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Abstract 

Background Mammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast 
masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malig-
nant. Consequently, many deep learning (DL)-based computer-aided diagnosis (CAD) approaches for BC classification 
have been developed.

Methods Recently, the transformer model has emerged as a method for overcoming the constraints of convolu-
tional neural networks (CNN). Thus, our primary goal was to determine how well an improved transformer model 
could distinguish between benign and malignant breast tissues. In this instance, we drew on the Mendeley data 
repository’s INbreast dataset, which includes benign and malignant breast types. Additionally, the segmentation any-
thing model (SAM) method was used to generate the optimized cutoff for region of interest (ROI) extraction from all 
mammograms. We implemented a successful architecture modification at the bottom layer of a pyramid transformer 
(PTr) to identify BC from mammography images.

Results The proposed PTr model using a transfer learning (TL) approach with a segmentation technique achieved 
the best accuracy of 99.96% for binary classifications with an area under the curve (AUC) score of 99.98%, respectively. 
We also compared the performance of the proposed model with other transformer model vision transformers (ViT) 
and DL models, MobileNetV3 and EfficientNetB7, respectively.

Conclusions In this study, a modified transformer model is proposed for BC prediction and mammography image 
classification using segmentation approaches. Data segmentation techniques accurately identify the regions affected 
by BC. Finally, the proposed transformer model accurately classified benign and malignant breast tissues, which is vital 
for radiologists to guide future treatment.
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Introduction
Background
Cancer is a fatal disease affecting people worldwide. Since 
the year 1,900, researchers have been gathering informa-
tion about cancer, and it has been widely acknowledged 
that it is an incurable disease [1]. By 2030, it is possible 
that the incidence of this condition will increase by more 
than 50 percent in the United States [2]. This disorder 
involves the uncontrolled growth and dissemination of 
atypical cells within the organism. Based on benignity 
and malignancy, the two principal forms of cancer are 
malignant and benign, respectively. Benign cancer cells 
are typically non-cancerous and have a very slow devel-
opment rate. In contrast, malignant tumors exhibit rapid 
growth, pose a significant threat, and can easily spread 
through the bloodstream to other areas of the body [3]. 
Women commonly experience various types of cancer, 
including lung, bone, blood, brain, liver, and BC. The first 
reported case of BC, which is considered to be one of the 
earliest forms of cancer seen anywhere around the globe, 
was found in Egypt in the year 1,600 BC [4, 5]. It is the 
second greatest cause of death among females, according 
to data that was exposed by the American Cancer Society 
in the year 2017 [6, 7]. About 2.1 million women have BC 
every year, and it may be deadly if left untreated, says the 
World Health Organisation [8]. If BC is identified early, 
the patient has a 70% better chance of living for five years 
than if the cancer is more advanced [9]. Hence, timely 
identification and management of BC are of utmost sig-
nificance for patients.

Motivation
There are many approaches for detecting BC, some of 
which have been discussed in [10]. Mammography is the 
most extensively used and successful tool for detecting 
BC because it is inexpensive and satisfies standards for 
utilization by practitioners [11]. When performing mam-
mography, low-energy X-rays are employed in the process 
of acquiring images of the breast, which are subsequently 
analyzed to identify any signs of cancer. Typically, doc-
tors obtain diagnostic results from mammography analy-
ses; however, these results are susceptible to human error 
owing to factors such as doctors’ subjective experiences 
and exhaustion. Even for experienced doctors, it is still 
difficult to determine what is wrong with a breast mass on 
a mammogram because the lumps do not appear at the 
start. According to relevant research, a reliable CAD sys-
tem can assist doctors in making accurate decisions while 
efficiently alleviating patient difficulties [12]. The idea of 
DL emerged from recent developments in ML and image 
processing [13], which has attracted significant interest 
from researchers [14]. The first step in the classification 

process involves manually extracting features from the 
mammograms. Subsequently, all extracted features were 
fed into the ML classifier for further classification [15]. 
Although the conventional pattern recognition approach 
has had a few successes in mammogram classification, it 
is reliant on the researcher’s deliberately generated fea-
tures and lacks the possibility of autonomous learning. 
This deficiency can be efficiently addressed by utilizing a 
technique known as a CNN. It performs well in natural 
image analysis and can automatically pick out and extract 
image features. As a result, CNN has piqued the inter-
est of many researchers, who have sought to use it in the 
analysis and diagnosis of medical images such as CT lung 
images [16], MRI brain images [17], and thyroid ultra-
sound images [18]. Although CNN-based classification 
models have proven to be effective, recent developments 
have led to the development of a unique vision model 
known as a ViT. This approach has been proved as more 
accurate for various public benchmarks [19]. However, 
only a small number of research have examined the usage 
of PTr in BC identification so far, and the potential of PTr 
in this area has not been fully investigated [20]. There-
fore, to effectively detect BC, we propose a novel PTr 
model using a data segmentation technique.

Contribution
The primary contribution to this field is that our method-
ology can help achieve more accurate early identification 
of BC. The dataset used in this study has two categories: 
benign and malignant. A mismatch between classes may 
lead to learning bias in the model. We propose a seg-
mentation-dependent class balance as a solution to this 
problem. Second, we developed an improved PTr-based 
transformer method for mammography classification. 
This enhanced transformer-based strategy improves 
upon the shortcomings of CNN methods by employing 
the TL technique [21]. The optimal cutoff for removing 
the ROI from mammography was determined using the 
SAM approach. To detect BC in the INbreast dataset, we 
successfully modified the design at the bottom of the PTr 
method. Throughout the model, spatial reduction atten-
tion (SRA) progressively decreased the physical dimen-
sions of its features. Assigning an embedding location 
to each transformer component further strengthens the 
concept of order. BC can be classified from INbreast 
images by successfully modifying the architecture of the 
bottom layer of PTr. Therefore, the primary insights of 
this research are the following: 

1. We successfully changed the design in the bottom 
layer of the PTr using the TL approach to identify BC 
in mammography images.
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2. We preprocessed the data and segmented the images 
using the SAM model to create a more flexible and 
better-performing model.

3. To contrast the suggested model’s performance in 
binary classification tasks, ViT and two DL models 
EfficientNetB7 and MobileNetV3 were used.

“Related works” section is a review of the proposed lit-
erature, and “Materials and methods”  section presents 
the methodology. “Materials and methods”  section is 
further divided into five subsections: image data pre-
processing, the architecture of the SAM model, hyper-
parameter tuning for SAM, data splitting, the proposed 
method, and an enhanced pyramid transformer using the 
TL approach. “Experimental evaluation and results” sec-
tion represents a comprehensive evaluation of the execu-
tion and outcomes, which are also divided into six parts: 
implementation details, environment specifications, 
dataset description, performance evaluation metrics, 
segmentation results using SAM, results analysis employ-
ing the proposed architecture, and the computational 
complexity of all evaluated models. Finally, the paper is 
concluded in “Conclusion and future work” section with 
recommendations for further study.

