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Abstract 

Shape analysis provides methods for understanding anatomical structures extracted from medical images. However, 
the underlying notions of shape spaces that are frequently employed come with strict assumptions prohibiting 
the analysis of incomplete and/or topologically varying shapes. This work aims to alleviate these limitations by adapt-
ing the concept of functional maps. Further, we present a graph-based learning approach for morphometric classifi-
cation of disease states that uses novel shape descriptors based on this concept. We demonstrate the performance 
of the derived classifier on the open-access ADNI database differentiating normal controls and subjects with Alzhei-
mer’s disease. Notably, the experiments show that our approach can improve over state-of-the-art from geometric 
deep learning.
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Introduction
Shapes of anatomies and variations thereof pose a key 
source for the understanding of medical phenomena 
including physiological processes like tissue malfor-
mations associated to pathological conditions. This, in 
turn, plays a significant role in medical decision-making, 
e.g., stratification for clinical interventions or therapy 
planning.

From a mathematical point of view, shapes are an 
instance of geometric data that requires dedicated com-
putational treatment. There is increasing evidence that 
data-analytical tools that account for the inherent geo-
metric structure yield improved consistency and per-
formance, see  [1] and the references therein. This led 
to a strong impetus to generalize established geometric 
approaches that have been derived for Euclidean data, 
affecting deep learning and statistics, as well as data pro-
cessing and visualization.

Central to morphological analysis is the compari-
son of related forms. This requires a coordinization 
of shapes leading to a notion of shape space in which 
each point represents a specific shape  [2]. An estab-
lished approach is to consider transformations con-
necting shapes: An object collection under study can 
be represented by a common deformable template 
that accounts for the characteristics of the structure 
within the collection. The shape variability is then 
represented by deformations that are applied to the 
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template. Within this approach, Riemannian methods 
have shown promising results for tasks such as the dis-
covery of biomarkers  [3], risk assessment of clinical 
outcomes [4], and longitudinal analysis [5, 6].

Despite these advances, frameworks for geomet-
ric morphometry still rely on point-to-point corre-
spondences between shapes, either explicitly in form 
of homologous landmarks  [7] or implicitly in terms 
of diffeomorphisms of the ambient space  [8]. Point-
to-point correspondences have fundamental limita-
tions that impede the analysis of shape collections with 
topologically varying or incomplete objects. This is 
a major problem for the analysis of empirically given 
sets of shapes since they, due to either real differences 
or reconstruction errors, often contain such objects. 
Even though this issue is extremely common, it is fre-
quently disregarded or viewed as unavoidable, poten-
tially introducing bias into subsequent analyses [9].

Therefore, novel concepts that pose less strict 
assumptions are of high interest. While recent work on 
non-rigid registration allows for partial matching [10] 
and topological changes via user-specified  [11] or 
unsupervised detection  [9] of discontinuities, exten-
sions to group-wise analysis are still at an early stage 
of research. A promising alternative approach [12] that 
we evaluate in this work is to generalize the notion 
of correspondence between shapes in terms of maps 
between real-valued functions on the surfaces instead 
of points thereon. Remarkably, such functional maps 
facilitate shape matching  [13] and still allow for a 
notion of shape differences that characterize distortion 
between shapes [14]. Furthermore, recent advances for 
improving cycle consistency in functional map net-
works  [15, 16] via latent representations give rise to 
novel types of shape spaces, the full potential of which 
remains to be explored.

Another alternative approach to explicit shape 
spaces is to infer the underlying structure entirely 
from the data at hand. Deep learning has led to quali-
tative breakthroughs for various tasks there  [17–19]. 
As shapes are described by curved surfaces, they are 
geometric objects in their own right and require ded-
icated neural network units. The study of such units 
falls into the field of geometric deep learning. We refer 
to [20] for an overview. Beyond architectures for digi-
tal surfaces, geometric deep learning provides graph 
neural networks for data featuring irregular, heteroge-
neous relationships. In this area, graph convolutional 
networks (GCN) have been shown to provide effec-
tive transductive learning schemes for disease clas-
sification from imaging  [21] as well as shape-based 
features [22].

Contributions
Following the transductive learning design, we derive a 
classification approach that casts the grading task as a semi-
supervised node classification problem on a shape-valued 
graph. To this end, we adapt a flexible, yet descriptive char-
acterization of shape variability based on the framework of 
functional maps that poses no assumptions on the exist-
ence of underlying diffeomorphic correspondences. Fur-
thermore, we generalize functional shape characterizations 
introducing a one-parameter family of descriptors that 
provide a tuneable sensitivity to extrinsic curvature.

