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Abstract 

Purpose We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced 
T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).

Methods 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence 
matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform 
features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training 
set (~ 70%) and the test set (~ 30%). Combinations of data preprocessing methods, including normalization (Min-Max, 
Z-score, Mean), dimensionality reduction (Pearson Correlation Coefficients (PCC)), feature selector (max-Number, 
cluster) and ten-fold cross-validation were analyzed for their prediction performance. Kaplan–Meier curve, Cox 
proportional hazards regression model were used and concordance index (C-index), integrated Brier score (IBS) were 
selected. Model performance was assessed using the C-index.

Results WHO grade, age, gender, histogram (Mean, Perc.90%, Perc.99%), Gray-level co-occurrence matrix (S(3, -3)
DifVarnc, S(5, 5)Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom), Teta1, WavEnLL_s-2 and GrVariance were identified 
as the significant recurrence factors. The pipeline using Mean_PCC_Cluster_10 of T1C yielded the highest efficiency 
with an IBS of 0.170, 0.188, 0.208 and C-index of 0.709, 0.705, 0.602 in the train, test and validation sets, respectively. 
The pipeline using MinMax_PCC_Cluster_19 of T2WI yielded the highest efficiency with an IBS of 0.189, 0.175, 0.185 
and C-index of 0.783, 0.66, 0.649 in the train, test and validation sets. The pipeline using MinMax_PCC_Cluster_13 
of T2WI + T1C yielded the highest efficiency with an IBS of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 
in the train, test and validation sets, respectively.

Conclusion Knowledge discovery from MRI radiomic features can slightly help predict recurrence risk in HGMs. 
T2WI or T1C yielded better efficiency than T2WI + T1C. The parameters with the best power were Mean, Perc.99%, 
WavEnLL_s-2, Teta1 and GrVariance.
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Introduction
 Meningiomas are the most common intracranial 
tumor originating from the arachnoid cap cells, which 
account for 39% of central nervous system neoplasms 
[1]. Around 5% of all newly diagnosed meningiomas 
are high-grade meningiomas (HGMs, WHO grade II 
and III) [2], accompanied with aggressive clinical fea-
tures and frequent tumor recurrence compared to their 
benign low-grade meningiomas (LGMs, WHO grade I). 
The 5-year recurrence rate after total resection of grade 
I, II, III meningiomas are 7–23%, 50–55%, and 72–78% 
[3, 4]. Because of the huge difference between LGMs 
and HGMs, a preoperative model for assessing relapse 
risk in patients with HGMs should be constructed to 
help individualized treatment and improve the long-
term survival rate.

Conventional magnetic resonance imaging (MRI) has 
limitations of its own when assessing recurrence risk in 
HGMs. It is possible to analyze pixel distributions, inten-
sities and dependencies by mathematically defining fea-
tures in radiomics, and it can provide information that 
is not visible with the naked eye [5]. Radiomics endeav-
ors to uncover and quantify the concealed information 
embedded in biomedical images through the application 
of machine learning (ML) or deep learning methodolo-
gies. Analyzing and understanding such vast quantities 
of data can be effectively accomplished through Knowl-
edge Discovery from Databases (KDD), which stands as 
an interdisciplinary field encompassing artificial intel-
ligence, databases, statistics, and ML. ML is a branch of 
artificial intelligence that allows computers to learn from 
large complex datasets and perform tasks such as analy-
sis, classification and prediction, which has potential to 
play a key role across a variety of medical imaging appli-
cations [6, 7]. To our knowledge, in some studies, they 
proposed a combination of radiomic analysis and ML 
or deep learning for classification MRI of most common 
brain tumours or LGMs and HGMs, predicting mito-
sis cycles in intracranial meningioma, assessing preop-
erative risk of subtotal resection in skull meningiomas, 
predicting of Ki-67 proliferation index or sinus invasion 
in meningiomas or recurrence in parasagittal and para-
falcine meningiomas (WHO grade I) [8–17]. Ko et  al. 
[18] reported MRI radiomics based on support vector 
machine to predict progression/recurrence in WHO 
grade I meningiomas and Kalasauskas et al. [19] reported 
value of radiomic and semantic MRI characteristics for 
the prediction of WHO grade II meningiomas relapse. 
Few articles have been reported on the use of radiom-
ics to assess the relapse risk in patients with HGMs. To 
bridge this gap, this retrospective study was designed to 
assess the potential value of the KDD-based MRI radi-
omics for recurrence risk in HGMs.

Materials and methods
Patients
The surgical pathology database at our hospital was uti-
lized from November 1, 2021, to November 1, 2023. 
Exclusion criteria were (1) patients treated before sur-
gery, and (2) inadequate image quality. All methods were 
performed according to relevant guidelines. The study 
was approved by the Institutional Ethics Review Com-
mittee of Henan Provincial People’s Hospital and all the 
patients signed informed consent.

Image acquisition
Patients were examined using a 3.0T MRI scanner (Sie-
mens Skyra) with the standard head coil. MRI scan pro-
tocols included the following: axial T2WI (TR = 5000 ms, 
TE = 117 ms, matrix = 256 × 256, intersection gap = 1 mm, 
thickness = 5  mm and field of view = 24 × 24  cm). Con-
trast-enhanced T1WI (T1C)(TR = 260.0 ms, TE = 2.46 
ms, flow rate = 2.0 mL/s, dose = 0.2 ml/kg).

