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Introduction
The 2023 World Health Report published by the World 
Heart Federation, reveals that cardiovascular diseases 
(CVDs) continue to be a leading global cause of mortal-
ity globally. In 2021, CVDs caused about 20.5  million 
deaths, making up around one-third of all deaths world-
wide [1]. The identification of cardiovascular diseases, is 
often facilitated through the utilization of electrocardio-
grams (ECGs), a non-invasive and indispensable diagnos-
tic tool. The model detailed in this research accepts the 
ECG signal as its input and subsequently conducts binary 
classification to determine the presence of Myocardial 
Infarction (MI) or normal cardiac conditions.
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Abstract
Myocardial infarction (MI) is a life-threatening medical condition that necessitates both timely and precise 
diagnosis. The enhancement of automated method to detect MI diseases from Normal patients can play a crucial 
role in healthcare. This paper presents a novel approach that utilizes the Discrete Wavelet Transform (DWT) for 
the detection of myocardial signals. The DWT is employed to break down ECG signals into distinct frequency 
components and subsequently to selectively filter out noise by thresholding the high-frequency details, resulting 
in denoised ECG signals for myocardial signal detection. These denoised signals are fed into lightweight one-
dimensional Convolutional Neural Networks (CNN) for binary classification into Myocardial Infarction (MI) and 
Normal categories. The paper explores three distinct approaches: utilizing all signals, incorporating under-
sampling and up-sampling to address class imbalances, with both noised and denoised signals. Evaluation of 
the suggested model is done with the help of two publicly available datasets: PTB-XL, a large publicly available 
electrocardiography dataset and PTB Diagnostic ECG Database. Results obtained through 5-fold cross-validation on 
the trained model show that the model has achieved an accuracy of 96%, precision of 97% and F1 score of 95%. 
On cross-validation with the PTB-ECG dataset, this paper achieved an accuracy of 91.18%.

Keywords  Electrocardiograms (ECGs), ECG signals, Time-frequency transformation, Discrete wavelet transform 
(DWT), Convolutional neural networks (CNN), Myocardial infarction (MI)
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In cardiovascular disease diagnosis, the 12-lead ECG 
has traditionally relied on manual interpretation by 
experienced cardiologists, a process that is both time-
consuming and requires significant skill [2]. Yet, this 
approach poses inherent challenges, including the poten-
tial for human error, thereby risking incorrect clini-
cal decisions and endangering patient health. Given the 
rapid advancements in ECG technology and the persis-
tent shortage of cardiologists, the pursuit of precise and 
automated ECG signal diagnosis has emerged as a com-
pelling research avenue for scientists.

Over the past decade, researchers have undertaken 
numerous initiatives aimed at unlocking the diagnostic 
potential of 12-lead clinical ECGs. These efforts have pre-
dominantly leveraged publicly available, large-scale ECG 
data repositories. The existing body of literature on ECG 
databases reveals a dual methodological approach: signal 
processing and machine learning. In the field of diagnos-
ing cardiovascular diseases, deep neural networks have 
become a crucial factor. These sophisticated learning 
models have proven effective in improving the precision 
of cardiovascular disease diagnoses by analysing ECG 
signals [3]. Utilizing a series of varied neural network 
layers for the gradual extraction of higher-level features, 
these networks iteratively enhance the underlying struc-
ture on which they are constructed. Across various fields 
where artificial intelligence algorithms find application, 
deep neural networks are currently at the forefront of 
innovation.

The research study primarily focused on enhancing 
the accuracy of MI detection within the broader context 
of coronary artery disease (CAD), which is a significant 
subset of cardiovascular disease (CVD) [4]. As a crucial 
component of this research paper, PTB XL dataset [5] 
was used to specifically target the detection of MI and 
Normal (NORM) cardiac conditions. The PTB XL data-
set served as a valuable resource due to its extensive and 
comprehensive collection of ECG signals, making it well-
suited for the study’s primary objective of classifying 
these two important cardiac conditions.

In this paper a pioneering approach to MI detection, 
which harnesses the capabilities of 1D Convolutional 
Neural Networks (CNN) while integrating the Discrete 
Wavelet Transform (DWT) as a novel denoising mecha-
nism has been introduced. The primary contribution 
of this research lies in the development of a custom-
designed 1D CNN model tailored for this specific diag-
nostic task. This novel architecture not only effectively 
learns discriminative features from ECG signals but also 
demonstrates its robustness in the presence of noise and 
artifacts. By integrating the DWT for signal denoising, 
the quality of ECG data is significantly enhanced, thus 
enhancing the model’s capability to extract meaning-
ful patterns associated with MI. The necessity for DWT 

as a denoising tool, rather than just a feature extraction 
method, is crucial as it helps remove noise and unwanted 
artifacts from the ECG signals, which are often pres-
ent due to electrical interference or patient movement. 
This ensures that the model is trained on cleaner, more 
accurate data, leading to improved diagnostic accuracy 
and more reliable detection of MI events. Furthermore, 
this paper explores three distinct approaches for MI 
detection: involving the classification of all signals into 
MI and Normal categories, leveraging undersampling 
and upsampling to address class imbalances, with both 
noised and denoised signals. This versatility ensures the 
adaptability of the model to various real-world scenar-
ios, underlining its practical utility. The outcomes of this 
research represent a significant step forward in the realm 
of automated MI diagnosis, with the potential to impact 
the field of cardiology and healthcare by improving early 
detection and, consequently, patient outcomes. The sig-
nificant contributions of this research include:

1.	 The incorporation of the DWT as a denoising 
technique for ECG signals.

2.	 The development of a custom-designed lightweight 
1D CNN model tailored for MI detection.

3.	 Utilization of undersampling and upsampling as an 
innovative technique to address class imbalances, 
enhancing the practical applicability and fairness of 
the model.

4.	 Investigation of different hyperparameter tuning 
methodologies, aiming to optimize the performance 
of the proposed model.

The paper follows this structure: firstly, it covers the 
related work in the initial section, followed by Sec-
tion  “Datasets – PTB XL and PTB ECG” providing an 
overview of the dataset. Section  4 describes the pro-
posed methodology. Additionally, Section  “Performance 
measures” explores various performance measures used 
to evaluate classifier performance. Section  “Results and 
discussions” presents results and discussion illustrating 
classifier performance. Finally, Section “Conclusion” con-
cludes the paper.