Related works
Deep learning models
Maqsood et  al. [22] suggested a DL approach called 
transferable texture CNN which can detect the early 
stages of BC in screening images taken by mammography 
detectors. After applying this method to the mammogra-
phy, INbreast, and MIAS datasets, the following results 
were obtained: accuracy of 99.08%, 96.82%, and 96.57%, 
respectively. Ragab et al. [23] classified benign and malig-
nant tissues using mammograms. This study proposed 
two segmentation methods. Manual determination of the 
ROI is required for the first strategy, whereas the thresh-
old with region-based approach called DCNN-SVM-
AlexNet is utilized for the second approach. The results 
showed promise for the second segmentation method, 
SVM with a linear kernel function, compared to the first 
method using the mammography dataset. The accuracy 
was 80.5%, and the F1 score, AUC, sensitivity, specificity, 
and precision were 81.5%, 88%, 77.4%, and 84.2%, respec-
tively. Salama et al. [24] demonstrated a novel technique 
for the segmentation and classification of BC images and 
various models have been utilized to classify benign and 
malignant tissues using the mammography, CBIS-mam-
mography, and MIAS datasets. These models included 
InceptionV3, DenseNet121, MobileNetV2, VGG16, 
and ResNet50. By employing the mammography data-
base, the proposed method of implementing data aug-
mentation using InceptionV3 and a customized U-Net 

framework yielded optimal results. This method achieved 
98.87% accuracy, 98.98% sensitivity, 98.88% AUC, 98.79% 
precision, 97.99% F1 score, and 1.2134 processing times 
with the mammography datasets. Shen et  al. [25] dem-
onstrated several DL models, including Resnet50 and 
VGG16 for accurate detection of BC. When tested 
against pre-existing approaches on the CBIS-mam-
mography dataset, this neural network approach for 
screening mammography classifications delivered supe-
rior results. After 198 epochs, the Resnet50 model has 
reached the highest accuracy of 97%. Murtaza et al. [26] 
presented a comprehensive review of the classification, 
segmentation, and grading of a wide variety of cancer 
forms, including BC, using conventional ML techniques 
and hand-engineered characteristics. This classification 
was accomplished using medical imaging multimodali-
ties and cutting-edge artificial deep neural network tech-
niques. To reduce the number of inconsistencies that are 
present in BC images, pre-processing strategies such as 
image normalization, scaling, and augmentation are uti-
lized. Park et al. [27] suggested an artificial intelligence-
based CAD for mammography screenings to improve 
cancer diagnosis. A total of 204 cases: 137 were deter-
mined to be truly negative, 33 to have mild symptoms, 
and 34 to have missed cancer. AI-CAD exhibited sensi-
tivity, specificity, and diagnostic accuracy rates of 84.7%, 
91.5%, and 86.3% for diagnostic mammograms, and 
67.2%, 91.2%, and 83.38% for previous mammograms, 
respectively. Lotter et al. [28] utilized a DL method that 
works well with both strongly and poorly labeled data 
by training it in stages and maintaining its ability to be 
understood based on the location. The fact that the sys-
tem was trained on a diverse range of sources, including 
a total of five datasets, is one of the reasons for its suc-
cessful generalization. Through the application of DL, 
these findings demonstrate significant potential for the 
diagnosis of cancer in its early stages and enhancement 
of access to mammography screening programs. Dar 
et  al. [29] demonstrated a significant potential for early 
cancer diagnosis and enhanced access to screening mam-
mography through the application of DL. They employed 
multiple DL methods to identify and classify BC through 
diverse imaging modalities such as histopathology, mam-
mography, thermography, PET/CT, MRI, and ultrasound. 
Frazer et al. [30] used the BreastScreen Victoria dataset, 
which was labeled by breast imaging radiologists and val-
idated by surgical histopathology to detect the presence 
of BC based on DL strategies. Three DL models were 
used in this study: EfficientNetB6, NASNetLarge, and 
Inception-ResNet-V2. Additionally, two global + local 
techniques, GL1 and GL2, were employed, with GL1 uti-
lizing distinct models and GL2 utilizing the same model 
with various hyper-parameter settings. Based on 349 test 
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samples and 930 test images, the best assessment result 
produced from GL2-ResNet22/18-Setting1 was an ACC 
of 0.8178 [95% CI 0.785, 0.850], and AUC of 0.8979 [95% 
CI 0.873, 0.923]. Li et al. [31] suggested a two-view model 
for classifying mammograms as either benign or malig-
nant using CNN and recurrent neural networks (RNNs). 
Mammogram breast mass features were extracted from 
craniocaudal and mediolateral oblique (MLO) views 
using two modified ResNets that constitute the model. 
After applying the suggested two-view neural network 
(TV-NN) framework to the mammography database, the 
model generated a recall of 94.1%, an accuracy of 94.7%, 
and a maximum AUC of 0.968. Al-Masni et al. [32] rep-
resented a CAD architecture that uses the You Only 
Look Once (YOLO) principle to detect breast masses 
and categorize cancers. Using convolutional layers and 
fully connected neural networks, the proposed CAD 
system can detect the exact position of a mass and dif-
ferentiate between benign and malignant tumors using 
an ROI-based CNN technique. Finally, the proposed 
CNN approach achieved 99.7 % accuracy for mass loca-
tion detection, 97.0 % accuracy for classifying benign 
from malignant lesions, and an AUC value of 0.97 on 
the mammography dataset. Das et  al. [33] compared 
shallow and deep CNN and presented a pre-trained 
approach that can categorize full mammogram images 
as either benign or malignant. The output knowledge is 
then input into three distinct types of shallow CNNs that 
vary in their representation. Two additional methods uti-
lize fine-tuned transfer learning to feed the same set of 
images into pre-trained CNNs: VGG19, MobileNet-v2, 
ResNet50, Xception, Inceptionv3, and Inception-ResNet-
v2. The experiment with two datasets revealed that the 
CBIS-DDSM dataset had an accuracy of 80.4%, while 
the INbreast dataset had an accuracy of 89.2%, 87.8%, 
and 95.1%. To segment mammography images, Saffari 
et  al. [34] presented the Full-Resolution Convolutional 
Network (FrCN), an innovative segmentation architec-
ture. Furthermore, the researchers used three conven-
tional DL models-ResNet-50, InceptionResNet-V2, and 
a regular feedforward CNN-to categorize the identified 
and segmented breast lesions that are either benign or 
cancerous. With mammography images of the INbreast 
database, the FrCN-based breast lesion segmentation 
approach obtained impressive results, including a Dice 
coefficient of 92.69%, an overall accuracy of 92.97%, a 
Matthews Correlation Coefficient (MCC) of 85.93%, and 
a Jaccard similarity coefficient of 86.37%. Hama et al. [35] 
proposed a smart computer-based BC detection system 
that makes use of digital mammography and the trans-
fer learning model to reduce the occurrence of these 
mistakes. Two steps make up the suggested method. 
First, they fine-tune the pre-trained Mask R-CNN model 

employing the COCO dataset to identify and segment 
breast lesions. The segmented lesions are then analyzed 
using various convolutional deep-learning models to 
determine whether they are benign or malignant. These 
models include ResNet101, VGG16, ResNet34, VGG19, 
DenseNet121, and AlexNet. On the INbreast dataset, the 
DenseNet121 model attained a breast lesion classification 
accuracy of 99.44%, while the average precision for the 
lesion detection and segmentation phases was 96.26%.

