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Abstract
Background  The study aimed to investigate the predictive value of delta-radiomics derived from computed 
tomography (CT) for pathological complete response (pCR) to neoadjuvant immunochemotherapy (NICT) among 
patients with esophageal squamous cell carcinoma (ESCC), helping clinicians determine whether to modify the 
neoadjuvant treatment strategy, proceed to surgery, or forgo surgery altogether.

Methods  A total of 140 ESCC patients from two institutions (Database 1 = 93; Database 2 = 47) who underwent 
NICT and surgery were retrospectively included in the study. The training set consisted of patients from Database 1, 
while the testing set included patients from Database 2. All patients underwent contrast-enhanced CT scans before 
the start of the treatment and prior to the operation. The delta-radiomics features were calculated as the relative 
net change of radiomics features between the two-time points. Feature selection was conducted using Pearson 
correlation analysis, intraclass correlation coefficients, and the fivefold cross-validation with least absolute shrinkage 
and selection analysis. Four models were established, comprising a clinical model, a pre-treatment radiomics model, 
a delta-radiomics model, and a mixed model. Area under the curve (AUC) and decision curve analysis were used to 
assess the performance and the clinical value of the models.
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Background
Esophageal cancer is a widespread cancer with a high 
fatality rate worldwide [1, 2]. Asia has the highest inci-
dence, where esophageal squamous cell carcinoma 
(ESCC) is the most common type [3, 4]. Neoadjuvant 
immunochemotherapy (NICT) has recently shown 
promising results in patients with ESCC. Emerging evi-
dence has demonstrated that NICT can induce optimal 
tumor regression, have low adverse effects, limit post-
operative complications, and may even provide survival 
benefits for patients suffering from advanced ESCC 
[5–7].

Pathological complete response (pCR) is regarded as 
a substantial therapeutic outcome of neoadjuvant treat-
ment and a reliable surrogate indicator for assessing 
postoperative survival [8]. Accurate prediction of pCR is 
crucial for guiding treatment decisions, as not all patients 
benefit from NICT. Ineffective neoadjuvant therapy 
might lead to postponed surgery and raise the risk of 
unnecessary adverse events and immune-related adverse 
events (irAEs) manifesting as hematologic and gastroin-
testinal toxicity, pneumonitis, hypothyroidism, and hep-
atitis, among others [9]. By predicting whether patients 
achieve pCR after neoadjuvant therapy, it assists doctors 
in determining whether to modify the neoadjuvant treat-
ment strategy, proceed to surgery or forget surgery com-
pletely. Since pCR can only be confirmed after surgery, 
several studies have explored clinical and radiographic 
parameters before surgery to predict pCR to NICT for 
ESCC [8, 10–12], including metabolic parameters from 
positron emission tomography (PET) and systemic 
inflammation-tumor markers. Despite their predictive 
value, hematological indexes can be influenced by various 
factors, and metabolic parameters may not represent the 
spatial distribution of the entire tumor. Thus, it is cru-
cial to discover more efficient and precise markers and 
develop reliable models to predict pCR in ESCC patients 
undergoing NICT.

Radiomics is a method that utilizes algorithms to 
derive plenty of quantitative characteristics from images 
[13]. Computed tomography (CT) is a routine exami-
nation for tumor staging, and CT-based radiomics has 

been reported to assist in the noninvasive preselection 
for ESCC patient therapy [14]. Several previous stud-
ies [15, 16] modeled radiomics features based on pre-
treatment CT for predicting pathological response to 
neoadjuvant chemotherapy or neoadjuvant chemoradio-
therapy (NCRT) in esophageal cancer. Nonetheless, these 
researches were limited to a single period and did not 
include information about therapy responses.

Delta-radiomics is a novel concept that refers to 
changes in radiomics characteristics between initial and 
subsequent data throughout therapy. Some studies [17–
19] have demonstrated the superiority of CT-based delta-
radiomics for the prediction of response and prognosis 
to immunotherapy or chemotherapy for tumors such as 
lung, rectal, and gastric cancers. To date, there has been 
limited research on whether CT-based delta-radiomics 
can predict pCR to NICT in ESCC [20].