Related works
Research [3] showed that a CNN with added entropy 
features outperformed both CNN and SincNet architec-
tures, achieving the highest accuracy rates for various 
classification tasks, including 2, 5, and 20 classes with 
rates of 89.2%, 76.5%, and 69.8%, respectively. However, 
the paper observed limitations related to overfitting in 
their models. In the study [6], various deep learning 
techniques are applied to distinguish normal and abnor-
mal ECG in the MIT-BIH arrhythmia database. The best 
accuracy achieved 83.4%, was obtained with five-fold 
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validation with CNN-LTSM. A notable advantage of this 
proposed paper is operation without the need for noise 
filtering or feature engineering. The study [7] aimed to 
devise an automatic acute MI detection method employ-
ing CNN and Long Short-Term Memory (LSTM) on 
echocardiography data. The approach yielded an overall 
classification accuracy of 85.1% for the left ventricular 
long-axis view and 83.2% for the short-axis view. How-
ever, the study is limited to acute anteroseptal infarction 
and does not cover other coronary-dominant regions.

The utilization of deep learning is fully incorporated 
in [8], where a CNN neural network model is extensively 
trained and applied to examine ECG abnormality recog-
nition and prediction. The model achieves an accuracy 
of 86% in recognizing ECG abnormalities. The paper [9] 
achieved accuracy of 87.78% with CNN architecture to 
distinguish between 17 classes of MIT-BIH Arrhythmia 
database. The paper proposed a deep neural network 
model for cardiac arrhythmia and includes a self-super-
vised approach for ECG beat signal prediction. In the 
study [10], an algorithm for MI detection directly from 
ECG data is proposed. The approach uses CNN, to clas-
sify ECG data and discern the presence of MI. The CNN 
model achieved an impressive accuracy of 87% when 
applied to the Physikalisch-Technische Bundesanstalt 
database.

The paper [11] introduces an approach for automated 
ECG identification and classification. It employs Deep 
Convolutional Neural Network (DCNN) with Bidirec-
tional Long Short-Term Memory (BiLSTM) to extract 
ECG features. Using the 2017 PhysioNet/CINC chal-
lenge dataset it achieved an accuracy of 89.3%. However, 
as noted in the paper, the filtering algorithm works well 
on this dataset but is less effective with data from differ-
ent ECG devices. The research [12] focuses on ECG clas-
sification employing 1D convolutional neural networks 
combined with FCN layers on pre-processed time-series 
data, achieving a notable validation accuracy of approxi-
mately 86%. An advantage of the method is the ability 
to classify ECG data from unstructured, unbalanced 1D 
time series, making it useful when medical specialists are 
unavailable for feature engineering.

In research [13] Enhanced Deep Neural Network 
(EDN) model comprising of CNN and LSTM tech-
niques was proposed for classification of MI using the 
PTB Diagnostic ECG database. It achieved an accuracy 
of 88.89%. The paper [14] proposes a method to classify 
MI using multi-lead ECG signals. They transformed ECG 
signals into a density model and derived the feature vec-
tor through hidden Markov models (HMMs). The classi-
fication of MI was accomplished using Gaussian mixture 
models (GMMs), resulting in an accuracy of 82.50%. 
Along with ECG classification log-likelihood value was 

also calculated serving as statistical feature for each 
heartbeat’s ECG complex.

The study [15] proposes a multilabel classification 
method for ECG recordings into five cardiac states using 
data from PTB-XL (100 Hz down-sampled version). ECG 
signals are converted into natural visibility graphs, with 
features extracted from the first few diagonals of the adja-
cency matrix and node weights. ResNet and Inception 
models are applied for classification, achieving 89.71% 
accuracy, 79.61% F-score, and 93.46% AUC. However, the 
visibility graph induction faces computational limitations 
due to the adjacency matrix’s size, especially with lon-
ger time series, requiring down sampling or fixed-length 
time window processing.

The paper [16] applies a sliding window approach with-
out overlap to segment beats. The beats are processed 
through a CNN and attention layer, followed by Bi-LSTM 
and rhythm-level attention. This approach achieved a 
macro-averaged ROC-AUC of 0.9216, mean accuracy of 
88.85%, and a maximum F1 score of 0.8057 on the PTB-
XL dataset, with the highest class-wise accuracy (91.58%) 
achieved for the HYP class. The paper [17] classifies the 
PTB Diagnostic dataset with an accuracy of 88.33%, sen-
sitivity of 89.47%, and specificity of 87.80%. It uses a sym-
let scaling filter and denoising process for preprocessing, 
followed by AlexNet, a CNN model, to extract deep fea-
tures, and then applies ELM for classification.

Datasets – PTB XL and PTB ECG
The analysis presented in this study relies on data 
sourced from the PTB-XL (PhysioNet/PTB-XL) database, 
which is a highly valuable resource offering access to a 
wide array of 12-lead ECG waveforms [18]. This exten-
sive dataset comprises a remarkable collection of 21,799 
records collected from 18,869 unique patients, each with 
a 10-second ECG record. One of the remarkable features 
of the PTB-XL dataset is its inclusivity, encompassing 
individuals spanning a wide age range, from infants to 
adults over 95 years of age, with a mean age of 62. This 
age diversity ensures that the dataset provides a compre-
hensive and lifelong snapshot of ECG patterns, which is 
crucial for understanding cardiac health over the human 
lifespan [4]. Furthermore, PTB-XL dataset includes a 
substantial number of healthy ECG records, amount-
ing to 9,514 samples. This abundance of healthy records 
makes it a valuable resource for the study of normal car-
diac rhythms and serves as an invaluable reference for 
baseline ECG patterns. In addition to the healthy records, 
the dataset al.so contains a significant number of ECG 
records associated with MI, with a total of 5,469 samples 
available for analysis.

The PTB-XL dataset consists of paired .hea and .dat 
files for each patient. These files contain essential infor-
mation about the ECG recordings and the actual signal 
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data. In the context of this dataset, Normal (NORM) 
ECG signals exhibit characteristic patterns associated 
with healthy cardiac activity, while MI signals represent 
distinct electrical patterns related to this critical cardiac 
condition. Figure 1 illustrate how these ECG signals typi-
cally appear.

The other dataset used is PTB (Physikalisch-Tech-
nische Bundesanstalt) ECG database [19]. It comprises a 
vast collection of high-quality ECG recordings obtained 
from a diverse population, making it an essential data-
set for various cardiac studies. The database features 
549 records, encompassing both healthy subjects and 
patients with a variety of cardiac conditions, ensuring 
a wide range of ECG patterns for comprehensive analy-
sis. These recordings are sampled at 1000  Hz, enabling 
detailed examinations of cardiac electrical activity. Nota-
bly, it comprises 148 MI records and 52 healthy control 
records. Each record is accompanied by a comprehensive 
set of annotations, providing crucial information on vari-
ous ECG events and abnormalities, facilitating precise 
diagnostic and research efforts.

Moreover, the PTB ECG database offers a remarkable 
diversity of ECG signals, including data from exercise 

tests, 24-hour ECG recordings, and standard 12-lead 
ECGs, making it an invaluable resource for a multitude 
of applications. This dataset’s extensive clinical informa-
tion, diversity of cardiac conditions, and high-quality 
ECG recordings render it a fundamental component of 
this research, enabling the development and validation 
of a robust diagnostic model for MI detection. Figure  2 
illustrate how these ECG signals typically appear in PTB-
ECG database.