Transformer models
Few studies have explored the potential of ViT in mam-
mography classification for early BC detection. Jaehwan 
et al. [36] proposed a transformer-based DL system that 
can normalize mammograms and account for inter-
reader variability in the grading. They suggested a 
method that predicts the input mammography normali-
zation parameters using a photometric transformer net-
work (PTN) as a programmable normalization module. 
With easy integration with the main prediction network, 
it is possible to simultaneously learn optimal normaliza-
tion and density grades. Comes et  al. [37] suggested a 
model to build a clinical support tool for predicting the 
pathological complete response to nonadjacent chemo-
therapy early on. To start, in order to avoid manual fea-
ture extraction, a pre-trained CNN named AlexNET was 
employed to automatically extract low-level features that 
were associated with the image’s local structure. The next 
step was to identify the most stable features and utilize 
them to build a support vector machine(SVM) classifier. 
Finally, the suggested model generated an accuracy of 
91.4% for the fine-tuning dataset and 92.3% for the inde-
pendent test by incorporating the optimal features 
extracted from both early treatment, and pre-treatment 
tests with certain clinical features, progesterone 
receptor(PgR), human epidermal growth factor receptor 
2(HER2), and molecular subtype. The AUC value was 
0.93 on the former and 0.90 on the latter. In addition, Van 
et  al. [38] proposed and tested a new cross-view trans-
former method that was both token-based and pixel-wise 
using two publicly available mammography datasets. To 
avoid the need for pixel-by-pixel correspondence, a 
method that relies on transformers to combine views at 
the feature map level is suggested. In contrast to the tra-
ditional method of processing data within a single 
sequence using conventional transformers, they 
employed cross-view attention to transfer information 
across views. In another study, Tummala et al. [39] rec-
ommended a combined classifier of four swin trans-
former models for binary classification and eight-class 
classification using 7909 histopathological images 
obtained from the BreaKHis dataset at numerous zoom 
factors. The ensemble of Swin transformers surpassed 
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prior research for both eight-class and two-class BC clas-
sifications. The ensemble achieved 96.0% testing accu-
racy for eight-class classification, and for two-class 
classification, the testing accuracy is 99.6% without 
employing any pre-processing or augmentation methods. 
Khamparia et  al. [40] also developed a hybrid transfer-
learning framework that combines a modified Visual 
Geometry Group (VGG) and ImageNet model for detect-
ing BC using both two-dimensional and three-dimen-
sional mammography images. According to the 
experimental findings, the proposed hybrid transfer 
learning model has an accuracy of 94.3% and an AUC 
value of 93.3%, which are higher than those of the other 
examined CNNs. Garrucho et  al. [41] developed eight 
cutting-edge identification methods, one of which was 
based on a transformer approach, and tested them in five 
previously unexplored areas to determine the effective-
ness of generalizing mammography models. When it 
came to generalizing the mammography domain, they 
found that deformable-detection transformer (DETR) 
models based on transformers were the most reliable and 
effective. Wang et al. [42] also applied a proprietary semi-
supervised learning framework, the integration of a ViT 
with an adaptive token sampler (ATS), and a consistency 
training (CT) model to classify BC using two separate 
datasets containing ultrasound and histology images. By 
comparing it with previous studies, the proposed model 
outperforms it in every one of the four metrics: accuracy 
98.12%, recall 98.65%, precision 98.17%, and F1 factor 
98.41%. In a different study, Dey et  al. [43] presented a 
strategy that made use of transfer learning for detecting 
BC from the mammogram images. This approach utilizes 
the DenseNet121 pre-trained model and is implemented 
on the DMR-IR dataset. Furthermore, edge information 
was extracted from the thermal breast images using two 
detectors: Prewitt and Roberts. The experimental find-
ings demonstrate that the proposed approach achieves a 
classification accuracy of 98.80%, which is higher than 
that of any other model. Boumaraf et al. [44] presented a 
novel transfer-learning-based automated approach for 
BC identification utilizing histopathological images. This 
method performs well for both eight-class and magnifica-
tion-independent (MI) binary classification. To make the 
knowledge gained from ImageNet images more task-spe-
cific while freezing the remaining initial residual blocks, 
they presented a transfer learning approach that 
depended on a block-wise fine-tuning technique. Further 
enhancement of the scalability of the suggested method 
was achieved by utilizing a GCN derived from the data 
values of the target and three-fold data augmentation. 
The results demonstrated the efficacy of the suggested 
approach, as the MD binary classification accuracy 
ranged between 98.08% to 99.25%, and the MD 

eight-class classification accuracy ranged between 89.56% 
to 94.49%. Additionally, the accuracies for the eight-class 
and binary classifications in the MI task were obtained as 
92.03% and 98.42%, respectively. The current diagnostic 
building process for CADs often ignores all of the anno-
tations in a mammography image; Chougrad et  al. [45] 
proposed a technique that incorporates all of these com-
ments to construct a CAD system that can provide a 
thorough BC diagnosis. The proposed VGG-FTED model 
performed well across all four benchmark datasets, with 
AUC values of 0.93, 0.89, 0.86, and 0.94 respectively. Sho-
bayo et  al. [46] developed a method for automated BC 
detection in mammography by using a combination of 
ViT and several pre-trained CNNs, ResNet50, and 
VGG16. They also use ViTBase, a custom model archi-
tecture, to identify BC mammograms as benign or malig-
nant. Finally, they compared DL models based on ViT 
with those based on CNNs to find the best one for cor-
rectly categorizing mammography images of BC. With an 
accuracy of 99.9% and a precision of 99.8%, the Swin 
transformer demonstrates exceptional performance. 
Khan et al. [47] presented a TE-inspired deepgene trans-
former. It incorporates one-dimensional (1D) convolu-
tion layers along with a multi-head self-attention 
mechanism to create a hybrid architecture. This hybrid 
architecture was designed to analyze high-dimensional 
gene expression datasets and to determine whether the 
representation learned from the attention mechanism 
can surpass existing approaches. The comparative inves-
tigation demonstrated that the suggested DeepGene 
Transformer beat the existing conventional and state-of-
the-art classification methods. This indicates that the 
DeepGene Transformer can be considered an effective 
method for classifying cancer and its various aspects. Su 
et al. [48] suggested a dual-shot architectural model that 
combines the YOLO and LOGO architectures to identify 
and segment masses at the same time. In the first step, 
they used YoloV5L6, the most advanced object detection 
framework, to find and crop the breast mass in high-res-
olution mammograms. In the second step, they changed 
the LOGO training strategy to improve both training effi-
ciency and segmentation performance. They achieved 
this by training the entire image and cropping it sepa-
rately using the global and local transformer branches. 
They reached the ultimate segmentation choice by merg-
ing the two branches. The proposed YOLO-LOGO 
model was tested employing two separate mammography 
datasets, INbreast and CBIS-DDSM. Prior research has 
not been able to match the performance of the suggested 
model. It achieves a mean average mass detection accu-
racy of 65.0% on the CBIS-DDSM dataset, as well as a 
rate of true positives of 95.7%. Also, the approach 
obtained an F1 score of 74.5% as well as an IoU score of 
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64.0% in mass segmentation. In a different dataset called 
INBreast, they also got the same results.

We found that the segmentation model on the mam-
mography dataset was not correctly applied in a previ-
ous study. Segmented images were incorporated into 
the training stage. In addition, no one has employed 
an enhanced transformer model, which would have 
improved the precision of the procedure. For mammo-
gram classification at an early stage in the affected region, 
our proposed methodology achieves greater precision.

Materials and methods
This section describes our proposed approach for cor-
rectly identifying the two categories of benign and malig-
nant masses in the BC dataset. The main steps of the 
process are shown in Fig.  1. Our methodology, which 
consists of evaluating the PTr model for mammogram 
image analysis and comparing its performance via a seg-
mentation technique with well-known CNN models. We 
chose PTr and ViT [49] as the transformer model for this 
study, and compared its performance with other popular 
pre-trained models, such as EfficientNetB7 and Mobile-
NetV3. To maximize the performance of the models, pre-
processing, and image data segmentation [50] processes 
were applied to the dataset prior to model training on 
these architectures. These steps are necessary to provide 

reliable and accurate classification of BC using mammog-
raphy dataset.

Image data preprocessing
Data Preprocessing enhances the performance of ML 
models. It helps with feature improvement, noise reduc-
tion, and normalization and standardization of pixel val-
ues, all of which help the model become more broadly 
applicable. Preprocessing also makes it easier to uncover 
important patterns from the images to make prediction 
accurately. It also aids in overcoming challenges such as 
class disparities. This collection contained 3,878 images, 
not all of which are properly focused. There are also 
many images of different sized. We applied a cropping 
and resizing technique that reduces the image’s size to 
224 × 224 pixels while maintaining any noteworthy dis-
ease areas to guarantee consistency. This size works for 
every model employed in the process.

Architecture of segmentation anything model (SAM)
SAM [51] begins by converting the concept of a prompt 
from natural language processing (NLP) [52] to seg-
mentation. A prompt can be any information that indi-
cates what to segment in an image, such as a group of 
foreground or background points, a rough box or mask 
or any combination of these. A natural pre-training 

Fig. 1 The suggested methods entail the following steps: (i) Loading training data (ii) Preprocessing images (iii) SAM-based segmentation 
of the preprocessed images (iv) Training dataset using the Transformer and CNN models (v) Predict mammograms class (vi) Best Model evaluation
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technique that mimics a series of prompts for every train-
ing sample and contrasts the model’s mask predictions 
with the actual truth is suggested by the promptable seg-
mentation task. In Fig. 2 illustrates the architecture of the 
SAM model. Also an explanation of the blocks the SAM 
architecture, including important settings and param-
eters inside these vital parts have described in Table  1. 
It provides a detailed summary of this data, including an 
in-depth examination of the operators, strides, channels, 
and associated layers.

Image encoder, The pretrained ViT, which has been 
slightly modified to handle precise supplies, is used by 
the image encoder. The image encoder can be applied 
before activating the model; it executes once for each 
image. The ViT-H32 variation, with eight equally spaced 
global attention blocks and a 30 × 30 attention window 
[53], is specifically used. An embedding of the input 
image that has been downsampled by a factor of 32 is the 
image encoder’s results.