The study sought to explore the efficacy of CT-based 
delta-radiomics features in predicting pCR to NICT 
in ESCC patients. We hypothesize that these features 
can serve as reliable predictors of pCR, ultimately aid-
ing clinicians in making optimal therapeutic decisions 
regarding altering the neoadjuvant treatment strategy or 
proceeding with surgery.

Materials
The study was conducted in accordance with the Decla-
ration of Helsinki. This retrospective study was approved 
by the Ethics Committee of Wuhan Union Hospital, 
and the requirement for written informed consent was 
waived.

Patients and inclusion criteria
The study retrospectively included 140 ESCC patients 
from two institutions (Henan Provincial People’s Hos-
pital, Database 1 = 93; Wuhan Union Hospital, Database 
2 = 47) who underwent NICT combined with surgery 
between June 1, 2020, and October 1, 2023. The follow-
ing inclusion criteria were used: (1) age ≥ 18 years old; (2) 
in stage T1N1−3 or T2−4aN0−3 M0 by the eighth edition 
AJCC/UICC Tumor node metastasis (TNM) staging sys-
tem [21]; (3) patients at least received two cycles of NICT; 

Results  Less than half of the tumors (40/140, 28.6%) showed pCR following NICT. The delta-radiomics model 
displayed AUC of 0.827 and 0.790 in the training and testing set for predicting pCR, which was superior to the clinical 
model based on age and clinical tumor node metastasis (cTNM) stage (0.758 and 0.615) and the pre-treatment 
radiomics model (0.787 and 0.621). Furthermore, the delta-radiomics model demonstrated a more excellent AUC 
value in the testing set than the mixed model (0.847 and 0.719), which integrated clinical and delta-radiomics features.

Conclusions  The delta-radiomics model exhibited better diagnostic performance in preoperative prediction of pCR 
for NICT in ESCC patients compared to the clinical, pre-treatment radiomics, and mixed models.

Keywords  Esophageal squamous cell carcinoma, Computed tomography, Delta-radiomics, Neoadjuvant 
immunochemotherapy, Pathological response
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(4) two contrast-enhanced CT scans, baseline CT and CT 
prior to the operation within one week, were obtained. 
Patients with missing data or CT images with artifacts 
were excluded from the analysis (Fig.  1). ESCC patients 
in our hospital are routinely given contrast-enhanced 
CT scans preoperatively, as these can provide detailed 
information on lesion morphology, enhancement char-
acteristics, and boundary conditions, which are essential 
for staging and assessing therapeutic efficacy. Database 1 
were allocated to the training set and Database 2 to the 
testing set. Additionally, we recorded the following clini-
cal and radiographic characteristics of gender, age, body 
mass index (BMI), smoking status, drinking status, tumor 
location, tumor length, and cTNM. Tumor location was 
divided into upper, middle and lower esophagus accord-
ing to the AJCC/UICC eighth edition [22]. BMI was 
derived from measurements of height and weight. The 
clinical TNM stage (cTNM) of ESCC was assessed using 
endoscopic ultrasound and enhanced CT.

To avoid including too many subjects, which could 
expose them to unnecessary risks and waste time and 
resources, or too few subjects, which might fail to achieve 
the desired objective, we calculated the sample size of 
the study using an online calculator [23] recommended 
by Monti et al. [24]. As shown in Supplementary 1, to 

estimate an AUC of 0.9 with a 95% confidence interval 
length of 0.15, given a sample prevalence of 30%, a total 
of 107 subjects would be required, indicating that our 
sample size was sufficient to support our results.

Treatment protocols
All patients underwent at least two cycles of NICT prior 
to surgery. The use of immune checkpoint inhibitors 
(ICIs) primarily involved pembrolizumab (200 mg), tislel-
izumab (200  mg), camrelizumab (200  mg), toripalimab 
(240  mg) or sintilimab (200  mg), administered intrave-
nously every three weeks. The TP regimen incorporated 
platinum-based drugs (such as cisplatin or nedaplatin: 
80 mg/m2;carboplatin: AUC of 5 mg/ml/min) combined 
with paclitaxel (175 mg/m2) or docetaxel (70 mg/m2), 
administered intravenously every three weeks. The PF 
regimen included platinum-based drugs (50 mg/m2) and 
5-fluorouracil (800 mg/m2 24  h by continuous infusion 
on days 1–4), given intravenously every two weeks. The 
dosage and administration of chemotherapeutic agents 
were tailored to each patient based on their individual 
condition and body surface area. ICIs are dosed using a 
fixed dose, depending on the specific drug. Surgery con-
sisted of either open or minimally invasive transthoracic 
esophagectomy.