Proposed methodology
In the proposed architecture, the foundation is laid by 
obtaining critical ECG data, an indispensable resource 
for cardiovascular research and diagnosis. The raw ECG 
data was sourced from the PTB-XL database [18], con-
sisting of continuous ECG signals sampled at 100 Hz. In 
the proposed approach for ECG signal classification, the 
proposed method begins with pre-processing the raw 
ECG signals to remove noise and artifacts, ensuring data 
quality. To enhance denoising capabilities, the DWT is 
employed, a powerful technique for extracting relevant 
features and reducing noise in the signals. To address 
class imbalance issues, under-sampling is applied to the 

Fig. 2  ECG signal in PTB ECG database

 

Fig. 1  (a) ECG signal representing myocardial infraction; (b) ECG signal representing normal
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dataset to ensure balanced representation across classes 
in the training data. For the classification stage, a light-
weight 1D CNN model is constructed, optimized for effi-
ciency in terms of computational and memory resources. 
This choice of a 1D CNN architecture allows for effective 
pattern recognition within the ECG signals, specifically 
by capturing localized dependencies, which are cru-
cial for accurate classification tasks. In initial tests, a 2D 
CNN was considered, but the increased computational 
demands and longer processing times led to selecting the 
more efficient 1D CNN (See Fig. 3).

Discrete wavelet transform (DWT)
In the realm of ECG signal processing, the DWT plays 
a pivotal role in the quest for denoising and feature 
extraction. The aim of this section is to elucidate the 
underlying methodology and principles of DWT, spe-
cifically its application in preprocessing ECG signals for 

classification and analysis. Figure  4 represents the dia-
gram of pre-processing.

The PyWavelets (pywt) library [20] was as harnessed as 
a fundamental tool in this process, which facilitated the 
intricate steps of DWT, thresholding, and signal recon-
struction. The initial step in the preprocessing pipeline 
involved the one-dimensional decomposition of the 
ECG signal using the wavedec function, a fundamental 
operation in DWT. The decomposition breaks down the 
original signal into its constituent wavelet coefficients, 
revealing the signal’s frequency content at different 
scales. Mathematically, the DWT can be expressed as:

	 DWT (x) =
∑

(x [n] ∗ ψ [n− k])� (1)

Where, DWT(x) represents the wavelet coefficients, x[n] 
denotes the original signal values, ψ[n - k] is the wavelet 
function, and k denotes the translation parameter. The 
decomposition provides a multi-resolution representa-
tion of the signal, offering insights into both low and 
high-frequency components.

Subsequent to decomposition, a critical step in DWT-
based denoising is the application of a threshold. This 
operation, performed on the wavelet coefficients, selec-
tively removes high-frequency noise while preserving sig-
nificant signal features. The choice of PyWavelets enabled 
the application of thresholding with ease, enhancing the 
denoising process. Mathematically, the thresholding 
operation can be described as:

	Thresholded_coefficients [n] = f (coefficients[n], threshold)� (2)

Here, Thresholded_coefficients[n] are the modified coef-
ficients, coefficients[n] represent the original wavelet 
coefficients, and f(coefficients[n], threshold) is a thresh-
olding function that determines whether a coefficient 
should be retained or set to zero. After thresholding, 
the final step entailed signal reconstruction using the 
waverec function, which combined the thresholded coef-
ficients to generate a denoised ECG signal. This recon-
structed signal retained the vital information of the 
original ECG while removing undesirable noise artifacts. 
The signals were then filtered to isolate the recordings 

Fig. 4  Preprocessing stage involving DWT for denoising

 

Fig. 3  Block diagram of the suggested model
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classified as ‘NORM’ – ‘Healthy’ and ‘MI’ – Myocardial 
Infraction. In order to standardize the data for analy-
sis, the Z-score normalization method was applied [21]. 
Where, x is an individual data point, x ̅ is mean and σ is 
standard deviation.

	
Z score =

x− x̄

σ
� (3)

Under-sampling and up-sampling
In this study, the focus was on the classification of ECG 
signals, a critical task for medical diagnosis and monitor-
ing. To tackle the imbalance between the “NORM” (Nor-
mal ECG) and “MI” (Myocardial Infarction) classes, a 
random under sampling technique was implemented on 
the training data. The dataset originally contained 9514 
instances of normal ECG signals and 5469 instances of 
MI cases. To equalize the representation of these two 
classes, the majority class was randomly under sampled, 
which in this case was the “NORM” class. This ensured 
that each class had the same number of instances, pre-
venting the classification model from being biased 
toward the majority class. By under sampling the major-
ity class, the potential risk of the model favouring class 
imbalance was mitigated and achieved a more balanced 
training set. Up-sampling the training data was also 
experimented as a method to address the data imbalance. 
This involved randomly selecting and duplicating signals 
within the minority “MI” class to augment its sample 
size. This paper carefully preserved the diversity of ECG 
signals by randomly choosing a subset of “NORM” and 
“MI” instances for training, maintaining the integrity of 
the original data.

Lightweight convolutional neural network (CNN) model
In the model architecture, a sequence of layers to process 
the ECG signals has been employed. Three 1D convolu-
tion layers were used with varying filter sizes to extract 
relevant features from the ECG signals. Following each 
convolutional layer, a Leaky ReLU activation function is 
applied, which allows the network to learn complex pat-
terns and a Dropout layer to prevent overfitting. Core 
CNN architecture is described in Fig. 5.

The Rectified Linear Unit (ReLU) produces an output 
of 0 when the input is less than 0, and for input values 
greater than 0, the output equals the input. The Leaky 
Rectified Linear Unit, derived from ReLU, incorporates 
a slight slope for negative values instead of a flat slope. 
This design prevents complete deactivation of neurons, 
enabling the network to learn from negative values. 
This enhancement contributes to the network’s capac-
ity to comprehend intricate patterns within the data. It is 
defined by the following equation:

	 f (x) = max(0, x)� (4)

Figure 6 describes the layers after the convolution layers. 
The output was flattened to prepare it for fully connected 
layers. L2 regularization (also called Ridge regularization) 
was used. wi represents an individual weight in the neu-
ral network and λ (lambda) is the regularization strength 
or hyperparameter, controlling the trade-off between fit-
ting the training data and minimizing the magnitude of 
the weights.

	 L2 (w) = λ ×
∑

wi
2� (5)

Finally, Sigmoid layer was used for the binary classifica-
tion. The sigmoid function (also called logistic function) 
is an S-shaped curve that transforms the input values 
into range between 0 and 1. Values nearing 0 suggest a 
low likelihood, whereas those approaching 1 indicate 
a high probability., it is considered highly valuable for 
binary classification problems like the one discussed in 
this paper. Where, S(x) is sigmoid function and e is Eul-
er’s number.