Prompt encoder, Depending on the type of prompt, 
the prompt encoder uses a different encoding process 
to turn the prompts into vectors with features. Both tiny 

points, boxes with bounds, the text or masks prompts are 
possible.

Mask decoder, The image embedding, prompt embed-
ding, and output token are successfully mapped to a 
mask via the Transformer-based two-layer decoding that 
makes up the mask decoder [54]. The decoder compo-
nent updates all embeddings by using self-attention and 
cross-attention in two directions. Following the execu-
tion of two blocks, the output identifiers are transformed 
into the Multilayer Perceptron (MLP) of the adaptable 

Fig. 2 The basic component of an invariant mask (BCIM) can be used to fuse image incorporation and mask-embedded data, resulting in a mask. 
This can be achieved by using the SAM in conjunction with an appropriate and efficient IoU module (AEIM) to construct mask embeddings 
in response to prompts

Table 1 An explanation of the blocks the SAM architecture, 
including important settings and parameters inside these vital 
parts

Block Operator Strides Channel Layer

SERes Conv, 64× 64 1 32 256

SAM encoder Conv,64× 64 1 32 1024

SERes + Unsampling Conv, 128× 128 2 64 128

Conv, 256× 256 2 16 64
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linear method, the mask chances for each image are com-
puted, and the visual consolidation is unsampled.

Improving robustness over various prompts, in 
prompt mode, the final segmentation result is solely 
dependent on the prompt, and the model is still more 
sensitive to inaccurate prompts.Partitioning the SAM 
mask decoder [55] into two components was the goal: 
the efficient and suitable IoU module (AEIM), which cre-
ates mask embeddings based on the given prompt. Apart 
from the basic component of the invariant mask (BCIM), 
which creates the mask by fusing the mask embeddings 
from the AEIM with the image-embedded data from the 
image encoder. Employing a cross-attention transformer 
to calculate the variance of SAM predictions and a variety 
of multibox prompts to produce unique predictions. This 
model can generate unresolved maps that show where 
segmentation is challenging. These maps enable further 
clinical investigation and offer vital insight regarding pos-
sible segmentation errors.

Hyperparameter tuning for segmentation anything model
We performed an investigation to fine-tune the SAM’s 
hyperparameters for the segmentation task. We exam-
ined CNN’s decay, optimizer, learning rate, dropout, 
batch size, stride, and padding, among other param-
eters. The purpose of this experiment was to evaluate 
the effects of various factors on our model. The hyper-
parameter-improving experiment of the SAM model is 
presented in Table 2. We used the decay of 0.0001 and a 
learning rate of 2e − 4 which is suitable for mammogra-
phy segmentation task. In addition to the batch size of 64 
stride of 1× 1 and the dropout rate was 0.2. The output 
of modified SAM model is a significance contribution in 
this research.

Dataset splitting
The procedure for dividing a dataset is crucial for main-
taining its state of balance. Before beginning the training 
process, we separated the data into training and testing 

sets. The ratios are 85% and 15% for training and testing 
of the full dataset, respectively. Consequently, 415 images 
were used for the model’s testing while 2355 images from 
the complete dataset were used for training.

Proposed method
In this work, we used transformer-based CNN tech-
nique to identify benign and malignant tissues in mam-
mograms. To classifying mammograms, an improved 
PTr model that used TL approach [24] was employed 
in this study. We implemented a successful architecture 
modification at this bottom layer of PTr to identify BC 
from mammography images. We preprocessed and seg-
mented the data before applying the models in training 
mode. Two of the four models we implemented Effi-
cientNetB7 [56] and MobileNetV3 [57] are pre-trained 
models. Other variants of transformer model ViT were 
also employed in this study, which achieved higher accu-
racy in computer vision tasks. We used the mammogra-
phy images to train all of the models to identify the top 
model, which will aid in more accurate illness prediction.

Pyramid Transformer (PTr)
In computer vision, a recent development that puts CNN 
architectures to challenge is the transformer model [58]. 
Utilizing hierarchical structures, PTr gathers informa-
tion at several levels and is optimized for image classifi-
cation applications. The study [49] first presented the vit 
architecture of a transformer based. PTr’s primary job is 
to separate the input image into distinct local windows 
at skewed frame angles. The framework can accurately 
gather data at both the regional and global levels because 
of the separate handling of each frame. The transformer 
layers in the model’s design are stacked hierarchi-
cally, allowing it to gather data at different geographic 
resolutions.

PTr primary surface: In this section the basic con-
cept of PTr [59] is to break down the given image into 
distinct local frames of varying sizes, or what are known 
as “skewed frames”. Because every aperture is treated 
independently it can gather local and global data. Fig-
ure 3 describes a thorough description of the PTr design 
structure for the foundation version of the TL approach. 
The dimension of the origin image was set at 224 × 224 
because that was the size that PTr. which had been 
trained previously and optimized needed. Additionally, a 
given RGB image with source parameters of H × W × 3 
was divided into smaller sections with lengths equal to 3 
× 3, starting with the first patch measurement in the orig-
inal approach. Applying several PTr sections with modi-
fied self-attention to these linear patch insertions of size 
C preserves the number of tokens at approximately H3  × 
W
3 .

Table 2 Experiment to tune hyperparameters for segmentation 
anything model

Parameter Search area Chosen value

Decay [ 0.001, 0.0001] 0.0001

Optimizer [Adam, RMSprop] Adam

Learning rate [1e-4, 2e-4] 2e-4

Dropout [0.2, 0.1] 0.2

Batch size [32,64,128,256] 64

Stride [1× 1, 2× 2] 1× 1

Padding [Same, Valid] Same
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Second step: The patch fusion layer concatenates the 
features of each pair of contiguous two-by-two patches, 
and the 6C spatial concatenated characteristics are sub-
jected to a linear level. Consequently, the number of dif-
ferent patches multiplied, and 3C is the final depth of the 
nonlinear layer. Additionally, PTr modules are used to 
transform the features, and the number of Stage 2 out-
come patches was maintained at H9  × W9 .

PTr bottom level: PTr uses SRA, a type of individual 
attention, to calculate the linear magnitude of the neural 
network. A decrease in both keys and values is its defin-
ing feature [60]. The SRA gradually reduced the physi-
cal proportions of its features throughout the model. 

This further reinforced the idea of order by giving each 
transformer component an embedding position. In this 
bottom layer of PTr, we successfully modified the archi-
tecture to detect BC from mammogram images.

Here we utilized an enhanced PTr to train the mam-
mography using TL [61] approach. The objective was 
to use transformers from the big natural image collec-
tion to classify mammograms into two groups: benign 
and malignant images. To do this, we removed the pre-
trained prediction head and installed a D × K  feedfor-
ward layer, where K = 4 represents the entire number 
of classes downwards. Here, we used TL to improve [62] 
the target function ft(.) learning in the desired domain 

Fig. 3 The architecture of the pyramid transformer (PTr) using TL approach is represented by the letters H, W, C, Pi, i-th stage patch size, F, feature 
map, Li , transformer-encoder layer, and SRA, spatial-reduction attention



Page 10 of 18Kumar Saha et al. BMC Medical Imaging          (2024) 24:334 

Dt by applying knowledge gathered from the learning 
task Ts and the original domain Ds . There are m samples 
for training ( (x1 y1)..., (xi yi ) ....,(xm ym )) in the ImageNet 
dataset, where xi and yi present the ith input and label, 
respectively. Subsequently, TL was performed to create 
W1 using the weights of the ImageNet pretrained trans-
former W0 as the base, where b is the bias. Here we have 
mentioned the softmax output function in Eq. (1) and the 
objective function of TL approach is described in Eq. (2).

Experimental evaluation and results
Implementation details
Using the Adam optimizer and a learning rate of 0.001, 
we trained our models across 40 epochs. An exponen-
tial decline and batch count of 16 were used for training. 
We used an 8.50:1.50 ratio to divide the data into train-
ing and testing groups, respectively. GELU was employed 
as a means of activation with an L2 regularizer for PTr 
models. For the CNNs, ReLu was employed in conjunc-
tion with an L2 regularizer. Identical parameter values 
were employed in all experiments, especially the com-
parison with the recommended approach, to avoid bias 
in the outcomes.