Fig. 1  Flow diagram shows patient selection and exclusion criteria. ESCC, esophageal squamous cell carcinoma; NICT, neoadjuvant immunochemo-
therapy; CT, computed tomography
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Evaluation of tumor response
Similar to previous studies [16, 25], patients were catego-
rized into two groups after NICT and surgery: the pCR 
group, composed of 40 patients, and the non-pCR group, 
composed of 100 patients, according to whether there 
were viable tumor cells in the primary tumor area and all 
resected lymph nodes.

CT image acquisition
Database 1 performed the CT scans using a multi-slice 
spiral CT scanner (GE Light Speed VCT). The acquisition 
settings were as follows: 64 × 0.6  mm collimation, auto-
mated tube current control at 120 kVp, reconstructed 
layer thickness and interval of 1.25 mm/1.25 mm. Non-
ionic iodine contrast medium (iopromide, Ultravist 
300 mg/mL, Bayer, Germany) was injected intravenously 
at a 2.5–3.5 mL/s rate.

Database 2 performed the CT scans using two multi-
slice spiral CT scanners (SOMATOM Definition, 
SOMATOM Definition AS+). The acquisition settings 
were as follows: 64 × 0.6  mm and 128 × 0.6  mm collima-
tion, automated tube current control at 120 kVp, recon-
structed layer thickness and interval of 1.5 mm/1.5 mm. 
Nonionic iodine contrast medium (iohexol 350  mg/mL, 
Beilu Pharmaceutical Co., Ltd.) was injected intrave-
nously at a 2–3 mL/s rate.

Radiomics feature extraction
Two radiologists (HSS and YTZ, with 32 and 3 years of 
experience in thoracic radiology, respectively) semi-
automatically delineated all cases on CT images using 
the 3D Slicer software without knowledge of the histo-
logic findings. The tumor segmentation protocol was as 
follows [25, 26]: (1) delineate the tumor contour on the 
mediastinal (width, 350 HU; level, 40 HU) window of 
the contrast-enhanced CT images taken before and after 
NICT; (2) avoid the esophageal lumen during delinea-
tion; (3) the delineated region of interest (ROI) of the 
same patient remained consistent in position and length 
across both time points; (4) two radiologists evaluated all 
contours, and any disagreements regarding the tumor’s 
boundaries must be resolved through discussion. The 
volumes of interest (VOIs) of tumors were automatically 
reconstructed using the 3D-slicer software. To minimize 
errors introduced by resampling, we analyzed the data to 
determine the most common voxel spacing, which was 
found to be (0.7, 0.7, 1.5) mm. Sixty-six of 140 (47.1%) 3D 
CT images were then resampled to this spacing using a 
B-spline curve interpolation algorithm. A bin width of 25 
was applied for gray dispersion before radiomics exami-
nation. A total of 1037 radiomics features were extracted 
from the segmented ROI utilizing the Pyradiomics 
package in Python (Fig.  2, with additional details avail-
able at https:/​/pyradi​omics.r​eadt​hedocs.io/en/latest/
features. html) [27]. According to the image type, it can 

Fig. 2  Radiomics workflow
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be classified into four types, including 93 gradient, 93 
logarithmic transformed, 107 original, and 744 wavelet 
transformed features. Furthermore, based on the feature 
class, it can be categorized into 198 first-order features, 
264 GLCM features, 154 GLDM features, 176 GLRLM 
features, 176 GLSZM features, 55 NGTDM features, and 
14 shape features. Additionally, to assess intra-observer 
and inter-observer variability, we randomly selected 30 
cases by using a random seed, and the intraclass corre-
lation coefficient (ICC) was employed. Features with an 
ICC value exceeding 0.8 were considered to be stable 
and reproducible. Inter-observer repeatability was evalu-
ated by two radiologists performing tumor segmenta-
tion on the same image collection, while intra-observer 
repeatability was assessed by one radiologist repeating 
segmentation one week later. SMOTE is used to generate 
artificial/synthetic samples for the minority class [28].