We evaluate the performance of the proposed classi-
fier considering hippocampus malformations caused by 
Alzheimer’s disease and achieve state-of-the-art accura-
cies outperforming recent approaches based on functional 
maps  [16] as well as geometric deep learning  [17]. This 
work is an extended version of the workshop paper  [23] 
featuring a more comprehensive experimental evaluation, 
an extended data set containing both left and right hip-
pocampi, and additional visualizations. Based on the new 
findings, we derive an improved classifier for Alzheimer’s 
disease from hippocampi shapes that surpasses our previ-
ous design by a significant margin.

Shape analysis
In this section, after giving some background and setting 
the notation, we introduce the novel shape descriptors and 
show that they are suitable to recognize changes in extrin-
sic geometry within a shape collection.

Functional maps
Let S be a set of manifolds and S ∈ S . Let XS be a space of 
R-valued functions on S endowed with some basis. Then, 
[12] defines functional correspondence between M,N ∈ S 
as an operator FM,N : XM → XN named functional map. It 
can be encoded by a matrix CM,N such that aN ≈ CM,NaM 
for any function in XM with coordinates aM corresponding 
to a function in XN with coordinates aN . Let T : N → M 
be a point correspondence map. If XS is chosen to be the 
set of all R-valued functions on S, then the functional map 
F : XM → XN , f �→ f ◦ T  comprises the same information 
as T.

Consistent latent basis
Let (S ,E) be a connected directed graph with vertices S 
and edges E ⊂ S × S . For each (M,N ) ∈ E , let there be a 
functional map. Let YS ⊂ XS and FM,N (YM) = YN . Then, 
following [15], we call (YS)S∈S the latent space of (XS)S∈S.

Let (y(i)S )i∈I be a basis of YS such that

FM,Ny
(i)
M = y

(i)
N ∀M,N ∈ S , i ∈ I .
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Then, (y(i)S )S∈S,i∈I is called consistent latent basis (CLB) 
of (YS)S∈S . Figure 1 shows an example of a latent basis for 
two hippocampal shapes. Note that such a basis can be 
constructed even if topological variation is present in the 
shape collection.

Shape difference descriptors
Let S be a regular orientable surface  [24], IS denote its 
first and IIIS its third fundamental form. For ω ≥ 0 , let 
gS,ω := IS + ωIIIS be the regularized isophotic met-
ric [25] on S and µS,ω denote its Riemannian density [26]. 
Figure  2 shows distance functions for a hippocampus 
surface equipped with the induced metric IS as well as the 
isophotic metric gS,ω illustrating the dependence of the 
latter on the variation of the surface normals along con-
necting geodesics.

Let L2(S,ω) denote the set of square integra-
ble real-valued functions on (S, gS,ω) and let 
H1
∅(S,ω) := {f : Dα f ∈ L2(S,ω) ∀ |α| ≤ 1, S fdµS,ω = 0} 

where Dα denotes the weak α-th partial derivative using 
multi-index notation. Let

where ∇ is the del operator in terms of weak derivatives. 
Then, [27] shows

If T is locally area-preserving and conformal, then it 
is an isometry, i.e., it preserves intrinsic geometry. This 
motivates to compare inner products of corresponding 
functions, e.g., CLBs, to capture shape differences.

For ω > 0 , the inner products haS,ω and hcS,ω also con-
tain information about the extrinsic geometry. Different 
to  [14], this approach does not require to construct an 
offset surface. Figure 3 shows that the parameter ω actu-
ally allows to control the influence of the extrinsic geom-
etry. It depicts linear interpolations St between a sphere 
S0 and a shape S1 generated by mirroring the upper dome 
of the sphere at the cutting plane. Consequently, the 

haS,ω : L2(S,ω) × L2(S,ω) → R, (f1, f2) �→

∫

S
f1f2 dµS,ω

hcS,ω : H1
∅ (S,ω)×H1

∅ (S,ω) → R, (f1, f2) �→

∫

S
∇f T1 ∇f2 dµS,ω

haM,0(f1, f2) = haN ,0(F(f1), F(f2))∀ f1, f2 ∈ L2(M, 0) ⇔ T is locally area-preserving,

hcM,0(f1, f2) = hcN ,0(F(f1), F(f2))∀ f1, f2 ∈ H1
∅ (M, 0) ⇔ T is conformal.

Fig. 1 A consistent latent basis on two hippocampal shapes of different genus. −1  1

Fig. 2 Comparison of distance isolines. The standard metric (left) does not take extrinsic geometry into account, in contrast to the isophotic metric 
(right, with ω = 8)
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shape S1/2 in the middle of the series is flat at the top and 
shapes St , S1−t are pairwise isometric.