Textural feature extractions
Analyses were performed using MaZda v. 4.7 software 
(Institute of Electronics, Lodz Technical University, 
https:// qmazda. p. lodz. pl/) [20–23]. In order to get reli-
able results on MRI texture classifications, the dynam-
ics were limited to µ ± 3δ(µ: mean gray-level value, δ: 
standard deviation) [24]. The next step was to draw 
regions of interest (ROIs) on images of T2WI and T1C 
of the largest lay on 2D sequences. It took two doc-
tors with more than ten years of experience to deline-
ate the ROIs manually along the edges of the lesion, fill 
the lesion with red markers, and exclude necrotic and 
cystic tissue intending for the analysis of viable lesions, 
and the third senior radiologist made the final decision 
in case of any disputes. In the subsequent analyses, the 
averages of the measurements were used. The degree 
of agreement was categorized as follows: an interclass 
correlation coefficient (ICC) value below 0.60 signified 
poor to moderate concordance; an ICC ranging from 
0.61 to 0.80 indicated good agreement; whereas, an ICC 
spanning from 0.81 to 1.00 represented excellent agree-
ment. A total of 279 feature values and corresponding 
histograms were extracted for each ROI. Based on fea-
ture classes, the number of radiomics features included 
(i) 9 histogram features on the basis of the pixel 
counts in images with specific gray-level values [25], 
(ii) 220  Gy-level co-occurrence matrix (GLCM) fea-
tures in accordance with a statistical description of the 
pixel pair distribution [26], (iii) 20 Gy-level run-length 
matrix (GLRLM) features, achieved by searching the 
image for runs with the same gray-level value in pre-
defined directions [27], (iv) 5 auto-regressive model 
(ARM) features, grounded in the weights attributed to 
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four adjacent pixels and the variance derived from min-
imizing the prediction error, (v) 20 wavelets transform 
(WAV) features, rooted in the extraction of texture 
frequency components from the energy levels calcu-
lated within distinct channels [28] and (vi) 5 absolute 
gradient statistics (AGS) features, computed according 
to the analysis of the spatial variation of grey-level val-
ues across the entire image [25]. Multiple GLCMs were 
computed at various distances of 1, 2, 3, and 4 pixels, 
in the directions of 0°, 45°, 90° and 135° (with respect 
to the horizontal axis), as well as potentially along the 
z-axis for volumetric or multi-slice images. Multiple 
GLRLMs were computed at four distinct angles: hori-
zontal (0°), vertical (90° ), diagonal 45, and diagonal 
135. Clinical information included age, gender, WHO 
meningioma grading (grades II and III), relapse time, 
and the tumor area. Multiple meningiomas from the 
same patient were considered as a single case in ROI 
classification and impact feature extraction.

Feature selections
A computer-generated random dataset was used to 
allocate 70% of the dataset to the training set and the 
remaining (30%) of the dataset to the independent test 
set. FeAture Explorer software (FAE; V 0.5.5, https:// 
github. com/ salan 668/ FAE.) was developed using the 
Python programming language (https:// python. org) 
and NumPy, pandas, and scikit-learning modules 
(https:// scikit- learn. org). The survival analysis module 
of FAE software was modeled based on Lifelines and 
PyCox. Firstly, we normalized the dataset by MinMax 
Normalization, Z-score Normalization and Mean Nor-
malization. Min-max normalization maps the original 
data range into a new range[0,1] in a linear fashion. 
Z-score Normalization subtracts the mean value and 
divides the standard deviation for each feature. Mean 
Normalization involves calculating the mean (average) 
value for each feature in a dataset and then subtracting 
that mean from each feature’s value to normalize the 
data, typically scaling it to a range such as [-0.5, 0.5]. 
Secondly, we used a Pearson Correlation Coefficient 
(PCC) to dimension reduction. PCC is used for each 
pair of features to reduce the row space dimensions of 
the feature matrix and the PCC is used to reflect the 
degree of linear correlation between two variables. 
Its value ranges from − 1 to 1, with a larger absolute 
value indicating a stronger correlation. A PCC value of 
0.99, which is often adopted as a criterion in literature, 
indicates an extremely high degree of linear correla-
tion between the two variables, and this correlation 
is statistically significant. But if the PCC is greater 
than 0.99, one of them is randomly deleted in order to 
reduce data redundancy and enhance model efficiency. 