Delta‑radiomics features
All patients underwent CT scans at baseline and prior to 
surgery. The radiomics features (RFs) were obtained at 
the two time points separately. The relative net change in 
RFs between these two time points is referred to as delta-
RFs [29]:

Relative Net Change = (Featurepre−operation 
− Featurebaseline)/Featurebaseline.

Additionally, we conducted a self-assessment of our 
work using the CLEAR checklist [30] and METRICS 
score [31], which were included as Supplementary 2 and 
Supplementary 3, respectively.

Statistical analysis
The statistical analyses were conducted with SPSS 21 
and R 4.0.2. Continuous variables were presented as 
mean ± standard, and independent sample t tests were 
utilized for analysis. Categorical variables were presented 
as frequency (percentage), and analyzed using Fisher’s 
exact test. Radiomics features were processed by z-score 
normalization. Pearson correlation analysis was used to 
eliminate the radiomics features with high correlation 
(r > 0.8) in the training set. When two features exhibited 
a high correlation, we selected the feature with a stron-
ger correlation to pCR, as indicated by a higher absolute 
Pearson correlation coefficient. And inter-observer vari-
ability analysis were employed to exclude features of low 
reliability (ICC < 0.8). The fivefold cross-validation least 
absolute shrinkage and selection (LASSO) analysis was 
carried out for feature selection on the training set. A 
multivariate LR algorithm was used to build a classifica-
tion model. Subsequently, four models were established: 
a clinical model, a pretreatment radiomics model, a delta-
radiomics model, and a mixed model. Receiver operating 
characteristic (ROC) analysis was performed to evaluate 
the predictive performance of the models for pCR. The 

confounder matrix was used to demonstrate the predic-
tive capacity of the models. The accuracy, sensitivity, 
and specificity of each model were then determined. The 
AUC values were utilized to express and compare the 
predictive performance of the models via the DeLong 
test. The two-tailed p < 0.05 was considered statistically 
significant.

Results
Clinical and CT characteristics
In the study, most patients were male (108/140, 77.1%). 
The average age was 62.4 ± 7.9 years, with a mean BMI of 
23.2 ± 3.2 kg/m2. More than half of the participants were 
non-smokers (82/140, 58.6%) and non-drinkers (89/140, 
63.6%). The majority of the tumors exhibited non-pCR 
(71.4%, 100/140, Fig.  3), and the rest of the tumors 
achieved pCR (28.6%, 40/140, Fig. 3). Most of the tumors 
were found in the middle esophagus (89/140, 63.6%). 
Regarding tumor staging, 67.1% of the patients (94/140) 
were diagnosed with stage III ESCC at baseline. The aver-
age tumor length was 70.9 mm (Table 1).

CT, computed tomography; ESCC, esophageal squa-
mous cell carcinoma; NICT, neoadjuvant immunoche-
motherapy; pCR, pathological complete response.

The clinical model based on age and cTNM achieved 
good performance in predicting pCR in both the training 
and testing sets, yielding AUCs of 0.758 (95%CI, 0.658–
0.858) and 0.615 (95%CI, 0.427–0.804), accuracy of 71% 
and 68.1%, specificity of 81.8% and 76.5%, and sensitiv-
ity of 44.4% and 46.1% (Fig. 4A, Table 2). The proportion 
of smokers, drinkers, and tumors located in the middle 
esophagus in the training set was notably higher than in 
the testing set. Besides, the training set exhibited greater 
age and tumor length in comparison to the testing set 
(p < 0.05). Nevertheless, no significant differences were 
seen in sex, BMI, cTNM, or pCR (p > 0.05) between the 
sets.

Pretreatment radiomics model
After eliminating 575 redundant and unstable fea-
tures using Pearson correlation analysis and ICC, 462 
radiomics features were selected for LASSO assessment. 
Subsequently, a pre-treatment radiomics model was 
established based on nine contributing radiomics fea-
tures (Supplementary  4). The model achieved prediction 
performances for pCR of 0.787 (95%CI, 0.675-0.900) and 
0.621 (95%CI, 0.436–0.806) in the training and testing 
sets, respectively, with the accuracy of 75.2% and 57.4%, 
specificity of 77.3% and 52.9%, and sensitivity of 70.4% 
and 69.2% in predicting pCR in the training and testing 
sets (Fig. 4B, Table 2).
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Delta‑radiomics model
A total of 462 delta-radiomics features were identified 
for building the delta-radiomics model after conduct-
ing Pearson correlation analysis and ICC. It was found 

that five delta-radiomics features significantly differed 
between pCR and non-pCR tumors by using LASSO 
penalized logistic regression analysis (Fig.  5). The LR 
model recognized delta_wavelet.LLH_glrlm_Long 