Environment specifications
Considerable computing power required for image 
analysis and classification can be provided by GPUs [63] 
(Graphics computing Units). A GPU installation is more 
expensive and requires more gear to support the process-
ing activity. Consequently, we trained our model on the 
Google Colab platform, which provides access to pow-
erful cloud GPUs.The configuration and specification of 
the environment we used for our research are listed in 
Table 3. Google Colab comes with a v3 TPU chip that has 
two TensorCores, available RAM of 12 GB, and 19.2 GB 

(1)Softmax output = yi,j xi,j ,w0,w1, b

(2)

J (w1, b|w0) =
−1

mn

m
∑

i=1

m
∑

j=1

yijlog
(

p
(

softmax output
))

of disc space. DL models can be trained in a large-scale 
computer environment using these criteria.

Dataset
In this research, we used the INbreast dataset [64] to 
train and evaluate our Transformer and CNN model 
based on early BC detection. A total of 7632 images of 
benign and malignant tissues were included in the data-
set. Each image had 227x227 pixels and was RGB. Due 
to the limitation of disk space in Google Colab, we used 
2770 INbreast images in this research, of which 1410 
images indicated malignant masses and 1360 scans indi-
cated benign masses. In addition, many images contain 
noise and are incorrectly focused. Figure  4 shows the 
sample images taken from the dataset. The distribution of 
the dataset is presented in Table 41.

Performance evaluation metrics
This section is considered when assessing how well the 
system’s examined trials work. A model is used to fore-
cast classifications that may be true or incorrect. There 
are four possible formats for the output that results from 
classifying data related to various classifications [65]. 
Firstly, true positive (Tp) and true negative (Tn) indicate 
that all predictions are accurate, regardless of whether 
they are true or wrong.However, there may be an addi-
tional circumstance in which the prediction holds true 
in principle but not in practice, or vice versa. False posi-
tive (Fp) and false negative (Fn) terms are used to describe 
these two situations. In addition, we may be able to ascer-
tain our models’ classification performance by computing 
more exact metrics from the confusion matrix.

Accuracy: This was defined as the entire test session 
and the size of the correctly identified samples.

Precision: The number of expected positive samples 
and tests that have been rightfully declared positive are 
expressed.

Recall: Recall is the number of positive samples that 
might be appropriately classified as positive and legiti-
mately identified.

(3)Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

(4)Precision =
Tp

Tp + Fp

(5)Recall =
Tp

Tp + Fn

Table 3 Parameters and environment requirements

Environment Parameters

Platform Google Colab

Language version Python 3.0

Graphics card TPU, 12.7 GB

Available RAM 12 GB

Disk space 19.2 GB

1 https://data.mendeley.com/datasets/ywsbh3ndr8/2
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F1 Score: The F1 score results from a linear combina-
tion of accuracy and recall, acting as a single assessment.

To evaluate models for predictions, accuracy, and 
F1-score might not always be sufficient. As a result, the 
evaluation procedure uses the receiver operating charac-
teristics (ROC) curve as a secondary criterion. A curve 
known as the ROC curve yields the AUC. The ROC was 
determined by comparing the true positive rate (TPR) 
with the false positive rate (FPR). This formula deter-
mines the FPR and the recall is the sole part of the TPR.

(6)F1 Score =
2 · Precision · Recall

Precision+ Recall

(7)FPR =
Fp

Fp + Tn

Findings of SAM model
We individually labeled the diseases in 300 images of 
each class that we tracked. Appropriately annotated 
images were used to train the SAM model [66]. Using the 
Cvat website https:// www. cvat. ai/, we manually anno-
tated 300 images of each class. We then used the SAM 
model to train the images after annotation to more accu-
rately identify the ground truth mask. The model success-
fully determined the ground truth for each image after 
the training. Next, we used all the segmented images to 
train the proposed Transformer and CNN models. Fig-
ure  5 shows the segmentation results. Figure  5a define 
the imput images from mammogram dataset. The images 
were then trained using the SAM model shown in Fig. 5b. 
Finally, we obtained the truth mask from the segmented 
images as shown in Fig.  5c. The training and validation 
accuracy of the SAM model has been shown in Fig.  6a. 
The validation accuracy of this model was 97.5%, which 
was promising. Figure 6b shows the training and valida-
tion loss of the SAM model. We observed that the train-
ing loss has decreased as the number of epochs increased. 
The outcome demonstrates that the model can effectively 
emphasize the mammography cancer tissues portion of 
the images and mask all the superfluous pixels.

The training and validation outcomes of the SAM 
model are presented in Table 5. Out of the twenty epochs 
utilized to train and validate the SAM model in this 

Fig. 4 Sample images of the INbreast dataset used in this study

Table 4 Distribution of the dataset (INbreast) using in this 
research

Class Training images Testing images Total images

Benign masses 1156 204 1360

Malignant masses 1199 211 1410

Total 2355 415 2770

https://www.cvat.ai/
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Fig. 5 Segmented images using trained SAM model. a Input images (b) Trained images using SAM model (c) Find Ground truth mask

Fig. 6 Segmentation results using the SAM model, (a) Training accuracy and validation Accuracy, and (b) Training loss and validation loss



Page 13 of 18Kumar Saha et al. BMC Medical Imaging          (2024) 24:334  

study, we highlighted the results from the last ten. With a 
minimal loss of 0.20%, we achieved the highest validation 
accuracy of 99.81% in the twelve-number epoch. After 
completing twenty epochs, the SAM model achieves a 
higher validation accuracy of 97.50%, which is an opti-
mistic finding in this study.

Result analysis
Here, we provide the findings from all the evaluated mod-
els used in this research. The PTr design was proposed 
to examine the resilience of the models. Furthermore, 
this study used ViT, EfficientNetB7 and MobileNetV3 to 
assess and compare the efficacy of our recommendations. 
Finally, we provide a performance analysis of the pro-
posed architectures, complete with multiple graphs and 
charts.

Classifiers performance matrix of suggested models
The classifier performance of the model is displayed in a 
table-like in a similar manner. Table  6 presents the cat-
egorizing outcomes of our proposed systems, PTr, Vit, 
EfficientNetB7, and MobileNetV3, which utilize data 
segmentation techniques in the mammography dataset. 
Table  6 shows that PTr performs exceptionally well in 
mammography classification, which is a significant find-
ing of the present study.

In either case, it shows the forecasts outcome using 
the test set data. The actual class is shown in rows, while 
the forecasting for each class is shown in columns. Con-
versely, the inclination of the matrix shows how many 
images were successfully identified. The confusion matrix 
of the two DL models and the proposed PTr method uti-
lized in this architecture is shown in Fig. 7. The confusion 
matrix is shown in Fig.  7a EfficientNetB7, b Mobile-
NetV3, and c proposed PTr models generated for the 

binary classification. Consequently, it is clear that the 
proposed research has created a high level of catego-
rization accuracy. Compared with the DL models and 
all other previously proposed models, PTr performed 
better. An effective method for classifying mammog-
raphy images is the transformer-based model. Despite 
its exceptional performance, the metrics of this model 
were lower than those of the Transformer system for the 
INbreast dataset.

Classifier parameter results
The ROC shown in Fig.  8, is a supplementary compli-
ance indicator for the presented models. The highest 
documented micro average AUC score for the PTr model 
is 0.998 with 0.988, and the EfficientNetB7 model pos-
sesses the second-most nearly ROC. In our proposed 
methodology, the proposed model exhibited exceptional 
performance.

The comprehensive report of classification consider-
ing the mean accuracy, recall, and F-1 score for each 
approach is shown in Table 7. In this instance, PTr out-
performed every other model that we explored. A preci-
sion of 99.97% indicated exceptional success using this 
method.