Iterate through all features and calculate the Pearson 
correlation coefficient between each pair. Lastly, we 
set feature number range from 1 to 20, feature selec-
tion through clustering, and ten-fold cross-validation. 
When selecting the minimum and maximum num-
ber of features, FeAture Explorer software will iterate 
through all possible feature counts within this range 
to build models. From the perspective of data inter-
pretability, it is advisable to keep the maximum num-
ber of features in the model relatively low (e.g., 20). If 
the number of features being iterated over exceeds the 
total number of features in the feature matrix, all fea-
tures will be used for modeling. Cluster specifies what 
column has unique identifiers for clustering covari-
ances. Using this forces the sandwich estimator (robust 
variance estimator) to be used. This module splits the 
training data into a training set and a validation set to 
find the optimal combination of the aforementioned 
strategies. In order to seek a stable combination of 
hyperparameters, a ten-fold cross-validation approach 
is chosen. Initially, the sampling is divided into 10 sub-
sets, with each subset being held out in turn as the 
validation data for the model, while the remaining 9 
subsets are used for training. This cross-validation 
process is repeated 10 times, with each subset serving 
as the validation data once. All the results are recorded 
and statistically analyzed against the corresponding 
labels to evaluate the performance of the model. The 
training set would be used to train the model, the vali-
dation set for hyperparameter tuning and model selec-
tion (choosing the model that performs best on the 
validation set), and finally, the test set to validate the 
model.

Statistical analysis
X-tile 3.6.1 software [29] (Yale University, New Haven, 
CT, USA) was used to determine the optimal cut-off val-
ues. The optimal cut-off value is the best threshold used 
in fields like statistical analysis, medical diagnosis, and 
risk assessment to distinguish between different catego-
ries (such as “positive” and “negative”). This cut-off value 
is usually chosen at the point that maximizes the Youden 
Index. The maximum Youden Index point is calculated 
as the sum of sensitivity and specificity minus 1. Survival 
analysis was performed using the Kaplan-Meier method 
and Cox’s proportional hazard model. We used Linear 
Regression. The Concordance Index (C-index), is a met-
ric used to evaluate the predictive accuracy of a model. 
It is primarily employed to calculate the discrimination 
between the predicted values and the true values of the 
COX model in survival analysis. The C-index estimates 
the probability that the predicted outcomes are consist-
ent with the actual observed outcomes, making it one of 
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the commonly used indicators in assessing the predictive 
accuracy of prognostic models for tumor patients. The 
Integrated Brier Score (IBS) is a metric utilized to assess 
the accuracy of probabilistic prediction models. Probabil-
istic prediction models are typically employed to forecast 
the probability of an outcome. IBS, one of the frequently 
used metrics for evaluating probabilistic prediction mod-
els, measures the discrepancy between the predicted out-
comes and the actual outcomes. P < 0.05 was considered 
statistically significant. All confidence intervals (CIs) 
were showed at the 95% confidence level.

Results
Of the 261 consecutive patients with a pathologic diag-
nosis of grade II or III meningiomas over a 2-year period 
from November 2021 until November 2023, 6 were 
excluded for poor MRI  image quality (motion artifacts), 
5 for lacking T1C and 250 patients were finally selected 
for the study. There were 164 patients with grade II and 
86 patients with grade III. There were 118 males and 
132 females in the entire dataset. The mean age of the 
patients was 52.72 years with a range of 15 to 79 years 
and the standard deviation was 14.34. We allocated 70% 
of the datasets to the training set (175 patients with 115 
grade II and 60 grade III) and 30% of datasets to the 
independent test set (75 patients with 49 grade II and 26 
grade III) (Table 1).

The interobserver agreements were good. There were 
69,750 results generated from 279 feature values and 
250 patients, which were too numerous to be displayed 

in full. In the article, we presented the results of WHO 
and gender using MinMax, Z-score and Mean normali-
zation. After applying MinMax normalization, the results 
for WHO grade and gender were as follows: WHO 
grade II = 0, WHO grade III = 1; for gender, female = 0, 
and male = 1. After applying Z-score normalization, 
the results for WHO grade and gender were as follows: 
WHO grade II = -0.5883, WHO grade III = 1.69967; 
for gender, female = -0.8328, and male = 1.20077. After 
applying Mean normalization, the results for WHO grade 
and gender were as follows: WHO grade II = -0.2571, 
WHO grade III = 0.74286; for gender, female = -0.4095, 
and male = 1.59048.

The pipeline using MinMax_PCC_Cluster_19 of T2WI 
yielded the highest efficiency with an IBS of 0.189, 0.175, 
0.185 and C-index of 0.783, 0.66, 0.649 in the train, test 
and validation sets, respectively (Fig.  1a). WHO grade, 
Mean and WavEnLL_s-2 were identified as the signifi-
cant recurrence factors (p = 0.01, 0.03, 0.03) (Table  2). 
χ2 of WHO grade was 13.969 (P = 0.006). The optimal 
cut-off value for Mean and WavEnLL_s-2 were 83.50 
(χ2 = 10.247, P = 0.034) and 7984 (χ2 = 9.734, P = 0.042) 
(Fig. 2a-b).

The pipeline using Mean_PCC_Cluster_10 of T1C 
yielded the highest efficiency with an IBS of 0.170, 0.188, 
0.208 and C-index of 0.709, 0.705, 0.602 in the train, test 
and validation sets (Fig. 1b). Age and Teta1 were identi-
fied as the significant recurrence factors (p = 0.01, 0.03) 
(Supplementary Material 1). The optimal cut-off value 
for age and Teta1 were 66 (χ2 = 4.055, P = 0.447) and 0.90 
(χ2 = 10.839, P = 0.026) (Fig. 2c).