Table 1  Demographic and clinical data of 140 cases from two institutions
Characteristic Total patients (n = 140) Train (n = 93) Test (n = 47) p Value
Age (years) 62.4 ± 7.9 64.0 ± 8.0 59.2 ± 6.8 0.001*
Gender 0.291
Female 32 (22.9%) 24 (25.8%) 8 (17%)
Male 108 (77.1%) 69 (74.2%) 39 (83%)
BMI (kg/m2) 23.2 ± 3.2 23.4 ± 3.2 22.8 ± 3.2 0.325
Smoking status 0.029*
Yes 58 (41.4%) 45 (48.4%) 13 (27.7%)
No 82 (58.6%) 48 (51.6%) 34 (72.3%)
Drinking status 0.026*
Yes 51 (36.4%) 40 (43%) 11 (23.4%)
No 89 (63.6%) 53 (57%) 36 (76.6%)
Tumor location < 0.001*
Upper chest 15 (10.7%) 13 (14%) 2 (4.3%)
Middle chest 89 (63.6%) 66 (71%) 23 (48.9%)
Lower chest 36 (25.7%) 14 (15.1%) 22 (46.8%)
Tumor length (mm) 70.9 ± 24.7 74.8 ± 24.3 63.1 ± 23.8 0.008*
TNM stage 0.296
II 36 (25.7%) 23 (24.7%) 13 (27.7%)
III 94 (67.1%) 61 (65.6%) 33 (70.2%)
IV 10 (7.1%) 9 (9.7%) 1 (2.1%)
pCR 1
Yes 40 (28.6%) 27 (29%) 13 (27.7%)
No 100 (71.4%) 66 (71%) 34 (72.3%)
*p < 0.05 based on comparisons between the two groups. Data are mean ± SD or n (%). BMI, body mass index; TNM, tumor node metastasis; pCR, pathological 
complete response

Fig. 3  Representative images of ESCC underwent NICT. (A, B) CT images of ESCC before and after NICT were shown (arrows). (C) Resection specimen 
showed this patient had non-pCR. (D, E) CT images of ESCC before and after NICT were shown (arrows). (F) Resection specimen showed this patient had 
pCR
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RunLowGray Level Emphasis, delta_wavelet.LLL_gldm_
Small DependenceLowGray Level Emphasis, mean_ 
original_shape_SurfaceVolumeRatio, mean_wavelet.
LHL_glcm_Idmn, and mean_ wavelet.HHL_firstorder_
Mean. A delta-radiomics model was then developed and 
achieved an AUC of 0.827 (95%CI, 0.730–0.925) in the 
training set and 0.790 (95%CI, 0.646–0.933) in the test-
ing set. Table 3 presented the chosen delta-radiomics fea-
tures and their corresponding coefficients. Moreover, the 
model achieved the accuracy of 74.2% and 72.3%, speci-
ficity of 68.2% and 70.6%, and sensitivity of 88.9% and 
76.9% for pCR prediction in the training and testing sets 
(Fig. 4C, Table 2).

Mixed model
Additionally, we built a mixed model by incorporating 
selected clinical and delta-radiomics features. The model 
yielded an AUC of 0.847 (95%CI,0.766–0.928) in the 
training set and 0.719 (95%CI,0.567–0.872) in the test-
ing set for predicting pCR (Fig. 4D). Moreover, the model 
demonstrated the accuracy of 71.0% and 61.7%, specific-
ity of 68.2% and 52.9%, and sensitivity of 77.8% and 84.6% 
in the training and testing sets (Table 2). Subsequently, a 
nomogram consisting of age, cTNM, and Rad-score was 
built (Supplementary 5).