	
S (x) =

1

1 + e−x
� (6)

The performance of the lightweight CNN model was 
assessed by employing various evaluation metrics, 
including precision, recall, accuracy, and the F1-score. 
These metrics were derived from the confusion matrix 
and allowed comparison of the proposed model with 
existing ones. Additionally, this paper uses the Area 
Under the Curve (AUC) score, which is determined from 
the Receiver Operating Characteristic (ROC) curve, 
to evaluate the proposed model’s ability to distinguish 
between positive and negative examples. The AUC score 
indicates the likelihood that a randomly selected positive 
example will be ranked higher than a randomly selected 
negative example. To ensure the robustness of proposed 
model, two validation techniques were employed: 5-fold 
cross-validation on our pre-trained model [22] and 
cross-validation with PTB-ECG dataset [19]. Table  1 is 
the hyperparameter table of the suggested CNN model.

Performance measures
The table that summarizes the findings of a classifica-
tion algorithm is called confusion matrix. This matrix 
provides the key performance metrics, which include 
recall, accuracy, precision, and F1-score. Accuracy is the 
proportion of correct predictions among the entire set 
of predictions (Eq.  7). Precision represents the positive 
identifications that were correct (Eq. 8). Recall measures 
the ratio of correctly predicted positive samples to the 
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total number of positive predictions (Eq.  9). F1 score is 

calculated as the harmonic mean of precision and recall 
(Eq.  10). In the following equations, TP stands for true 
positives, which signifies the accurate identification of 
positive predictions. TN represents true negatives, indi-
cating correct classification of negative predictions. FP 
denotes false positives, representing incorrect identi-
fication of cases as positive. FN stands for false nega-
tives, indicating the misclassification of cases as negative. 
K-fold cross-validation is a method employed in machine 
learning for assessing model performance. The proce-
dure entails partitioning the training data into k folds or 
subsets. Subsequently, the model is trained on k-1 folds 

Table 1  Hyperparameter table of the suggested CNN model
Hyperparameters Values
MI instances 5469
NORM instances 9514
Learning rate 10− 3

Minimum LR 10− 4

Batch size 64
Epochs 10
Optimizer Adaptive moment estimation (Adam)
Loss function Binary cross-entropy

Fig. 6  Final layers of the CNN network

 

Fig. 5  Lightweight CNN architecture used in the proposed model
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and tested on the remaining fold. This cycle is reiterated 
k times, ensuring that each fold serves as the test set pre-
cisely once. The average of the performance metrics from 
each iteration is then employed as the model’s perfor-
mance estimate. In this paper, five-fold cross-validation 
technique has been implemented [22]. 

	
Accuracy =

TN + TP

TN + TP + FN + FP
� (7)

	
Precision =

TP

TP + FP
� (8)

	
Recall =

TP

TP + FN
� (9)

	
F1 score = 2× Precision× Recall

Precision+ Recall
� (10)

Results and discussions
Performance analysis
In order to comprehensively assess the effectiveness of 
the proposed algorithm, the code has been rigorously 

tested using multiple approaches. These approaches 
encompass denoised under-sampling, denoised process-
ing on the entire signal, and denoised up-sampling. Addi-
tionally, the algorithm was assessed under noise-based 
under-sampling, noise processing on the entire signal, 
and noise-based up-sampling scenarios. The diversity of 
these testing methodologies provides a robust examina-
tion of the algorithm’s capabilities under different con-
ditions, enabling a more thorough understanding of 
its efficacy across various signal processing scenarios. 
The outcomes from these approaches are delineated in 
Tables 2 and 3, and 4, presenting the undersampling, all 
signals, and upsampling results, respectively.

Under-sampling results
In the denoised under-sampling tests, the model 
achieved its highest performance at 60 epochs, with a 
training accuracy of 0.97 and a test accuracy of 0.83. The 
precision and recall were both 0.83, and the F1 score was 
0.82, indicating balanced performance in identifying the 
target class while minimizing false positives. The AUC 
value of 0.90 further emphasizes the model’s strong dis-
criminatory ability, particularly in detecting MI events in 
the ECG data. As the number of epochs decreased, from 

Table 2  Under-sampling results
Signals Epochs Train

accuracy
Test
accuracy

Precision Recall F1 score AUC

Denoise 10 0.87 0.86 0.85 0.85 0.85 0.92
20 0.91 0.829 0.83 0.81 0.82 0.90
30 0.93 0.84 0.83 0.83 0.83 0.90
50 0.968 0.827 0.82 0.82 0.82 0.91
60 0.97 0.83 0.83 0.82 0.82 0.90

Noise 10 0.87 0.84 0.83 0.84 0.83 0.92
30 0.926 0.825 0.82 0.81 0.82 0.91

Table 3  All signals results
Signals Epochs Train

accuracy
Test
accuracy

Precision Recall F1 score AUC

Denoise 5 0.84 0.85 0.84 0.95 0.89 0.90
10 0.89 0.86 0.87 0.83 0.84 0.93
20 0.89 0.85 0.86 0.81 0.83 0.91

Noise 10 0.89 0.87 0.87 0.85 0.86 0.93
15 0.89 0.86 0.86 0.83 0.84 0.92
20 0.91 0.86 0.86 0.83 0.84 0.92

Table 4  Up-sampling results
Signals Epochs Train

accuracy
Test
accuracy

Precision Recall F1 score AUC

Denoise 5 0.84 0.84 0.84 0.83 0.83 0.91
10 0.89 0.85 0.85 0.84 0.84 0.92
20 0.94 0.846 0.85 0.82 0.83 0.91

Noise 5 0.8417 0.83 0.82 0.84 0.83 0.91
10 0.8962 0.85 0.85 0.83 0.84 0.91
20 0.94 0.837 0.84 0.82 0.82 0.91
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50 to 10 epochs, performance gradually declined, with 
the test accuracy dropping to 0.84–0.85 and the F1 score 
dipping slightly. This suggests that longer training peri-
ods allow the model to better learn the underlying data 
patterns, whereas shorter training epochs may result in 
underfitting, where the model hasn’t fully captured the 
complexity of the data.

In the noisy under-sampling tests, the model showed 
reasonable performance with 10 epochs, achieving a 
training accuracy of 0.87 and a test accuracy of 0.84. 
The precision, recall, and F1 score were all around 0.83, 
with an AUC value of 0.92, similar to the denoised case, 
suggesting the model maintained good discriminatory 
power even under noise. At 30 epochs, training accuracy 
improved to 0.926, and test accuracy increased to 0.825, 
though performance was still slightly lower than in the 
denoised scenario. The addition of noise in the training 
data seems to impact the model’s ability to generalize, 
as reflected in the marginally lower test accuracy and F1 
scores when compared to the denoised case. However, 
the AUC score of 0.91 indicates that the model was still 
able to distinguish between classes effectively, even with 
the noise present.