The pipeline using MinMax_PCC_Cluster_13 of 
T2WI + T1C yielded the highest efficiency with an IBS 
of 0.152, 0.164, 0.191 and C-index of 0.701, 0.656, 0.593 
in the train, test and validation sets, respectively (Fig. 1c). 
Age, gender, Perc.90%, Perc.99%, S(3, -3)DifVarnc, S(5, 5)
Correlat, S(1, 0)SumEntrp, S(2, -2)InvDfMom and GrVar-
iance were identified as the significant recurrence fac-
tors (p < 0.05) (Supplementary Material 2). χ2 of gender 
was 0.030 (P = 1.000). The optimal cut-off value for age, 
Perc.90%, Perc.99%, S(3, -3)DifVarnc, S(5, 5)Correlat, S(1, 
0)SumEntrp, S(2, -2)InvDfMom and GrVariance were 
56 (χ2 = 9.723, P = 0.042), 190 (χ2 = 9.219, P = 0.053), 198 
(χ2 = 9.713, P = 0.042), 7.70 (χ2 = 5.805, P = 0.229), 0.30 
(χ2 = 5.629, P = 0.248), 1.10 (χ2 = 3.369, P = 0.575), 0.40 
(χ2 = 7.574, P = 0.107) and 0.50 (χ2 = 10.764, P = 0.026) 
(Fig. 3).

Discussion
The necessity for new analytical methods beyond tradi-
tional statistical approaches, driven by big data, led to 
the emergence of the interdisciplinary field of knowl-
edge discovery and data mining, which aims to uncover 

Table 1 Characteristics in the training, test, and validation 
cohorts

Training 
set(N = 175)

Test set(N = 75) P

Age(years) 0.462

≤ 30 29 11

≥ 70 31 13

30–50 47 19

50–70 68 32

Sex 0.480

Female 97 35

Male 78 40

Tumor laterality 0.947

Left 86 37

Right 89 38

WHO grade 0.120

II 113 51

III 62 24

Tumor size, mean 0.357

98.32 102.44
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new knowledge from data mines. In this study, we have 
attempted to explore the usability of KDD-based MRI 
radiomic features to assess relapse risk in patients with 
high-grade meningiomas. Statistical analysis of the radi-
omics was carried out to determine the most feasible 
features that involve WHO grade, age, Mean, Perc.99%, 
WavEnLL_s-2, Teta1 and GrVariance.

A comprehensive meta-analysis encompassing thirteen 
observational studies and 1243 patients revealed that the 
WHO grading of meningiomas stands as the most potent 
risk factor predictive of recurrence [30]. WHO grade II 
meningiomas, as well as a composite group encompass-
ing both WHO grades II and III, exhibited a significantly 
elevated risk of recurrence compared to benign lesions. 

Fig. 1 (a) MinMax_PCC_Cluster_19 of T2WI; (b) Mean_PCC_Cluster_10 of T1C; (c) MinMax_PCC_Cluster_13 of T2WI + T1C; Feature number 
obtained(left panel); Feature Contribution (middle panel); C-index of the train and test sets(right panel)
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However, when comparing grade II and III lesions spe-
cifically, the odds of recurrence were found to be similar. 
While Han et al. [31] previously reported that the WHO 
grade did not achieve statistical significance in terms of 
recurrence, our findings contradict this, revealing that 
the recurrence rate does indeed increase with higher 
tumor grade. This observation aligns with those made 
in previous studies [32], indicating a clear correlation 
between tumor grade and the likelihood of recurrence. 
The majority of WHO grade II meningiomas under-
went Simpson grade II and III resection procedures, 
with a minority undergoing grade I resection, resulting 
in a recurrence rate of 28.6%. In contrast, the majority of 
WHO grade III meningiomas were treated with Simpson 
grade II and III resections, and a few were subjected to 
grade IV resection, yielding a higher recurrence rate of 
37.5%. It is generally acknowledged that the completeness 
of the original surgical removal plays a pivotal role in the 
prevention of postoperative recurrence of meningiomas 
[33]. However, certain types of meningiomas, particularly 
those that invade major venous sinuses, pose a challenge 
to complete resection, necessitating subtotal removal as a 
viable option [34]. Unfortunately, this approach is associ-
ated with a significantly higher rate of tumor recurrence 
[35], potentially stemming from the adoption of a less 
aggressive treatment strategy.

In the field of radiomics, data analysis incorporates the 
application of first-, second-, and sophisticated higher-
level statistical metrics [36]. Firstly, when it comes to 
first-order statistics, they are characterized as the dis-
tribution of isolated voxel intensities without consider-
ing their spatial positioning or interactions. Commonly, 
they are histogram-derived metrics that characterize the 
statistical properties of pixel values contained within the 
defined ROIs, including the Mean and Perc.99%. The 
first-order ARM assumes that pixel intensity could be 
predicted as the weighted sum of four neighboring pixel 
intensities that are left, top, top-left and top-right adja-
cent [37]. Teta1 was found to be one of the most prom-
ising parameters. Subsequently, second-order statistics 
encapsulate the texture characteristics, precisely detail-
ing the statistical dependencies and correlations among 
voxels exhibiting similar or varying contrast values, 
such as the GrVariance. Lastly, higher-order statistics 
apply filter grids to images for extracting patterns, both 
repetitive and non-repetitive, such as wavelets, which 
are indicative of texture frequency components gleaned 
from the energy measurements within various channels. 
In this study, Mean, Perc.99%, Teta1, GrVariance and 
WavEnLL_s-2 values were found to be the most promis-
ing parameters for assessing relapse risk in patients with 
HGMs. The characteristics of HGMs are losing normal 