For the purely intrinsic shape differences haS,0 and hcS,0 , 
these isometric pairs are indistinguishable, while the dis-
parity grows with increasing ω , so that we can observe an 
unfolding of the series in the PCA plot.

Disease classification
As an example for disease grading, we classify states of 
Morbus Alzheimer also known as Alzheimer’s disease 
(AD), for which we derive a neural classifier. AD is a 
rapidly progressing and most prevalent neurodegenera-
tive disorder among the elderly and is a primary cause 
of dementia. AD causes considerable distress in patients, 
hindering their capacity to carry out basic everyday activ-
ities and ultimately leading to death. In the following, 
after providing details on the data used and how we pro-
cessed them, we explain the architecture of the proposed 
network.

Data
Morbus Alzheimer is known to affect large regions of the 
human brain [28] such as the two hippocampi [29], which 
play an important role in the formation of memories [30]. 
In order to take into account morphological changes, we 
examine the hippocampi shapes represented as triangle 
meshes that we derived from MRI scans published by the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1. 
ADNI is a longitudinal, multi-center, observational study 
designed to characterize the trajectories of clinical, imag-
ing, and fluid biomarkers throughout the spectrum of 
aging from clinically normal individuals through mild 
cognitive impairment to AD, with data made available 
publicly. The goal is to identify biomarkers and genetic 
characteristics that would support the early detection 
and follow-up of AD, as well as the improvement of the 
design of clinical trials. ADNI was initially funded in 2004 
and recruited 819 people in this phase (ADNI-1) and was 
further extended in 2009 (ADNI-GO) and 2010 (ADNI-
2) by 129 and 782 participants, respectively. A detailed 
description of the study design and participants can be 
found in [31]; for up-to-date information, see www. adni- 
info. org. All phases of the study collected clinical data 
(neuropsychological testing, neurological examination 
and diagnosis) and sMRI in all participants. In particular, 
from the available phenotypic data, we collected infor-
mation on sex and Apolipoprotein E (ApoE) gene for the 
respective subjects.

We carry out our experiments on the data set derived 
in [32] consisting of 120 subjects with only shapes of right 
hippocampi and a new, larger data set of 238 subjects 

Fig. 3 PCA plot of ha
S,ω (top) and hc

S,ω (bottom) for ω = 0 (left), ω = 0.005 (middle) and ω = 0.01 (right) where the color of the shapes matches 
the color of the points in the plots

1 adni.loni.usc.edu

http://www.adni-info.org
http://www.adni-info.org
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with shapes of left and right hippocampi. The first data 
set comprises 60 subjects with Alzheimer’s disease and 
60 cognitive normal controls. All of their hippocampi 
shapes have genus 0 and therefore show no topologi-
cal variation. The second data set consists of all avail-
able baseline observations in ADNI-2 comprising 101 
diseased and 137 normals, where one left and one right 
shape of each the diseased as well as the normals have 
genus  1 instead of genus  0. Note that the higher-genus 
instances are due to imaging/segmentation artifacts such 
as partial voluming. Such cases do not admit diffeomor-
phic matching, and hence need to be excluded in shape 
analysis approaches based on point-to-point correspond-
ences unless topology is fixed in a possibly expensive 
preprocessing step. In contrast, functional correspond-
ences alleviate these limitations, allowing inclusion of all 
instances in the analysis. Examples of both topological 
cases can be seen in Fig. 1.

Classification
Typically, the sampling in clinical data sets does not fol-
low a regular grid, and there exists no natural ordering. 
However, individuals feature heterogeneous pairwise 
relationships and interdependencies that can be ade-
quately captured by a graph. In this setting, nodes rep-
resent subject-specific shapes, while edge weights can be 
used to encode similarities between subjects potentially 
integrating auxiliary, phenotypic information.

Based on the graph representation, the transductive 
inference problem can be formulated as semi-super-
vised node classification, where labels are only given 
for nodes corresponding to subjects from the training 
set. As classifier, we construct a multi-layer, feed-for-
ward graph convolutional network with possibly several 
hidden layers each followed by a rectified linear unit 
(ReLU), see Fig. 4.

The final layer has as many output channels as the 
desired number of classes and is equipped with a 
node-wise soft-max activation. As loss function, a 
cross-entropy term for each node in the training set is 
used. Since the model is conditioned on the adjacency 
of the graph, there is no need for explicit graph-based 
regularization: The gradient information of the loss 
is propagated through the model enabling it to learn 
representations of both labeled and unlabeled nodes. 
For our architecture, we opt for a spectral generaliza-
tion of graph convolutions, which are based on a Kth

-order approximation in terms of Chebyshev polyno-
mials  [33] and provide fast localized graph convolu-
tions with constant learning complexity.