 Prediction accuracy and loss
By applying our proposed techniques, this section dis-
plays the accuracy and loss of each of the four mod-
els. The concepts of accuracy and loss are presented in 
Table 8 for the evaluation and validation of the dataset. 
With a 0.17% loss, the PTr model using the data seg-
mentation approach exhibited the best testing accuracy, 
of 99.87%. At 99.98%, PTr’s highest accuracy is achieved 
while verifying the data. Furthermore, it proved to be 
incredibly accurate in testing and validation. Mobile-
NetV3 had the lowest test accuracy of 94.0% and highest 
loss score of 1.23% when compared to the other methods.

A line chart showing both the precision and loss of the 
40 epochs of the PTr and ViT models is shown in Fig. 9. 
Figure  9a illustrates the relatively high consistency and 
reliability of the PTr designs. Figure  9b shows the loss 
and accuracy for the ViT Model. Similar to PTr, the pre-
sent study achieved high and stable accuracy scores for 
every epoch by employing the segmentation approach.

Table  9 also compares the most recent research on 
mammography dataset using segmentation techniques 
in several publications on the prediction and classifi-
cation of mammograms. Regarding the AUC values, 
this research demonstrated that our transformer-based 
model with segmentation techniques using the TL 
approach performed better than any prior study. Our 
proposed model performed better in this specific section 
than in any other study.

Table 5 The segmented results for the last ten epochs (11–20). 
Using the SAM model, we presented the training accuracy, 
validation accuracy, and validation loss

Epoch number Training accuracy 
%

Validation 
accuracy %

Validation 
loss %

11 98.86 99.53 0.26

12 99.93 99.81 0.20

13 99.96 99.00 0.94

14 99.99 99.27 0.87

15 99.99 97.28 1.89

16 99.99 98.40 1.21

17 99.99 98.92 1.05

18 99.99 99.29 0.86

19 99.99 99.65 0.28

20 99.99 97.86 1.74
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Fig. 7 Confusion matrix for correct and incorrect predictions made during the testing phase (a) EfficientNetB7, (b) MobileNetV3, and c proposed 
PTr methods on the Inbreast dataset

Fig. 8 ROC curve for all evaluated methods in mammography classification using segmentation techniques. Here are the micro areas 
under the ROC curve for the PTr, ViT, EfficientNetB7 and MobileNetV3 representations
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Analysis of computational complexity
An essential trade-off between computing efficiency and 
model complexity is highlighted by comparing the pro-
posed PTr with all models assessed in this study. PTr had 

fewer layers than the other DL models except for Mobile-
NetV3. Owing to their layers, they are intrinsically more 
complicated and result in more parameters. Table  10 
illustrates that while MobileNetV3 has 28 layers and PTr 
has only 16 layers, these layers include a substantial num-
ber of parameters (21.5 million and 13 million, respec-
tively) because of their architecture. They required less 
training time than the other models used in our research.

It is necessary to highlight that the PTr models per-
formed exceptionally well in this study and required 
less computational power. As a result, there is a conflict 
between processing power and model performance with 
other DL models. The resultant compromise must be 
carefully considered by researchers and practitioners in 
light of their unique needs and limitations.

Conclusion and future work
Researchers worldwide are currently developing meth-
ods for screening BC patients at an early stage to mini-
mize the high death rate associated with BC in women. 
Therefore, early detection tools for BC should be pre-
cise and cost-efficient. For that reason, researchers 

Fig. 9 Training loss and accuracy of the transformer models used in this research, (a) Proposed pyramid transformer method and (b) Vision 
transformer model

Table 6 Class-wise classification results for PTr, ViT, 
EfficientNetB7, and MobileNetV3. The F1-score, Precision, 
and Recall of the Transformer and CNN models using data 
segmentation approaches, as well as the evaluation metrics 
values for each class, are displayed

Model Class Recall % Precision % F1-score %

PTr Benign 99.96 99.00 99.95

Malignant 99.00 99.98 99.99

ViT Benign 99.00 99.00 99.00

Malignant 98.00 99.00 99.00

EfficientNetB7 Benign 98.00 92.00 95.00

Malignant 92.00 99.00 95.00

MobileNetV3 Benign 95.00 95.00 95.00

Malignant 94.00 94.00 94.00

Table 7 Extensive report on classification using segmentation 
techniques. (The models PTr, ViT, EfficientNetB7, and MoileNetV3 
were compared based on average precision, recall, and F1-score 
values)

Method Recall % Precision % F1-score %

PTr 99.98 99.97 99.97

ViT 99.00 99.00 99.00

EfficientNetB7 95.00 95.00 95.00

MobileNetV3 94.00 94.00 94.00

Table 8 Loss and accuracy for the best models

Model Accuracy % Loss%
Validation Test Train Validation

PTr 99.96 99.87 0.13 0.15

ViT 98.67 98.43 0.23 0.31

EfficientNetB7 95.00 94.22 0.68 1.19

MobileNetV3 94.00 93.16 0.78 1.27
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have focused on DL-based BC detection by using mam-
mography data. Based on current research trends, we 
present an improved transformer model using segmen-
tation techniques for BC detection and the classifica-
tion of mammography images. Accurate identification 
of BC-affected regions was achieved using data seg-
mentation approaches based on SAM architecture. In 
the segmentation challenge, the SAM model achieved 
an accuracy of 97.5%. At the bottom layer of the PTr, 
we successfully modified the architecture to distin-
guish BC from the mammography images. Finally, we 
compared our suggested PTr model to three existing 
DL models: ViT, MobileNetV3, and EfficientNetB7, and 
found that it performed better with an AUC score of 
99.98% and an accuracy of 99.96%.

However, this result is restricted to training on a sin-
gle dataset from a single source, owing to disc space 
limitations. Therefore, if we wish to draw broad con-
clusions from this experiment, it would be prudent to 
perform additional experiments using datasets from 
multiple sources. In addition, it would be beneficial for 
future research to examine the impact of different DL 
parameters on explainable artificial intelligence meth-
ods for breast mammography image classification.

Acknowledgements
The authors extend their appreciation to King Saud University for funding this 
research through Researchers Supporting Project Number (RSPD2024R890), 
King Saud University, Riyadh, Saudi Arabia.

Authors’ contributions
Methodology, D.K.S.; Software, D.K.S., T.H; Validation, D.K.S., T.H., S.A.; Formal 
analysis, D.K.S.and T.H.; Investigation, D.K.S., T.H.; Resources, D.K.S., T.H.; Writing 
- original draft, D.K.S, T.H.; Writing - review and editing, D.K.S, T.H., M.F.M. and 
M.S..; Visualization, D.K.S, T.H.; Supervision, M.F.M. and D.C.; Project administra-
tion, M.S. and S.A.; Funding acquisition, M.S. and S.A. All authors have read and 
agreed to the published version of the manuscript.

Funding
This research was supported by the Researchers Supporting Project Number 
(RSPD2024R890), King Saud University, Riyadh, Saudi Arabia.

Data availability
Data is available in a publicly accessible link: https:// data. mende ley. com/ datas 
ets/ ywsbh 3ndr8/2.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Computer Science and Engineering, Stamford University 
Bangladesh, Siddeswari, Dhaka, Bangladesh. 2 Department of Computer Sci-
ence and Engineering, Jahangirnagar University, Savar, Dhaka, Bangladesh. 
3 Department of Computer Science, College of Computer and Information 
Sciences, King Saud University, Riyadh 11543, Saudi Arabia. 4 Department 
of Computer Science, American International University-Bangladesh, Kuratoli, 
Dhaka, Bangladesh. 5 Department of Electrical Engineering and Computer Sci-
ence, Texas A&M University-Kingsville, Kingsville 78363, Texas, USA. 

Received: 29 August 2024   Accepted: 21 November 2024

References
 1. Ponraj DN, Jenifer ME, Poongodi P, Manoharan JS. A survey on the 

preprocessing techniques of mammogram for the detection of breast 
cancer. J Emerg Trends Comput Inf Sci. 2011;2(12):656–64.