Table 2 Comparison of radiomics features of MinMax_PCC_Cluster_19 of T2WI

Covariate Coef Exp
(coef)

Se
(coef)

Coef lower 95% Coef upper 95% Exp(coef)
lower 95%

Exp(coef) upper 95% Z P -log2(p)

Variance 1.10 3.01 2.42 -3.64 5.84 0.03 343.47 0.46 0.65 0.62

Vertl_Fraction -0.51 0.60 7.51 -15.22 14.21 0.00 1.49E + 06 -0.07 0.95 0.08

S(1,-1)InvDfMom 0.86 2.37 7.85 -14.53 16.25 0.00 1.14E + 07 0.11 0.91 0.13

S(4,-4)Correlat -1.53 0.22 3.38 -8.15 5.08 0.00 161.23 -0.45 0.65 0.62

Vertl_LngREmph 1.85 6.39 2.96 -3.95 7.66 0.02 2128.87 0.63 0.53 0.91

Mean -12.67 0.00 5.91 -24.26 -1.09 0.00 0.34 -2.14 0.03 4.97

GrSkewness -0.49 0.62 2.32 -5.04 4.07 0.01 58.36 -0.21 0.83 0.26

Teta2 -1.00 0.37 3.63 -8.10 6.11 0.00 450.89 -0.27 0.78 0.35

GrNonZeros 3.29 26.91 5.14 -6.79 13.37 0.00 6.41E + 05 0.64 0.52 0.94

WHO 1.42 4.16 0.52 0.41 2.43 1.51 11.42 2.76 0.01 7.45

GrVariance -2.41 0.09 2.80 -7.89 3.08 0.00 21.69 -0.86 0.39 1.36

WavEnLH_s-3 1.92 6.82 3.12 -4.19 8.03 0.02 3058.6 0.62 0.54 0.89

Teta3 1.31 3.72 2.40 -3.39 6.02 0.03 410.63 0.55 0.58 0.78

Vertl_RLNonUni -1.67 0.19 2.21 -5.99 2.66 0.00 14.25 -0.76 0.45 1.15

WavEnLH_s-4 -4.97 0.01 2.64 -10.14 0.19 0.00 1.21 -1.89 0.06 4.08

Horzl_GLevNonU 0.35 1.42 1.35 -2.30 3.00 0.10 20.17 0.26 0.79 0.33

S(1,-1)Correlat 3.17 23.76 4.90 -6.43 12.77 0.00 3.50E + 05 0.65 0.52 0.95

age -1.94 0.14 1.09 -4.09 0.20 0.02 1.22 -1.78 0.08 3.73

WavEnLL_s-2 14.06 1.28E + 06 6.66 1.01 27.11 2.74 5.95E + 11 2.11 0.03 4.85
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tissue or cell structure and focal necrosis, and these fea-
tures lead to greater heterogeneity. Although the MRI 
signals of HGMs and LGMs are generally the same, the 
signals of HGMs are more variable [38].In the current 
study, the occurrence of tumors with flow voids was 
higher in grade III tumors than tumors with II grade. 
Most of the atypical meningiomas (WHO grade II) 
showed moderate enhancement, and anaplastic tumors 
(WHO grade III) were given priority when there was 
obvious and moderate heterogeneous enhancement [39]. 

HGMs are characterized by genomic instability [40, 41], 
which may be the basis of meningioma cell proliferation 
and tumor recurrence.

Our study has limitations. First, analyses should be per-
formed in future studies after obtaining a larger sample 
size with automated or semi-automatic segmentation to 
determine the boundary. Second, as only T1C and T2WI 
maps were chosen, ADC and functional sequences will 
be expected to get a robust model.

Fig. 2 Determination of the optimal cut-off values of Mean, WavEnLL_s-2 and Teta1 and survival analyses. X-tile plots of training sets are shown 
in the left panels, with plots of test sets shown in the smaller inset. The optimal cut-off values highlighted by the black circles in left panels are 
shown in histograms of the entire cohort (middle panels), and Kaplan-Meier plots are displayed in right panels. P values were determined by using 
the cut-off values defined in training sets and applying them to test sets
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Conclusion
In this study, we investigated the feasibility of KDD-
based radiomic models from T2WI and TIC maps values 
to slightly predict recurrence risk in HGMs. This predic-
tion model has some potential to guide clinical prognosis 
prediction and decision-making for therapy in the future.

Abbreviations
KDD  Knowledge Discovery from Databases
T2WI  T2-weighted imaging
T1C  Contrast-enhanced T1-weighted imaging
HGMs  High-grade meningiomas
PCC  Pearson correlation coefficient
C-index  Concordance index
IBS  Integrated brier score

LGMs  Low-grade meningiomas
MRI  Magnetic resonance imaging
GLCM  Gray-level co-occurrence matrix
GLRLM  Gray-level run-length matrix
ARM  Auto-regressive model
WAV  Wavelets transform
AGS  Absolute gradient statistics

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12880- 024- 01483-2.