Overall, while the denoised under-sampling approach 
provided better generalization and higher test accuracy, 
the model showed a robust performance even when 
noise was introduced. The denoised data helped achieve 
the best results, particularly in terms of test accuracy, F1 
score, and overall model stability, while the noisy data 
resulted in a slight degradation of performance metrics, 
though still offering solid discriminatory power.

All signals results
On evaluation of the model with all signals, including 
both denoised and noisy data, the results remain rela-
tively consistent, with test accuracies ranging from 0.84 
to 0.87. The model trained on denoised signals at 10 
epochs yields a high test accuracy of 0.86, with a preci-
sion of 0.87 and a recall of 0.83, leading to an F1 score 
of 0.84. Interestingly, the test accuracy does not drasti-
cally improve with increasing epochs, suggesting that the 
model may have reached a plateau where additional train-
ing epochs contribute less to performance enhancement.

While the precision remains relatively high, the recall 
shows some variability, dipping slightly as the model 
is exposed to more noise. This indicates that while the 
model is effective at identifying positive cases (MI), there 
might be room for improvement in reducing false nega-
tives. The AUC value consistently hovers around 0.90 to 
0.93, demonstrating that the model retains its ability to 
distinguish between the classes even as it is exposed to 
more complex signal data.

Up-sampling results
In the denoised up-sampling tests, the model showed 
good performance, with a training accuracy of 0.84 
and test accuracy of 0.84 at 5 epochs. As the epochs 
increased, training accuracy reached 0.94 at 20 epochs, 
while test accuracy remained steady at around 0.85–
0.846. Precision, recall, and F1 score stabilized at 0.84 
and 0.82–0.83, with AUC consistently at 0.91, indicating 
strong class differentiation.

In the noisy up-sampling tests, performance was simi-
lar but slightly lower. At 5 epochs, test accuracy was 0.83, 
with precision, recall, and F1 score around 0.83. As train-
ing progressed, test accuracy decreased slightly at 20 
epochs to 0.837, while AUC remained stable at 0.91. This 
suggests that while the model benefits from more train-
ing, noise impacts its generalization, leading to reduced 
performance compared to the denoised case.

Upon reviewing the results across all approaches, it 
is clear that the model trained with denoised data and 
under-sampling for 60 epochs yields the best overall 
performance, with a training accuracy of 0.97 and a test 
accuracy of 0.83. This model strikes the best balance 
between reducing noise and avoiding overfitting, and as a 
result, it has been selected for further evaluation through 
five-fold cross-validation and validation with the PTB 
ECG dataset.

In the denoised up-sampling tests, the model showed 
good performance, with a training accuracy of 0.84 
and test accuracy of 0.84 at 5 epochs. As the epochs 
increased, training accuracy reached 0.94 at 20 epochs, 
while test accuracy remained steady at around 0.85–
0.846. Precision, recall, and F1 score stabilized at 0.84 
and 0.82–0.83, with AUC consistently at 0.91, indicating 
strong class differentiation.

Computational time comparison
The decision to adopt a 1D convolutional layer architec-
ture over a 2D convolutional layer was driven by consid-
erations of computational efficiency and compatibility 
with available system resources. The system configura-
tion comprises a 13th-generation Intel processor operat-
ing at 2.40 GHz and 16GB of RAM, which places practical 
limits on model complexity and training times. The 1D 
convolutional layer architecture was identified as more 
lightweight and resource-efficient than the 2D counter-
part. Performance benchmarking, presented in Table  5, 

Table 5  Approximated timing for 1D and 2D conv
Epochs 1D (seconds) 2D

(seconds)
5 4975 7140
10 9950 14,280
20 19,900 28,560
60 59,700 85,680
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indicates that training with the 1D Conv layer architec-
ture required an average of 995 s for 5 epochs, whereas 
the 2D Conv layer took significantly longer, averaging 
1428 s for the same number of epochs. This increase in 
training time with the 2D Conv layer, coupled with the 
relatively modest system specifications, motivated the 
selection of the 1D Conv layer as a more optimal choice 
for this study.

Ultimately, the 1D Conv layer architecture was pri-
oritized due to its suitability for faster processing and 
lower memory demands, aligning with the need for an 
efficient yet capable model under limited computational 
resources. This choice underscores the importance of 
balancing model complexity with system constraints, 
particularly when working within environments with 
restricted hardware capacities.

Figures  7 and 8 provide additional context for under-
standing the architecture of the model. Figure 7 illustrates 
the total parameters involved in the model, highlighting 
its complexity, while Fig. 8 offers a comprehensive model 
summary, showcasing the layers and operations used in 
the neural network architecture.

Training result analysis
As illustrated in Fig.  9, the training accuracy dem-
onstrates a clear improvement over the course of the 
epochs. In Fold 1, the accuracy begins at around 91%, 
showing that the model is starting from a relatively mod-
est level of performance. As training progresses through 
the epochs, accuracy gradually increases, reaching 94% 
by the fifth epoch. This consistent rise suggests that the 
model is effectively learning the patterns within the data 
and is refining its parameters with each pass.

The subsequent folds (Fold 2 to Fold 5) exhibit a 
more pronounced improvement. From the second fold 
onwards, training accuracy consistently climbs, ulti-
mately reaching a peak of 97% in Fold 5. This trend high-
lights the model’s ability to adapt and improve as it sees 
different training data splits, suggesting that using mul-
tiple folds helps the model generalize better to unseen 
data. The steady upward trajectory, particularly across 
the later folds, demonstrates that with increasing training 
epochs, the model’s performance stabilizes and its ability 
to classify ECG signals accurately is enhanced. It is nota-
ble that while accuracy continues to rise initially, it starts 

to plateau towards the later epochs, which indicates that 
the model is nearing its optimal performance level.

This observation reinforces the idea that a balanced 
number of epochs is key to maximizing accuracy while 
preventing overfitting. The improvements observed in 
the later folds further suggest that cross-validation, which 
splits the data into different folds for testing, contributes 
to better robustness and more reliable model evaluation.

Test result analysis
It was observed that the denoised under-sampled model 
trained over 60 epochs exhibited the highest training 
accuracy, as documented in Tables 2 and 3, and 4. Con-
sequently, the under-sampled models were selected for 
subsequent evaluation. A 5-fold cross-validation was 
employed for models trained over 10 and 20 epochs, 
incorporating early stopping [23]. However, for the model 
achieving the highest accuracy, a 5-fold cross-validation 
was conducted without early stopping.