Table 9 The efficacy of the suggested approach was compared with an earlier study that employed segmentation techniques to 
improve the accuracy of mammography class prediction on mammography datasets

Previous study Dataset Segmentation 
(Yes/No)

Purpose Best method AUC (score)

Garrucho et al. [39] OPTIMAM No Detection Defor-DETR 0.948

Li et al. [31] DDSM No Classification TV-NN 0.968

Al-masni et al. [32] DDSM No Detection and Classification CNN 0.97

Ragab et al. [23] DDSM Yes Detection DCNN-SVM-AlexNet 0.88

Salama et al. [24] DDSM Yes Classification InceptionV3 0.989

Khamparia et al. [38] DDSM Yes Detection Hybrid MVGG16 ImageNet 0.933

Das et al. [33] INbreast No Detection Xception N\A

Saffari et al. [34] INbreast Yes Classification CNN N\A

Hama et al. [35] INbreast Yes Detection and Classification DenseNet121 N\A

Proposed Model INbreast Yes Prediction and Classification Pyramid Transformer 0.998

Table 10 Complexity analysis of all evaluated models

Points PTr ViT MobileNetV3 EfficientNetB7

Parameters (millions) 21.5 22.8 13 30

Layers 16 33 28 347

RAM used (GB) 4.5 6.7 3.1 11.3

GPU used (GB) 6.4 10.6 6.3 13

Training time (hours) 3 4.5 2 5

https://data.mendeley.com/datasets/ywsbh3ndr8/2
https://data.mendeley.com/datasets/ywsbh3ndr8/2


Page 17 of 18Kumar Saha et al. BMC Medical Imaging          (2024) 24:334  

 2. Rosenberg PS, Barker KA, Anderson WF. Estrogen receptor status and the 
future burden of invasive and in situ breast cancers in the United States. J 
Natl Cancer Inst. 2015;107(9):djv159.

 3. Chaurasia V, Pal S, Tiwari B. Prediction of benign and malignant breast 
cancer using data mining techniques. J Algoritm Comput Technol. 
2018;12(2):119–26.

 4. Mohammed MA, Al-Khateeb B, Rashid AN, Ibrahim DA, Abd Ghani MK, 
Mostafa SA. Neural network and multi-fractal dimension features for 
breast cancer classification from ultrasound images. Comput Electr Eng. 
2018;70:871–82.

 5. Obaid OI, Mohammed MA, Ghani MKA, Mostafa A, Taha F, et al. Evaluating 
the performance of machine learning techniques in the classification of 
Wisconsin Breast Cancer. Int J Eng Technol. 2018;7(4.36):160–6.

 6. Panigrahi L, Verma K, Singh BK. Ultrasound image segmentation using a 
novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector 
field convolution. Expert Syst Appl. 2019;115:486–98.

 7. Singh VP, Srivastava S, Srivastava R. Automated and effective content-
based image retrieval for digital mammography. J X-ray Sci Technol. 
2018;26(1):29–49.

 8. Abdul Halim AA, Andrew AM, Yasin N, Abd Rahman MA, Jusoh M, 
Veeraperumal V, et al. Existing and Emerging Breast Cancer Detection 
Technologies and Its Challenges: A Review. Appl Sci. 2021;11(11):10753. 
https:// doi. org/ 10. 3390/ app11 22107 53.

 9. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. 
Annual Report to the Nation on the Status of Cancer, part I: National 
cancer statistics. Cancer. 2018;124(13):2785–800.

 10. Borchartt TB, Conci A, Lima RC, Resmini R, Sanchez A. Breast thermog-
raphy from an image processing viewpoint: a survey. Signal Process. 
2013;93(10):2785–803.

 11. Pedro RWD, Machado-Lima A, Nunes FL. Is mass classification in mammo-
grams a solved problem?-a critical review over the last 20 years. Expert 
Syst Appl. 2019;119:90–103.

 12. Kooi T, Litjens G, Van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, 
et al. Large scale deep learning for computer aided detection of mam-
mographic lesions. Med Image Anal. 2017;35:303–12.

 13. Zhong J, Wang L, Yan C, Xing Y, Hu Y, Ding D, et al. Deep learning image 
reconstruction generates thinner slice iodine maps with improved 
image quality to increase diagnostic acceptance and lesion conspicuity: 
a prospective study on abdominal dual-energy CT. BMC Med Imaging. 
2024;24(1):159.

 14. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44.

 15. Tsochatzidis L, Zagoris K, Arikidis N, Karahaliou A, Costaridou L, Pratikakis 
I. Computer-aided diagnosis of mammographic masses based on a 
supervised content-based image retrieval approach. Pattern Recognit. 
2017;71:106–17.

 16. Moitra D, Mandal RK. Automated AJCC staging of non-small cell lung 
cancer (NSCLC) using deep convolutional neural network (CNN) and 
recurrent neural network (RNN). Health Inf Sci Syst. 2019;7:1–12.

 17. Talo M, Baloglu UB, Yıldırım Ö, Acharya UR. Application of deep transfer 
learning for automated brain abnormality classification using MR images. 
Cogn Syst Res. 2019;54:176–88.

 18. Poudel P, Illanes A, Sadeghi M, Friebe M, Patch based texture classifica-
tion of thyroid ultrasound images using convolutional neural network. 
In: 2019 41st Annual international conference of the ieee engineering in 
medicine and biology society (EMBC). IEEE; 2019. pp. 5828–31.

 19. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, 
et al. An image is worth 16x16 words: Transformers for image recognition 
at scale. 2020. arXiv: 2010. 11929.

 20. Gheflati B, Rivaz H, Vision transformers for classification of breast ultra-
sound images. In: 2022 44th Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC). IEEE; 2022. pp. 480–3.

 21. Srikantamurthy MM, Rallabandi VS, Dudekula DB, Natarajan S, Park J. Clas-
sification of benign and malignant subtypes of breast cancer histopathol-
ogy imaging using hybrid CNN-LSTM based transfer learning. BMC Med 
Imaging. 2023;23(1):19.

 22. Maqsood S, Damaševičius R, Maskeliūnas R. TTCNN: A breast cancer 
detection and classification towards computer-aided diagnosis using 
digital mammography in early stages. Appl Sci. 2022;12(7):3273.

 23. Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer detection using 
deep convolutional neural networks and support vector machines. PeerJ. 
2019;7:e6201.

 24. Salama WM, Aly MH. Deep learning in mammography images seg-
mentation and classification: Automated CNN approach. Alex Eng J. 
2021;60(5):4701–9.

 25. Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep 
learning to improve breast cancer detection on screening mammogra-
phy. Sci Rep. 2019;9(1):12495.

 26. Murtaza G, Shuib L, Abdul Wahab AW, Mujtaba G, Mujtaba G, Nweke HF, 
et al. Deep learning-based breast cancer classification through medical 
imaging modalities: state of the art and research challenges. Artif Intell 
Rev. 2020;53:1655–720.

 27. Park GE, Kang BJ, Kim SH, Lee J. Retrospective review of missed cancer 
detection and its mammography findings with artificial-intelligence-
based, computer-aided diagnosis. Diagnostics. 2022;12(2):387.

 28. Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu E, et al. Robust breast 
cancer detection in mammography and digital breast tomosynthe-
sis using an annotation-efficient deep learning approach. Nat Med. 
2021;27(2):244–9.

 29. Dar RA, Rasool M, Assad A, et al. Breast cancer detection using deep 
learning: Datasets, methods, and challenges ahead. Comput Biol Med. 
2022;149:106073.

 30. Frazer HM, Qin AK, Pan H, Brotchie P. Evaluation of deep learning-based 
artificial intelligence techniques for breast cancer detection on mammo-
grams: Results from a retrospective study using a BreastScreen Victoria 
dataset. J Med Imaging Radiat Oncol. 2021;65(5):529–37.

 31. Li H, Niu J, Li D, Zhang C. Classification of breast mass in two-view mam-
mograms via deep learning. IET Image Process. 2021;15(2):454–67.

 32. Al-Masni MA, Al-Antari MA, Park JM, Gi G, Kim TY, Rivera P, et al. Simultane-
ous detection and classification of breast masses in digital mammograms 
via a deep learning YOLO-based CAD system. Comput Methods Prog 
Biomed. 2018;157:85–94.

 33. Das HS, Das A, Neog A, Mallik S, Bora K, Zhao Z. Breast cancer detection: 
Shallow convolutional neural network against deep convolutional neural 
networks based approach. Front Genet. 2023;13:1097207.