Supplementary Material 1.

Supplementary Material 2.

Fig. 3 Determination of the optimal cut-off values of age, Perc.99% and GrVariance and survival analyses

https://doi.org/10.1186/s12880-024-01483-2
https://doi.org/10.1186/s12880-024-01483-2


Page 9 of 10Chen et al. BMC Medical Imaging           (2025) 25:14  

Acknowledgements
Thanks to all the peer reviewers and editors for their opinions and suggestions.

Authors’ contributions
All authors contributed to the study conception and design. Material prepara-
tion, data collection and analysis were performed by Chen Chen, Lifang Hao, 
Bin Bai and Guijun Zhang. The first draft of the manuscript was written by 
Chen Chen and all authors commented on previous versions of the manu-
script. All authors read and approved the final manuscript.

Funding
The research received no funding grant from any funding agency in the 
public, commercial, or not-for-profit sectors.

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All the experiment protocol for involving human data was in accordance with 
the guidelines of Declaration of Helsinki and the study was approved by the 
ethics review board of the Henan Provincial People’s Hospital (2021 − 150). 
Written informed consent was obtained from every patient.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Radiology, Henan Provincial People’s Hospital and Zhengzhou 
University People’s Hospital, Henan Province No. 7 Weiwu, Zhengzhou City, 
China. 2 Department of Radiology, Liao Cheng The Third People’s Hospital, 
Liaocheng, China. 3 Department of Neurosurgery, Tianjin Fifth Central Hospital, 
Tianjin, People’s Republic of China. 4 Department of Neurosurgery, Shandong 
Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. 

Received: 11 July 2024   Accepted: 29 October 2024

References
 1. Ostrom QT, Patil N, Cioffi G, et al. CBTRUS statistical report: primary brain 

and other central nervous system tumors diagnosed in the United States 
in 2013–2017. Neuro Oncol. 2020;22(12 Suppl 2):v1-96. https:// doi. org/ 10. 
1093/ neuonc/ noaa2 00.

 2. Kshettry VR, Ostrom QT, Kruchko C, et al. Descriptive epidemiology of 
World Health Organization grades II and III intracranial meningiomas in 
the United States. Neuro Oncol. 2015;17(8):1166–73. https:// doi. org/ 10. 
1093/ neuonc/ nov069.

 3. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS Statistical Report: primary 
brain and other central nervous system tumors diagnosed in the United 
States in 2010–2014. Neuro Oncol. 2017;19(suppl5):v1-88. https:// doi. org/ 
10. 1093/ neuonc/ nox158.

 4. Maggio I, Franceschi E, Tosoni A, et al. Meningioma: not always a benign 
tumor. A review of advances in the treatment of meningiomas. CNS 
Oncol. 2021;10(2):S72. https:// doi. org/ 10. 2217/ cns- 2021- 0003.

 5. Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision 
diagnosis and treatment of oncology: opportunities and challenges. 
Theranostics. 2019;9(5):1303–22. https:// doi. org/ 10. 7150/ thno. 30309.

 6. Villanueva-Meyer JE, Chang P, Lupo JM, et al. Machine learning in 
neurooncology imaging: from study request to diagnosis and treatment. 
AJR Am J Roentgenol. 2019;212(1):52–6. https:// doi. org/ 10. 2214/ AJR. 18. 
20328.

 7. Senders JT, Zaki MM, Karhade AV, et al. An introduction and overview 
of machine learning in neurosurgical care. Acta Neurochir (Wien). 
2018;160(1):29–38. https:// doi. org/ 10. 1007/ s00701- 017- 3385-8.

 8. Pattanaik BB, Anitha K, Rathore S, et al. Brain tumor magnetic resonance 
images classification based machine learning paradigms. Contemp Oncol 
(Pozn). 2022;26(4):268–74. https:// doi. org/ 10. 5114/ wo. 2023. 124612.

 9. Krahling H, Musigmann M, Akkurt BH, et al. A magnetic resonance 
imaging based radiomics model to predict mitosis cycles in intrac-
ranial meningioma. Sci Rep. 2023;13(1):969. https:// doi. org/ 10. 1038/ 
s41598- 023- 28089-y.

 10. Wang C, You L, Zhang X, et al. A radiomics-based study for differentiat-
ing parasellar cavernous hemangiomas from meningiomas. Sci Rep. 
2022;12(1):15509. https:// doi. org/ 10. 1038/ s41598- 022- 19770-9.

 11. Musigmann M, Akkurt BH, Krahling H, et al. Assessing preoperative risk of 
STR in skull meningiomas using MR radiomics and machine learning. Sci 
Rep. 2022;12(1):14043. https:// doi. org/ 10. 1038/ s41598- 022- 18458-4.

 12. Zhao Y, Xu J, Chen B, et al. Efficient prediction of Ki-67 Proliferation 
Index in meningiomas on MRI: from traditional radiological findings to a 
machine learning approach. Cancers (Basel). 2022;14(15). https:// doi. org/ 
10. 3390/ cance rs141 53637.