Based on the results in Table 6, it is observed that the 
model’s performance consistently improved as the num-
ber of epochs increased, with test accuracy, precision, 
recall, F1 score, and Area Under the ROC Curve (AUC) 
all rising. This trend indicates that the model benefits 
from longer training durations, leading to better general-
ization and more accurate predictions. The model trained 
over 60 epochs demonstrates the highest performance 
across all metrics, showing the best test accuracy, preci-
sion, recall, F1 score, and AUC during the 5-fold cross-
validation evaluation.

Figure 10 shows the Receiver operating characteristics 
(ROC) curve for the suggested model for 60 epochs. The 
ROC curve has an AUC of 0.98 indicating high effective-
ness in minimising both false positives and false nega-
tives, indicating excellent overall performance.

Cross-validation on PTB-ECG dataset
Cross-validation of the pre-trained model was conducted 
on the PTB-ECG dataset, yielding promising results. The 
model was initially adapted to handle the variations in 
signal lengths present in the PTB ECG dataset. A resiz-
ing technique was applied to standardize all ECG signals 
to a consistent length, ensuring compatibility with the 
model. The dataset labels were transformed into a binary 
format for classification between “Myocardial infarction” 

Fig. 7  Total parameters
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and “Healthy control,” and the model architecture was 
adjusted by introducing additional dense layers to facili-
tate this binary classification.

After retraining the model with a batch size of 32 and 
monitoring performance using the validation dataset, 
the model was evaluated on the filtered and resized PTB 
ECG dataset. The results were promising, with the model 
achieving a test accuracy of 91.18%, demonstrating its 
potential for accurate classification of myocardial infarc-
tion and healthy controls. The training process involved 
resampling the signals to 500 Hz, normalizing them to a 

range of [-1, 1], and resizing the signals to a fixed length 
of 12,000 data points. To fine-tune the pre-trained model, 
the last few layers were unfrozen, and early stopping 
was implemented to prevent overfitting. After 5 epochs 
of training, the model achieved a training accuracy of 
95.25% and a final test accuracy of 91.18%. These results 
are promising, indicating the model’s potential in achiev-
ing high performance on the PTB-ECG dataset, with the 
possibility of being further refined and applied to real-
world clinical scenarios.

Fig. 8  Proposed model summary
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Comparative evaluation against existing models
Comparison with existing models with PTB-XL dataset
Table  7 presents an examination of the comparative 

results achieved by the proposed method in contrast to 
prior works that use the PTB-XL dataset. The table high-
lights the performance of several models. In compari-
son, the proposed model, MI-CNN-DWT, incorporating 
DWT-based under-sampling, demonstrates notable per-
formance with a testing accuracy of 96%, F1-score of 95%, 
and precision of 97%. This highlights the effectiveness of 
the proposed approach in achieving higher classification 
performance for MI and NORM.

Table 6  5-fold cross validation results
Epochs of 
trained 
model

Test
accuracy

Precision Recall F1 
score

AUC

10 0.88 0.90 0.85 0.88 0.95
20 0.92 0.93 0.90 0.91 0.97
60 0.96 0.97 0.94 0.95 0.98

Fig. 10  ROC curve for the suggested model

 

Fig. 9  Graph depicting the relationship between accuracy and epochs during training analysis
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Comparison with existing models with PTB ECG diagnostic 
dataset
Table  8 shows the comparative results achieved by the 
proposed method in contrast to prior works that use the 
PTB ECG dataset. The proposed model, MI-CNN-DWT, 
incorporating DWT-based under-sampling, demon-
strates notable performance with a cross-validation test 
accuracy of 91.18% highlighting the effectiveness of the 
proposed approach in achieving higher classification per-
formance for MI and NORM.

Comparison with existing models with different dataset
Table  9 provides an overview of results from mod-
els using different datasets, such as the MIT-BIH 
Arrhythmia and PhysioNet/CINC challenge datasets, for similar classification tasks. Although the proposed 

Table 7  Comparison of existing models with PTB-XL
Ref 
No.

Number 
of classes

Classification 
between

Approach
used

Highest 
accuracy 
achieved

Pro-
posed 
model

2 Normal/MI Discreate 
wavelet 
transform 
and convolu-
tional neural 
networks

96% with 
5-fold 
validation

[3] 2 Healthy/sick CNN with 
entropy 
features

89%

[15] 5 NORM/MI/SSTC/CD/
HYP

Visibility 
graph rep-
resenta-
tion + Resnet/
Inception

89.71% 
accuracy, 
79.61% 
F-score, 
3.46% 
AUC

[16] 5 NORM/MI/SSTC/CD/
HYP

Beat seg-
mentation/
CNN + Atten-
tion. Bi-LSTM

88.85% 
mean 
accuracy 
0.9216 
Macro 
ROC-AUC 
0.8057 F1 
score

Table 8  Comparison of existing models with PTB ECG dataset
Ref 
No.

Number 
of classes

Classification 
between

Approach
used

Highest accu-
racy achieved

Pro-
posed 
model

2 Normal/MI Discreate 
wavelet 
transform 
and convo-
lutional neu-
ral networks

91% with 
cross-validation

[13] 2 Normal/MI CNN + LSTM 88.89%
[17] 2 Normal/

abnormal
Symlet scal-
ing filter and 
denoising/
CNN (Alex 
Net), ELM

Accuracy 
88.33%, sensi-
tivity 89.47% 
and specificity 
87.80%

Table 9  Comparison with existing models with different dataset
Ref 
No.

Number 
of classes

Classification 
between

Ap-
proach
used

Highest 
accuracy 
achieved

Dataset 
used

[6] 2 Abnormal/normal CNN 
- LSTM

83.4% MIT-BIH 
arrhyth-
mia 
database

[7] 2 Myocardial Infraction/ 
Normal Myocardium

CNN-
LSTM

85.1% for 
the left 
ven-
tricular 
long-axis 
view and 
83.2% for 
the short-
axis view

Images 
taken 
with ul-
trasound 
equip-
ment 
at Fujita 
health 
uni-
versity 
hospital

[8] 2 Abonormal/normal CNN 86% Collect-
ed ECG 
data 
related 
to the 
study 
subject

[9] 17 Normal sinus rhythm, 
paced rhythm and 
15 types of other 
arrhythmias

CNN 87.78% MIT-BIH 
Arrhyth-
mia 
database

[10] 2 Healthy/MI CNN 87% Physi-
kalisch-
Tech-
nische
Bunde-
sanstalt 
database

[11] 4 normal sinus rhythm, 
arrhythmic, other 
rhythm, noisy

Deep 
CNN 
and 
BiLSTM

89% 2017 
Physi-
oNet/ 
CINC 
chal-
lenge 
dataset

[12] 4 normal sinus rhythm, 
arrhythmic, other 
rhythm, noisy

1D 
CNN 
com-
bined 
with 
FCN 
layers

86% 2017 
Physi-
oNet/ 
CINC 
chal-
lenge 
dataset

[14] 2 Normal/MI Markov 
models 
and 
Gauss-
ian 
mix-
ture 
models

82.5% Ob-
tained 
from the 
Taoyuan 
Armed 
Forces 
General 
Hospital 
located 
in Taiwan
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MI-CNN-DWT model was not tested on these datasets, 
the table offers insights into the performance of existing 
models, providing context for comparing the MI-CNN-
DWT model to other methods in ECG classification.

