessment of the proposed model’s per-
formance across different organs in fetal imaging.

The time efficiency of each stage of the proposed 
methodology on test data is evaluated and presented in 
Table  12. Pre-processing and feature extraction using 
GLCM require 4 s and 11 s, respectively. Subsequently, 
feature selection using the hybrid PSO-GWO algo-
rithm consumes a significant time of 5  min and 29  s. 
For classification, ANN takes 38 s, while our proposed 
model takes 57  s, although it is faster than CNN and 
RBF models. This assessment provides insight into the 
computational time required by the proposed method. 
Overall, the finalized methodology, comprising pre-
processing, GLCM feature extraction, PSOGWO-based 
feature selection, and fast RBF classification, takes 
6 min and 41 s to process the test data.

In assessing the effectiveness of the proposed model, 
a comparative analysis with existing models from recent 

Table 6  DL model performance on fetal US image classification using GLCM features

Model Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

ANN 92.59 93.88 91.35 93.92 92.62 85.22 8.65 6.12

CNN 93.06 94.25 91.87 94.18 93.01 86.13 8.13 5.75

RBF 94.98 95.25 94.71 95.16 94.93 89.96 5.29 4.75

Proposed 96.37 97.08 95.67 97.02 96.34 92.75 4.33 2.92

Table 7  DL model performance on fetal US image classification using PSO selected features

Model Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

ANN 94.06 94.70 93.44 94.74 94.08 88.12 6.56 5.30

CNN 96.06 97.06 95.08 97.02 96.04 92.14 4.92 2.94

RBF 96.84 97.68 96.00 97.65 96.82 93.68 4.00 2.32

Proposed 97.54 98.31 97.37 98.28 97.83 95.68 2.63 1.69
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research was conducted, as presented in Table 13. Analy-
sis revealed that several references, namely [46, 48], and 
[49], evaluated their models solely based on accuracy, 
without considering other essential metrics. In contrast, 
our proposed model offers comprehensive metrics. The 
highest accuracy reported in previous research is 96.85% 
and 96% from studies [47, 48]. The proposed model 

achieves 98.07%, surpassing the existing best accuracy. 
For sensitivity and precision, the highest scores reported 
are from references [24, 47], with sensitivity values of 
96.28% and 96.66%, and precision values of 94.02% and 
97.12%. The proposed model yields 98.12% sensitiv-
ity and 98.18% precision, which is significantly bet-
ter than the existing results. The MCC values reported 

Table 8  DL model performance on fetal US image classification using GWO selected features

Model Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

ANN 94.91 95.52 94.29 95.47 94.88 89.82 5.71 4.48

CNN 95.22 96.39 94.08 96.42 95.24 90.46 5.92 3.81

RBF 96.76 97.23 96.29 97.19 96.74 93.52 3.71 2.77

Proposed 97.84 98.16 97.52 98.13 97.82 95.68 2.48 1.84

Table 9  DL model performance on fetal US image classification using Hybrid PSOGWO selected features

Model Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

ANN 95.52 96.43 94.63 96.41 95.51 91.06 5.37 3.57

CNN 96.53 96.19 96.87 96.12 96.49 93.05 3.13 2.05

RBF 97.07 97.68 96.46 97.66 97.05 94.14 3.54 2.32

Proposed 98.07 98.12 98.03 98.18 98.10 96.15 1.97 1.88

Fig. 6  Evaluation of the DL model’s positive metrics by employing various features
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in research [19, 24] are 74.8% and 94.19%, whereas the 
proposed model achieves an MCC of 96.15%. Addition-
ally, for the F1 score, the proposed model outperforms 
existing values, which range from 79 to 97%. Overall, 

the comparative analysis highlights the effectiveness 
and superiority of our proposed model over existing 
approaches, showcasing its potential for advancing fetal 
organ identification in US imaging research.