 13. Hsieh HP, Wu DY, Hung KC, et al. Machine learning for prediction of recur-
rence in Parasagittal and Parafalcine meningiomas: Combined Clinical 
and MRI texture Features[J]. J Pers Med. 2022;12(4). https:// doi. org/ 10. 
3390/ jpm12 040522.

 14. Bhattacharjee S, Prakash D, Kim CH, et al. Texture, morphology, and 
statistical analysis to differentiate primary brain tumors on two-dimen-
sional magnetic resonance imaging scans using artificial intelligence 
techniques. Healthc Inf Res. 2022;28(1):46–57. https:// doi. org/ 10. 4258/ hir. 
2022. 28.1. 46.

 15. Yang L, Xu P, Zhang Y, et al. A deep learning radiomics model may help 
to improve the prediction performance of preoperative grading in men-
ingioma. Neuroradiology. 2022;64(7):1373–82. https:// doi. org/ 10. 1007/ 
s00234- 022- 02894-0.

 16. Sun K, Zhang J, Liu Z, et al. A deep learning radiomics analysis for identify-
ing sinus invasion in patients with meningioma before operation using 
tumor and peritumoral regions. Eur J Radiol. 2022;149: 110187. https:// 
doi. org/ 10. 1016/j. ejrad. 2022. 110187.

 17. Khanna O, Fathi KA, Farrell CJ, et al. Machine learning using multipara-
metric magnetic resonance imaging radiomic feature analysis to predict 
Ki-67 in World Health Organization grade I Meningiomas. Neurosurgery. 
2021;89(5):928–36. https:// doi. org/ 10. 1093/ neuros/ nyab3 07.

 18. Ko CC, Zhang Y, Chen JH, et al. Pre-operative MRI radiomics for the 
prediction of progression and recurrence in Meningiomas. Front Neurol. 
2021;12: 636235. https:// doi. org/ 10. 3389/ fneur. 2021. 636235.

 19. Kalasauskas D, Kronfeld A, Renovanz M, et al. Identification of high-risk 
atypical meningiomas according to Semantic and Radiomic Features[J]. 
Cancers (Basel). 2020;12(10). https:// doi. org/ 10. 3390/ cance rs121 02942.

 20. Szczypiński PM, Klepaczko A. Chapter 11 - MaZda – A framework for bio-
medical image texture analysis and data exploration[M]. Biomed Texture 
Anal. 2017:315–4. https:// doi. org/ 10. 1016/ B978-0- 12- 812133- 7. 00011-9.

 21. Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for 
automatic classification and segmentation of 2D/3D medical images. 
Nuclear Instrum Methods Phys Res A. 2013;702:137–40.

 22. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda - the soft-
ware package for textural analysis of biomedical images. Adv Intell Soft 
Comput. 2009;65:73–84.

 23. Szczypinski P, Strzelecki M, Materka A, Klepaczko A. MaZda - A software 
package for image texture analysis. Comput Methods Programs Biomed. 
2009;94(1):66–76.

 24. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition proto-
cols and image intensity normalization methods on texture classification. 
Magn Reson Imaging. 2004;22(1):81–91. https:// doi. org/ 10. 1016/j. mri. 
2003. 09. 001.

 25. Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. 
Clin Radiol. 2004;59(12):1061–9. https:// doi. org/ 10. 1016/j. crad. 2004. 07. 
008.

 26. S RMHK. Textural features for image classification. IEEE Trans Syst Man 
Cybernetics SMC. 1973;3(6):610–21. https:// doi. org/ 10. 1109/ TSMC. 1973. 
43093 14.

https://doi.org/10.1093/neuonc/noaa200
https://doi.org/10.1093/neuonc/noaa200
https://doi.org/10.1093/neuonc/nov069
https://doi.org/10.1093/neuonc/nov069
https://doi.org/10.1093/neuonc/nox158
https://doi.org/10.1093/neuonc/nox158
https://doi.org/10.2217/cns-2021-0003
https://doi.org/10.7150/thno.30309
https://doi.org/10.2214/AJR.18.20328
https://doi.org/10.2214/AJR.18.20328
https://doi.org/10.1007/s00701-017-3385-8
https://doi.org/10.5114/wo.2023.124612
https://doi.org/10.1038/s41598-023-28089-y
https://doi.org/10.1038/s41598-023-28089-y
https://doi.org/10.1038/s41598-022-19770-9
https://doi.org/10.1038/s41598-022-18458-4
https://doi.org/10.3390/cancers14153637
https://doi.org/10.3390/cancers14153637
https://doi.org/10.3390/jpm12040522
https://doi.org/10.3390/jpm12040522
https://doi.org/10.4258/hir.2022.28.1.46
https://doi.org/10.4258/hir.2022.28.1.46
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.1007/s00234-022-02894-0
https://doi.org/10.1016/j.ejrad.2022.110187
https://doi.org/10.1016/j.ejrad.2022.110187
https://doi.org/10.1093/neuros/nyab307
https://doi.org/10.3389/fneur.2021.636235
https://doi.org/10.3390/cancers12102942
https://doi.org/10.1016/B978-0-12-812133-7.00011-9
https://doi.org/10.1016/j.mri.2003.09.001
https://doi.org/10.1016/j.mri.2003.09.001
https://doi.org/10.1016/j.crad.2004.07.008
https://doi.org/10.1016/j.crad.2004.07.008
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314


Page 10 of 10Chen et al. BMC Medical Imaging           (2025) 25:14 

 27. Galloway MM. Texture analysis using gray level run lengths. Comput 
Graphics Image Process. 1975;4(2):172–9. https:// doi. org/ 10. 1016/ S0146- 
664X(75) 80008-6.