Conclusion
In summary, this paper outlines an effective approach 
for classifying Electrocardiogram (ECG) signals, with 
a specific focus on distinguishing between ‘myocardial 
infarction’ (MI) and ‘normal’ cases. The best performing 
model, trained on filtered signals and evaluated using 
5-fold validation, achieved an average accuracy of 96% 
with a precision of 97%. It effectively classified ECG sig-
nals and identified ‘MI’ (Myocardial Infarction) and ‘Nor-
mal’ cases. This model also exhibited an 94% recall, an 
F1 score of 95%, and an impressive AUC of 0.98, signify-
ing strong ability to distinguish between MI and normal 
class.

Furthermore, the cross-validation accuracy on the PTB 
ECG dataset is a notable 91.18%, which highlights the 
model’s applicability to different datasets and its poten-
tial for broader clinical use. In conclusion, this research 
paper presents a robust ECG signal classification model, 
particularly adept at MI detection. This model’s archi-
tecture incorporates convolutional layers, Leaky-ReLU 
activation functions, dropout layers, and a meticulously 
designed learning rate schedule, making it a powerful 
tool for MI detection and cardiac condition diagnosis.

Abbreviations
MI	� Myocardial Infarction
DWT	� Discrete Wavelet Transform
CNN	� Convolutional Neural Networks
CVDs	� Cardiovascular diseases
ECGs	� Electrocardiograms
CAD	� Coronary artery disease
LSTM	� Long Short-Term Memory
DCNN	� Deep Convolutional Neural Network
BiLSTM	� Bidirectional Long Short-Term Memory
EDN	� Enhanced Deep Neural Network
HMMs	� Hidden Markov models
GMMs	� Gaussian mixture models
ReLU	� Rectified Linear Unit
ROC	� Receiver operating characteristics
AUC	� Area Under ROC Curve

Acknowledgements
The authors express their gratitude to the School of Computer Science 
and Engineering, as well as the Centre for Cyber-Physical Systems at 
Vellore Institute of Technology, Chennai, for their unwavering support and 
encouragement throughout the course of this research.

Author contributions
Kashvi Ankit bhai Sheth - Data Curation, Implementation and Manuscript 
writing Charvi Upreti - Data Curation, Implementation and Manuscript writing 
Manas Ranjan Prusty - Conceptualization, Methodology, Supervision Sandeep 
Kumar Satapathy - Validation and Visualization Shruti Mishra - Methodology 
and Manuscript Correction Sung-Bae Cho - Validation and Visualization.

Funding
No funding is associated for this research.
Open access funding provided by Vellore Institute of Technology.

Data availability
The datasets generated during and/or analyzed during the current study are 
available in the following database
• https:/​/physio​net.org​/con​tent/ptb-xl/1.0.3/
• https:/​/physio​net.org​/con​tent/ptbdb/1.0.0/.

Declarations

Ethics approval and consent to participate
All the authors have gone through the paper before submission.

Consent for publication
This work does not contain any new generated data.

Clinical trial number
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 7 October 2024 / Accepted: 18 November 2024

References
1.	 Murray CJL. The global burden of Disease Study at 30 years. Nat Med. 

2022;28:2019–26. https:/​/doi.or​g/10.10​38/s​41591-022-01990-1.
2.	 Park J, An J, Kim J, Jung S, Gil Y, Jang Y, Lee K, Oh I. Study on the use of stan-

dard 12-lead ECG data for rhythm-type ECG classification problems. Comput 
Methods Programs Biomed. 2022;214:106521. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​m​p​b​
.​2​0​2​1​.​1​0​6​5​2​1​​​​​.​​​

3.	 Śmigiel S, Pałczyński K, Ledziński D. ECG Signal classification using deep 
learning techniques based on the PTB-XL dataset. Entropy. 2021;23:1121. 
https:/​/doi.or​g/10.33​90/e​23091121.

4.	 Olvera Lopez E, Ballard BD, Jan A. Cardiovascular Disease. In: StatPearls. Stat-
Pearls Publishing, Treasure Island (FL); 2023. ​h​t​t​​p​:​/​/​​w​w​w​​.​n​​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​b​o​
o​k​s​/​N​B​K​5​3​5​4​1​9​/​​​​ (accessed October 16, 2023).

5.	 Wagner P, Strodthoff N, Bousseljot R-D, Kreiseler D, Lunze FI, Samek W, 
Schaeffter T. Sci Data. 2020;7:154. https:/​/doi.or​g/10.10​38/s​41597-020-0495-6. 
PTB-XL, a large publicly available electrocardiography dataset.

6.	 G S, K p S. Automated detection of cardiac arrhythmia using deep learning 
techniques. Procedia Comput Sci. 2018;132:1192–201. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​
6​/​j​.​p​r​o​c​s​.​2​0​1​8​.​0​5​.​0​3​4​​​​​.​​​

7.	 Muraki R, Teramoto A, Sugimoto K, Sugimoto K, Yamada A, Watanabe E. Auto-
mated detection scheme for acute myocardial infarction using convolutional 
neural network and long short-term memory. PLoS ONE. 2022;17:e0264002. 
https:/​/doi.or​g/10.13​71/j​ournal.pone.0264002.

8.	 Liang W. Deep learning-based ECG abnormality identification prediction and 
analysis. J Sens. 2022;2022(e3466787). https:/​/doi.or​g/10.11​55/2​022/3466787.

9.	 Grabowski B, Głomb P, Masarczyk W, Pławiak P, Yıldırım Ö, Acharya UR, Tan 
R-S. Classification and self-supervised regression of arrhythmic ECG signals 
using convolutional neural networks; 2022. http://​arxiv.o​rg/abs/​2210​.14253 
(accessed November 2, 2023).