Fig. 4  Receiver operating characteristic curves for the prediction of pCR status of clinical model (A), pretreatment radiomics model (B), delta-radiomics 
model (C), and mixed model (D) in the training and testing sets. pCR, pathological complete response
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Table 2  Confounder matrix for the four sets in the four models
Predicted results Actual results AUC(95% CIs) Accuracy (%) Specificity (%) Sensitivity

(%)
pCR Non-pCR

Clinical model
Training data set 0.758[0.658–0.858] 71.0 81.8 44.4
pCR 12 12
Non-pCR 15 54
Testing data set 0.615[0.427–0.804] 68.1 76.5 46.1
pCR 6 8
Non-pCR 7 26
Pretreatment radiomics model
Training data set 0.787[0.675-0.900] 75.2 77.3 70.4
pCR 19 15
Non-pCR 8 51
Testing data set 0.621 [0.436–0.806] 57.4 52.9 69.2
pCR 9 16
Non-pCR 4 18
Delta-radiomics model
Training data set 0.827[0.730–0.925] 74.2 68.2 88.9
pCR 24 21
Non-pCR 3 45
Testing data set 0.790[0.646–0.933] 72.3 70.6 76.9
pCR 10 10
Non-pCR 3 24
Mixed model
Training data set 0.847[0.766–0.928] 71.0 68.2 77.8
pCR 21 21
Non-pCR 6 45
Testing data set 0.719[0.567–0.872] 61.7 52.9 84.6
pCR 11 16
Non-pCR 2 18
pCR, pathological complete response; AUC, area under the curve; CI, confidence interval

Fig. 5  Least absolute shrinkage and selection operator (LASSO) logistic regression of radiomics features (A) and the regularization parameterλ(B)
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Performance comparison between different models
The delta-radiomics model demonstrated a higher pre-
dictive ability in the testing cohort compared to the clini-
cal, pre-treatment radiomics, and mixed models (AUC, 
0.790 vs. 0.615 vs. 0.621 vs. 0.719, respectively). However, 
the differences in AUC values among the models were 
not statistically significant. Table 2 summarized the find-
ings of confounder matrix analysis. The delta-radiomics 
model exhibited better accuracy, sensitivity, and specific-
ity than the pretreatment radiomics model in the testing 
cohort.

Clinical use
Decision curve analysis (DCA) was conducted to assess 
the clinical utility of the prediction models (Fig.  6). 
Results showed that the clinical, pretreatment radiomics, 
delta-radiomics, and mixed models provided a positive 
net benefit for patients in comparison to the treat-all and 
treat-none models.

Discussion
Researches have demonstrated that pCR is related to 
improved prognosis, and predicting pCR can help make 
treatment decisions before surgery, assisting clinicians 
decide on the subsequent actions in the treatment plan, 
such as whether to modify the neoadjuvant treatment 
approach, proceed with surgery, or forgo surgery entirely. 
In the present study, a CT-based delta-radiomics model 
was built and validated for pCR prediction of NICT in 
ESCC patients, which performed well and was superior 
to the clinical, pretreatment radiomics and mixed mod-
els. This finding indicated that the delta-radiomics fea-
tures can function as a crucial tool for decision assistance 
in identifying responses to NICT.

In our study, the average age of patients with ESCC 
was 62.4 years old, and approximately 77% of ESCC cases 
occurred in men, consistent with the standard popu-
lation according to Global Cancer Statistics 2020 [2]. 
Conventional imaging can show features such as lesion 
size, location, and enhancement modalities but cannot 
reveal more in-depth information about ESCC. Some 
studies explored radiomics for predicting pathological 
response to ESCC. Oda et al. [15] developed a radiomics 
model based on pretreatment CT to predict pathological 
response to neoadjuvant chemotherapy for EC patients, 

achieving a sensitivity of 0.620, specificity of 0.860, and 
AUC of 0.815. Similarly, Wang et al. [16] used pretreat-
ment CT-based radiomics features to predict the patho-
logical response to NCRT in ESCC with an AUC of 0.817 
in the testing set. However, these studies were limited 
to single time points and did not account for changes in 
therapy response.

In the study, the performance of the clinical and pre-
treatment radiomics models for predicting pCR to NICT 
was unsatisfactory, while the delta-radiomics model 
demonstrated strong performance, achieving an AUC of 
0.827 and 0.790 in the training and testing sets, respec-
tively. This may be because delta radiomics encom-
passes image- and time-dependent data and enables the 
dynamic evaluation of treatment-related tumor altera-
tions. In addition, the mixed model combining clinical 
and radiomics features had a lower AUC value than the 
delta-radiomics model. The result may be that the inclu-
sion of clinical features reduces the overall performance, 
suggesting that the delta-radiomics model is more robust.