 28. Orphanidou-Vlachou E, Vlachos N, Davies NP, et al. Texture analysis of 
T1 - and T2 -weighted MR images and use of probabilistic neural network 
to discriminate posterior fossa tumours in children. NMR Biomed. 
2014;27(6):632–9. https:// doi. org/ 10. 1002/ nbm. 3099.

 29. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool 
for biomarker assessment and outcome-based cut-point optimization. 
Clin Cancer Res. 2004;10(21):7252–9. https:// doi. org/ 10. 1158/ 1078- 0432. 
CCR- 04- 0713.

 30. Balik V, Kourilova P, Sulla I, et al. Recurrence of surgically treated parasagit-
tal meningiomas: a meta-analysis of risk factors. Acta Neurochir (Wien). 
2020;162(9):2165–76. https:// doi. org/ 10. 1007/ s00701- 020- 04336-3.

 31. Han MS, Kim YJ, Moon KS, et al. Lessons from surgical outcome for 
intracranial meningioma involving major venous sinus. Med (Baltim). 
2016;95(35): e4705. https:// doi. org/ 10. 1097/ MD. 00000 00000 004705.

 32. Yu J, Chen FF, Zhang HW, et al. Comparative analysis of the MRI char-
acteristics of meningiomas according to the 2016 WHO pathological 
Classification. Technol Cancer Res Treat. 2020;19:1079250935. https:// doi. 
org/ 10. 1177/ 15330 33820 983287.

 33. Black PM. Meningiomas. Neurosurgery. 1993;32(4):643–57. https:// doi. 
org/ 10. 1227/ 00006 123- 19930 4000- 00023.

 34. Sindou M. Meningiomas invading the sagittal or transverse sinuses, resec-
tion with venous reconstruction[J]. J Clin Neurosci. 2001;8(Suppl 1):8–11. 
https:// doi. org/ 10. 1054/ jocn. 2001. 0868.

 35. Murata J, Sawamura Y, Saito H, et al. Resection of a recurrent parasagittal 
meningioma with cortical vein anastomosis: technical note. Surg Neurol. 
1997;48(6):592–5. https:// doi. org/ 10. 1016/ s0090- 3019(97) 00303-0.

 36. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are Data. Radiology. 2016;278(2):563–77. https:// doi. org/ 10. 1148/ 
radiol. 20151 51169.

 37. Szczypinski PM, Strzelecki M, Materka A, et al. MaZda–a software pack-
age for image texture analysis. Comput Methods Programs Biomed. 
2009;94(1):66–76. https:// doi. org/ 10. 1016/j. cmpb. 2008. 08. 005.

 38. Magill ST, Vasudevan HN, Seo K, et al. Multiplatform genomic profiling 
and magnetic resonance imaging identify mechanisms underlying 
intratumor heterogeneity in meningioma. Nat Commun. 2020;11(1):4803. 
https:// doi. org/ 10. 1038/ s41467- 020- 18582-7.

 39. Masalha W, Heiland DH, Delev D, et al. Survival and prognostic predictors 
of anaplastic Meningiomas. World Neurosurg. 2019;131:e321-8. https:// 
doi. org/ 10. 1016/j. wneu. 2019. 07. 148.

 40. Bi WL, Greenwald NF, Abedalthagafi M, et al. Genomic landscape of 
high-grade meningiomas. NPJ Genom Med. 2017;2:15. https:// doi. org/ 10. 
1038/ s41525- 017- 0014-7.

 41. Williams EA, Santagata S, Wakimoto H, et al. Distinct genomic subclasses 
of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, 
and NF2-agnostic[J]. Acta Neuropathol Commun. 2020;8(1):171. https:// 
doi. org/ 10. 1186/ s40478- 020- 01040-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/S0146-664X(75)80008-6
https://doi.org/10.1016/S0146-664X(75)80008-6
https://doi.org/10.1002/nbm.3099
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1007/s00701-020-04336-3
https://doi.org/10.1097/MD.0000000000004705
https://doi.org/10.1177/1533033820983287
https://doi.org/10.1177/1533033820983287
https://doi.org/10.1227/00006123-199304000-00023
https://doi.org/10.1227/00006123-199304000-00023
https://doi.org/10.1054/jocn.2001.0868
https://doi.org/10.1016/s0090-3019(97)00303-0
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1038/s41467-020-18582-7
https://doi.org/10.1016/j.wneu.2019.07.148
https://doi.org/10.1016/j.wneu.2019.07.148
https://doi.org/10.1038/s41525-017-0014-7
https://doi.org/10.1038/s41525-017-0014-7
https://doi.org/10.1186/s40478-020-01040-2
https://doi.org/10.1186/s40478-020-01040-2

	Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas
	Abstract 
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Patients
	Image acquisition
	Textural feature extractions
	Feature selections
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