10.	 Classification of myocardial infarction using convolution neural network. Int. 
J. Recent Technol Eng. 2019;8:12763–8. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​5​9​4​0​/​i​j​r​t​e​.​D​9​2​3​0​.​1​
1​8​4​1​9​​​​​.​​​

11.	 Cheng J, Zou Q, Zhao Y. ECG signal classification based on deep CNN and 
BiLSTM, BMC Med. Inf Decis Mak. 2021;21:365. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​9​1​
1​-​0​2​1​-​0​1​7​3​6​-​y​​​​​.​​​

12.	 Pyakillya B, Kazachenko N, Mikhailovsky N. Deep learning for ECG classifica-
tion. J Phys Conf Ser. 2017;913:012004. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​8​8​/​1​7​4​2​-​6​5​9​6​/​9​1​
3​/​1​/​0​1​2​0​0​4​​​​​​​

13.	 Manimekalai K. Deep learning methods in classification of myocardial infarc-
tion by employing ECG signals. Indian J Sci Technol. 2020;13:2823–32. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​7​4​8​5​/​I​J​S​T​/​v​1​3​i​2​8​.​4​4​5​​​​​.​​​

14.	 Chang P-C, Lin J-J, Hsieh J-C, Weng J. Myocardial infarction classification with 
multi-lead ECG using hidden Markov models and gaussian mixture models. 
Appl Soft Comput. 2012;12:3165–75. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​s​o​c​.​2​0​1​2​.​0​6​.​0​
0​4​​​​​.​​​

https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptbdb/1.0.0/
https://doi.org/10.1038/s41591-022-01990-1
https://doi.org/10.1016/j.cmpb.2021.106521
https://doi.org/10.1016/j.cmpb.2021.106521
https://doi.org/10.3390/e23091121
http://www.ncbi.nlm.nih.gov/books/NBK535419/
http://www.ncbi.nlm.nih.gov/books/NBK535419/
https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1016/j.procs.2018.05.034
https://doi.org/10.1016/j.procs.2018.05.034
https://doi.org/10.1371/journal.pone.0264002
https://doi.org/10.1155/2022/3466787
http://arxiv.org/abs/2210.14253
https://doi.org/10.35940/ijrte.D9230.118419
https://doi.org/10.35940/ijrte.D9230.118419
https://doi.org/10.1186/s12911-021-01736-y
https://doi.org/10.1186/s12911-021-01736-y
https://doi.org/10.1088/1742-6596/913/1/012004
https://doi.org/10.1088/1742-6596/913/1/012004
https://doi.org/10.17485/IJST/v13i28.445
https://doi.org/10.17485/IJST/v13i28.445
https://doi.org/10.1016/j.asoc.2012.06.004
https://doi.org/10.1016/j.asoc.2012.06.004


Page 15 of 15Sheth et al. BMC Medical Imaging          (2024) 24:326 

15.	 Kutluana G, Türker İ. Classification of cardiac disorders using weighted 
visibility graph features from ECG signals, Biomed. Signal Process Control. 
2024;87:105420. https:/​/doi.or​g/10.10​16/j​.bspc.2023.105420.

16.	 Reddy L, Talwar V, Alle S, Bapi RS, Priyakumar UD. IMLE-Net: an interpretable 
multi-level multi-channel model for ECG classification. 2021 IEEE Int Conf Syst 
Man Cybern SMC. 2021;1068–74. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​0​9​/​S​M​C​5​2​4​2​3​.​2​0​2​1​.​9​6​
5​8​7​0​6​​​​​.​​​

17.	 Feature Extraction of ECG Signal by using Deep Feature | IEEE Conference 
Publication | IEEE, Xplore. accessed November 11, (n.d.). ​h​t​t​​p​s​:​/​​/​i​e​​e​e​​x​p​l​​o​r​e​-​​i​e​
e​​e​-​​o​r​g​.​e​g​a​t​e​w​a​y​.​c​h​e​n​n​a​i​.​v​i​t​.​a​c​.​i​n​/​d​o​c​u​m​e​n​t​/​8​7​5​7​5​2​2​​​​ (2024).

18.	 Wagner P, Strodthoff N, Bousseljot R-D, Samek W, Schaeffter T. PTB-XL, a large 
publicly available electrocardiography dataset (n.d.). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​3​0​2​6​
/​K​F​Z​X​-​A​W​4​5​​​​​​​

19.	 Bousseljot R-D, Kreiseler D, Schnabel A, Diagnostic TPTB, Database ECG. 
(2004). https:/​/doi.or​g/10.13​026/​C28C71

20.	 Lee G, Gommers R, Waselewski F, Wohlfahrt K, O’Leary A. PyWavelets: a 
Python package for wavelet analysis. J Open Source Softw. 2019;4:1237. 
https:/​/doi.or​g/10.21​105/​joss.01237.

21.	 Andrade C, Scores Z, Scores S, Explained CTS. Indian J Psychol Med. 
2021;43:555–7. https:/​/doi.or​g/10.11​77/0​2537176211046525.

22.	 Wong T-T. Performance evaluation of classification algorithms by k-fold and 
leave-one-out cross validation. Pattern Recognit. 2015;48:2839–46. ​h​t​t​​p​s​:​/​​/​d​o​​
i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​p​a​t​c​o​g​.​2​0​1​5​.​0​3​.​0​0​9​​​​​.​​​

23.	 Vilares Ferro M, Doval Mosquera Y, Ribadas Pena FJ, Darriba VM, Bilbao. Early 
stopping by correlating online indicators in neural networks. Neural Netw. 
2023;159:109–24. https:/​/doi.or​g/10.10​16/j​.neunet.2022.11.035.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1016/j.bspc.2023.105420
https://doi.org/10.1109/SMC52423.2021.9658706
https://doi.org/10.1109/SMC52423.2021.9658706
https://ieeexplore-ieee-org.egateway.chennai.vit.ac.in/document/8757522
https://ieeexplore-ieee-org.egateway.chennai.vit.ac.in/document/8757522
https://doi.org/10.13026/KFZX-AW45
https://doi.org/10.13026/KFZX-AW45
https://doi.org/10.13026/C28C71
https://doi.org/10.21105/joss.01237
https://doi.org/10.1177/02537176211046525
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/j.neunet.2022.11.035

	﻿Time-frequency transformation integrated with a lightweight convolutional neural network for detection of myocardial infarction
	﻿Abstract
	﻿Introduction
	﻿Related works
	﻿Datasets – PTB XL and PTB ECG
	﻿Proposed methodology
	﻿Discrete wavelet transform (DWT)
	﻿Under-sampling and up-sampling
	﻿Lightweight convolutional neural network (CNN) model

	﻿Performance measures
	﻿Results and discussions
	﻿Performance analysis
	﻿Under-sampling results
	﻿All signals results
	﻿Up-sampling results
	﻿Computational time comparison


	﻿Training result analysis
	﻿Test result analysis
	﻿Cross-validation on PTB-ECG dataset
	﻿Comparative evaluation against existing models
	﻿Comparison with existing models with PTB-XL dataset
	﻿Comparison with existing models with PTB ECG diagnostic dataset
	﻿Comparison with existing models with different dataset

	﻿Conclusion
	﻿References