According to the delta-radiomics model, five radiomics 
features were significantly correlated with response to 
NICT in ESCC patients. The SurfaceVolumeRatio refers 
to the mean of the surface area to volume ratio, sug-
gesting that more compact and spherical profiles tend 
to have a better therapy response [32]. The firstorder_
Mean indicated the mean gray level intensity within the 
tumor. The remaining three features were second-order 
features (glcm, gldm and glszm) that described the vari-
ability of gray-level intensity values in the image, thus 
reflecting the heterogeneity within the tumor [33]. The 
results indicated that the radiomics features, in addition 
to reflecting size and density, can also reveal heteroge-
neity of tumors, providing more information related 
to treatment response. Recent studies have shown that 
multi-omics approaches have the potential for improv-
ing cancer diagnosis and prognostic assessment [34–36]. 
Integrating radiomics with pathomics, metabolomics, 
and genomics can significantly enhance the predictive 
value compared to single-omics analyses. The role of this 
non-invasive method in esophageal cancer requires fur-
ther exploration.

Furthermore, several studies revealed that therapy-
induced changes in radiomics features may be valuable 
in predicting the prognosis of cancer patients [18, 29, 

Table 3  Features included in the delta-radiomics model and their coefficients
Estimate Std. error z value Pr (>|z|)

(Intercept) 1.1253 0.2842 3.9591 0.0001
delta_wavelet.LLH_glrlm_LongRunLowGrayLevelEmphasis -0.6926 0.2931 -2.3635 0.0181
delta_wavelet.LLL_gldm_SmallDependenceLowGrayLevelEmphasis -0.4278 0.3398 -1.2589 0.2081
mean_original_shape_SurfaceVolumeRatio -0.2071 0.3827 -0.5411 0.5884
mean_wavelet.LHL_glcm_Idmn 0.4298 0.3751 1.1457 0.2519
mean_wavelet.HHL_firstorder_Mean -0.5306 0.3492 -1.5194 0.1287
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37]. Shen et al. [18] demonstrated that CT-based delta-
radiomics combined with preoperative clinical variables 
had a better prediction of prognosis after preoperative 
neoadjuvant chemotherapy in advanced gastric can-
cer than pathological TNM stage and tumor regression 
grade classification. Nakamoto et al. [37] attempted to 
evaluate the predictive value of delta-radiomics based on 
cone-beam CT for prognostic of patients with ESCC who 
received concurrent chemoradiotherapy. They revealed 
that there were significant differences in delta-radiomics 
features between the high- and low-risk groups, with a 
C-index value of 0.821. Thus, the value of delta-radiomics 
in predicting the prognosis of ESCC patients needs to be 
further investigated.

The research had certain limitations. Firstly, the retro-
spective nature and small sample size of the study could 
cause patient selection bias and poor generalization. 
Secondly, the difference in the CT scanning machines, 
imaging protocols and some demographic characteris-
tics between the two databases may influence the results. 
However, we minimized these differences by resampling 
the CT images of the enrolled patients and normalizing 
the extracted radiomics features. The variability in mul-
ticenter radiomics studies should be addressed in the 
future. Thirdly, while SMOTE is effective at addressing 
class imbalance, it may also lead to overfitting and alter-
ing the data distribution, potentially reducing general-
ization performance and introducing bias. Fourthly, as 
there are no established or standardized guidelines for 

Fig. 6  Decision curve for the four models
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esophageal cancer segmentation, the radiologists in our 
study followed protocols from prior research to perform 
tumor segmentation. Finally, no analysis was done on the 
correlation between biomarkers, such as PD-L1 expres-
sion, and radiomics features, because the study was 
retrospective.

Conclusions
In summary, we proposed a CT-based delta-radiomics 
model with promising performance in predicting pCR 
to NICT in ESCC patients, outperforming the clinical, 
pretreatment radiomics and mixed models. In the future, 
multicenter, multi-omics and large-scale studies need to 
be carried out to eliminate the flaws mentioned above 
and validate our findings. Additionally, exploring the 
connection between radiomics characteristics and cancer 
prognosis, as well as biomarkers, such as PD-L1 expres-
sion, can provide further insights.
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