 34. Saffari N, Rashwan HA, Abdel-Nasser M, Kumar Singh V, Arenas M, 
Mangina E, et al. Fully automated breast density segmentation and clas-
sification using deep learning. Diagnostics. 2020;10(11):988.

 35. Soltani H, Amroune M, Bendib I, Haouam MY, Benkhelifa E, Fraz MM. 
Breast lesions segmentation and classification in a two-stage process 
based on Mask-RCNN and Transfer Learning. Multimed Tools Appl. 
2024;83(12):35763–80.

 36. Jaehwan L, Donggeun Y, Hyo-Eun K. Photometric transformer networks 
and label adjustment for breast density prediction. In: Proceedings of the 
IEEE/CVF International Conference on Computer Vision Workshops. Seoul: 
IEEE; 2019. p. 0.

 37. Comes MC, Fanizzi A, Bove S, Didonna V, Diotaiuti S, La Forgia D, et al. 
Early prediction of neoadjuvant chemotherapy response by exploiting a 
transfer learning approach on breast DCE-MRIs. Sci Rep. 2021;11(1):14123.

 38. Van Tulder G, Tong Y, Marchiori E. Multi-view analysis of unregistered 
medical images using cross-view transformers. In: Medical Image 
Computing and Computer Assisted Intervention–MICCAI 2021: 24th 
International Conference, Strasbourg, France, September 27–October 1, 
2021, Proceedings, Part III 24. Springer; 2021. pp. 104–113.

 39. Tummala S, Kim J, Kadry S. Breast-net: Multi-class classification of breast 
cancer from histopathological images using ensemble of swin transform-
ers. Mathematics. 2022;10(21):4109.

 40. Khamparia A, Bharati S, Podder P, Gupta D, Khanna A, Phung TK, et al. 
Diagnosis of breast cancer based on modern mammography using 
hybrid transfer learning. Multidim Syst Sign Process. 2021;32:747–65.

 41. Garrucho L, Kushibar K, Jouide S, Diaz O, Igual L, Lekadir K. Domain 
generalization in deep learning based mass detection in mammography: 
A large-scale multi-center study. Artif Intell Med. 2022;132:102386.

 42. Wang W, Jiang R, Cui N, Li Q, Yuan F, Xiao Z. Semi-supervised vision 
transformer with adaptive token sampling for breast cancer classification. 
Front Pharmacol. 2022;13:929755.

 43. Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of breast cancer 
from thermogram images by edge detection aided deep transfer learn-
ing model. Multimed Tools Appl. 2022;81(7):9331–49.

https://doi.org/10.3390/app112210753
http://arxiv.org/abs/2010.11929


Page 18 of 18Kumar Saha et al. BMC Medical Imaging          (2024) 24:334 

 44. Boumaraf S, Liu X, Zheng Z, Ma X, Ferkous C. A new transfer learning 
based approach to magnification dependent and independent classifica-
tion of breast cancer in histopathological images. Biomed Signal Process 
Control. 2021;63:102192.

 45. Chougrad H, Zouaki H, Alheyane O. Multi-label transfer learning for the 
early diagnosis of breast cancer. Neurocomputing. 2020;392:168–80.

 46. Shobayo O. Breast Cancer Classification Using Fine-Tuned SWIN Trans-
former Model on Mammographic Images. 2024.

 47. Khan A, Lee B. DeepGene transformer: Transformer for the gene 
expression-based classification of cancer subtypes. Expert Syst Appl. 
2023;226:120047.

 48. Su Y, Liu Q, Xie W, Hu P. YOLO-LOGO: A transformer-based YOLO seg-
mentation model for breast mass detection and segmentation in digital 
mammograms. Comput Methods Programs Biomed. 2022;221:106903.

 49. Saha DK, Joy AM, Majumder A. YoTransViT: A transformer and CNN 
method for predicting and classifying skin diseases using segmentation 
techniques. Inform Med Unlocked. 2024;47:101495.

 50. Müller D, Kramer F. MIScnn: a framework for medical image segmentation 
with convolutional neural networks and deep learning. BMC Med Imag-
ing. 2021;21:1–11.

 51. Osco LP, Wu Q, de Lemos EL, Gonçalves WN, Ramos APM, Li J, et al. The 
segment anything model (sam) for remote sensing applications: From 
zero to one shot. Int J Appl Earth Obs Geoinformation. 2023;124:103540.

 52. Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. 
Natural language processing systems for capturing and standardizing 
unstructured clinical information: a systematic review. J Biomed Inform. 
2017;73:14–29.

 53. Li Y, Wang D, Yuan C, Li H, Hu J. Enhancing agricultural image segmenta-
tion with an agricultural segment anything model adapter. Sensors. 
2023;23(18):7884.

 54. Zhang C, Puspitasari FD, Zheng S, Li C, Qiao Y, Kang T, et al. A survey on 
segment anything model (sam): Vision foundation model meets prompt 
engineering. 2023. arXiv preprint arXiv: 2306. 06211.

 55. Zhang Y, Shen Z. Jiao R. Segment anything model for medical image 
segmentation: Current applications and future directions. Comput Biol 
Med. 2024;171:108238.

 56. Raza R, Zulfiqar F, Khan MO, Arif M, Alvi A, Iftikhar MA, et al. Lung-EffNet: 
Lung cancer classification using EfficientNet from CT-scan images. Eng 
Appl Artif Intell. 2023;126:106902.

 57. Xi Y, Zhang W, Zhou F, Tang X, Li Z, Zeng X, et al. Transmission line fault 
detection and classification based on SA-MobileNetV3. Energy Rep. 
2023;9:955–68.

 58. Ali H, Mohsen F, Shah Z. Improving diagnosis and prognosis of lung 
cancer using vision transformers: a scoping review. BMC Med Imaging. 
2023;23(1):129.

 59. Wang W, Xie E, Li X, Fan DP, Song K, Liang D, et al. Pyramid vision trans-
former: A versatile backbone for dense prediction without convolutions. 
In: Proceedings of the IEEE/CVF international conference on computer 
vision, 2021. pp. 568–578.

 60. Ayana G, Dese K, Dereje Y, Kebede Y, Barki H, Amdissa D, et al. Vision-
transformer-based transfer learning for mammogram classification. 
Diagnostics. MDPI; 2023;13(2):178.

 61. Junzhe Z, Fuqiang J, Yupeng C, Weiyi W, Qing W. A water surface garbage 
recognition method based on transfer learning and image enhancement. 
Results Eng. 2023;19:101340.

 62. Wee CY, Liu C, Lee A, Poh JS, Ji H, Qiu A, et al. Cortical graph neural net-
work for AD and MCI diagnosis and transfer learning across populations. 
NeuroImage: Clin. 2019;23:101929.

 63. Krzywaniak A, Czarnul P, Proficz J. Dynamic GPU power capping with 
online performance tracing for energy efficient GPU computing using 
DEPO tool. Futur Gener Comput Syst. 2023;145:396–414.

 64. Raiaan MAK, Fahad NM, Mukta MSH, Shatabda S. Mammo-light: a light-
weight convolutional neural network for diagnosing breast cancer from 
mammography images. Biomed Signal Process Control. 2024;94:106279.

 65. Saha DK. An extensive investigation of Convolutional Neural Network 
designs for the diagnosis of Lumpy skin disease in Dairy Cows. Heliyon. 
2024;10.

 66. Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y. Segment 
anything model for medical image analysis: an experimental study. Med 
Image Anal. 2023;89:102918.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2306.06211

	Segmentation for mammography classification utilizing deep convolutional neural network
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Background
	Motivation
	Contribution

	Related works
	Deep learning models
	Transformer models

	Materials and methods
	Image data preprocessing
	Architecture of segmentation anything model (SAM)
	Hyperparameter tuning for segmentation anything model
	Dataset splitting
	Proposed method
	Pyramid Transformer (PTr)


	Experimental evaluation and results
	Implementation details
	Environment specifications
	Dataset
	Performance evaluation metrics
	Findings of SAM model
	Result analysis
	Classifiers performance matrix of suggested models
	Classifier parameter results
	 Prediction accuracy and loss

	Analysis of computational complexity

	Conclusion and future work
	Acknowledgements
	References