Fig. 7  Evaluation of the DL model’s negative metrics by employing various features

Table 10  DL model performance on fetal US image classification using Hybrid PSOGWO selected features without noise removal

Model Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

ANN 94.47 95.24 93.25 95.47 94.35 90.01 6.24 4.83

CNN 95.23 95.03 95.65 94.79 95.22 92.55 3.98 3.62

RBF 95.89 96.14 95.98 96.24 96.11 93.69 4.57 3.46

Proposed 96.54 97.2 96.89 96.88 96.88 95.78 2.68 2.49

Table 11  Evaluation of the proposed methodology for each image classification

Accuracy Specificity Sensitivity Precision F1 MCC FRR FAR

Brain 97.69 98.10 97.30 98.18 97.74 95.37 2.70 1.90

Abdomen 98.15 99.04 97.32 99.09 98.20 96.31 2.68 0.96

Femur 99.07 99.06 99.09 99.09 99.09 98.14 0.91 0.94

Thorax 97.69 97.20 98.17 97.27 97.72 95.37 1.83 2.80

Maternal Cervix 97.22 96.30 98.15 96.36 97.25 94.46 1.85 3.70

Other 98.61 99.06 98.18 99.08 98.63 97.22 1.82 0.94

Average 98.07 98.12 98.03 98.18 98.10 96.15 1.97 1.88
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Discussion
The proposed model, using hybrid PSO-GWO features, 
delivers excellent results and outperforms existing mod-
els such as ANN, CNN, and RBF. The model achieves 
accuracy, sensitivity, precision, MCC, and F1 scores of 
98.07%, 98.12%, 98.18%, 96.15%, and 98.10%, respectively. 
Table 13 demonstrates that the proposed model also per-
forms better than existing research. The ε-insensitive loss 
function (ε-ILF) and advanced feature selection contrib-
ute to the model’s improved performance by handling 
noisy images more effectively. Additionally, structural 
risk minimization helps reduce overfitting. Another 
reason for the improved results is the selection of more 
suitable features using the hybrid PSO-GWO approach. 
Table 11 presents the model’s performance in classifying 
each organ, indicating that the model accurately identi-
fies all organs. The outcomes of the proposed framework 
suggest that the model is suitable for real-time deploy-
ment and provides promising results in identifying fetal 
organs from US images.

However, the proposed framework also presents chal-
lenges. The execution time for feature extraction, feature 
selection using the hybrid model, and classification is 
11  s, 5  min 29  s, and 57  s, respectively. The complexity 
of the framework increases the execution time. Analysis 

of Tables 9 and 10, which compare the hybrid DL model 
with and without noisy images, reveals that the model 
performs better without noisy images. This indicates that 
the proposed model still relies heavily on pre-processing 
steps to achieve optimal performance.

Conclusion
The research successfully designs a novel methodology 
using hybrid optimized feature selection and the Fast 
RBFNN model for maternal fetal US plane classification. 
US images are the safest technique for fetal and mater-
nal health monitoring. These images are processed and 
features are extracted using the GLCM technique. The 
most important features are selected by the PSOGWO 
algorithm, as well as PSO and GWO. The selected fea-
tures from each algorithm are then fed into DL classifiers 
such as ANN, CNN, RBF, and Fast RBFNN. All combi-
nations of output features from GLCM, PSO, GWO, 
and PSOGWO with DL models are tested. Experimental 
results show that the proposed model performs better on 
hybrid PSOGWO features. The accuracy attained by the 
proposed model is 98.07%, 97.84%, 97.54%, and 96.37% 
on PSOGWO, GWO, PSO, and GLCM features, respec-
tively. Next, the model efficiency is compared using time 
consumption. The proposed DL model takes only 57  s 
to classify the test data, indicating its suitability for real-
time applications. A limitation of the research is the use 
of data from the same dataset for both training and test-
ing. To better determine the model’s effectiveness, it is 
necessary to compare it with additional datasets. Future 
work will involve evaluating the model with diverse data-
sets and exploring its deployment for clinical use in real-
time applications.
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Table 12  Analysis of operational efficiency on test data

Steps Method Time-Consuming

Pre-processing - 4 s

Feature Extraction GLCM 11 s

Feature Selection PSO 2 min 20 s

GWO 3 min 12 s

PSOGWO 5 min 29 s

Classifiers ANN 38 s

CNN 1 min 5 s

RBF 1 min 12 s

Proposed 57 s

Table 13  Comparison of the proposed model with existing 
works

Ref Accuracy Sensitivity Precision MCC F1 score

[19] 79.4 79.45 78.95 74.8 79.1

[46] 93.6 - - - -

[24] 95.69 96.28 94.02 94.19 95.08

[47] 96.85 96.66 97.12 - 96.88

[48] 96 - - - -

[49] 94

Our 98.07 98.12 98.18 96.15 98.10
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