While the construction of the functional map net-
work is driven by geometric considerations (viz. estab-
lishing consistent, group-wise correspondences), it 
does not encode phenotypic relationships and interde-
pendencies between the subjects that are informative to 
the grading task. We therefore condition our model on 
another graph that leverages both geometric and non-
geometric information. Following  [21], we define the 
adjacency matrix W of the population graph by

where Sim gauges similarity between subject shapes and 
δ is a threshold function testing for closeness of pheno-
typic measures mk such as sex and ApoE type. Whereas 
the exact choice of Sim should be application-dependent, 
a canonical candidate is to employ a radial basis function 
kernel based on distances of the node features.

Wij = Sim(Si, Sj)
∑
k

δ(mk
i ,m

k
j ),

Fig. 4 Illustration of the semi-supervised node classification we propose for disease grading
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Processing
Let S contain shapes of only left or only right hip-
pocampi. We choose XS to be the space spanned by the 
eigenvectors of the Laplace-Beltrami operator associ-
ated to its smallest 42 eigenvalues, where we discretize 
the operator using the standard weighted cotangent 
scheme [34]. For a dimension higher than 42, we did not 
observe improvements in the classification accuracy. 
Then, we compute CM,N by using ZoomOut refine-
ment [13]. As initialization, we take a 30× 30 matrix that 
encodes correspondences of 130 approximate landmarks 
obtained via coherent point drift and perform 12 steps 
that each increase the dimension of the spaces XS by 1. 
As these functional maps only need to capture the cor-
respondence approximately, we chose the parameters to 
result in small deformations between each pair of shapes 
in terms of the Green-Lagrangian strain tensor.

To avoid considering bad correspondence maps, we 
define the edges E of the functional map network by the 
(symmetrized) k-nearest-neighbor graph based on the 
2-cycle consistency given by ||CN ,MCM,N − I || where k is 
the smallest value such that (S ,E) is actually connected. 
Then, we compute a CLB of (Fe)e∈E by using Consist-
ent ZoomOut  [35]. As common parameter choices 
for spectral upsampling, we initialize it with the leading 
principal 8× 8-submatrices of all CM,N with (M,N ) ∈ E 
and perform 20 steps that each increase the dimension of 
XS by 1 and of BS by 7/10.

The inner products haS,ω and hcS,ω on YS × YS can be 
represented by symmetric positive-definite (SPD) matri-
ces. To account for the geometric structure of the space 
of SPD matrices, we employ the Log-Euclidean frame-
work [36]. To this end, we consider the matrix logarithms 
of the SPD matrices. For use as network features, we 
build a vector out of the entries of each logarithm and 
divide the vectors by their respective 2-norm to regular-
ize them. Since the matrix logarithm of a SPD matrix is 
still symmetric, we only take the entries of the respective 
lower-triangles to avoid redundant information.

We evaluate the proposed graph convolutional network 
(GCN) for the discrimination between normal controls 
and subjects with Alzheimer’s disease. To this end, we 
employ three layers of second-order graph convolutions 
with input dimensions ( nshapes, 64, 64 ). As phenotype 
measures, we selected sex and ApoE genotype follow-
ing the work  [21]. Gene ApoE appears in three major 
types: E2, E3 and E4. Especially E4 is known as genetic 
risk factor for Alzheimer’s disease. Let dij be the distance 
between the shape difference descriptors of Si and Sj in 
terms of the Log-Euclidean framework. We then define 
Sim(Si, Sj) = exp(−0.5d2ij/σ

2) , where σ is the median of 
the distances of all shape pairings. If both sex and ApoE 
type coincide and one of the shapes, Si or Sj , is among the 

30 closest neighbors of the other, we set the threshold to 
1. Otherwise, we set it to 0.

Results
On two  Intel®CoreTM i9-10920X, the computation 
time for the shape correspondence in terms of a CLB 
amounts to 15 hours and 24 minutes for one side of the 
hippocampi. This could probably be reduced by tak-
ing matrices of lower dimension for ZoomOut without 
compromising the quality of the CLB. On the same pro-
cessor, the classification task considering both sides of 
the hippocampi took 12 minutes for the set of 120 sub-
jects and 39 minutes for the set of 238 subjects for each 
choice of ω.

Comparison to state‑of‑the‑art
We evaluate the performance of our approach in terms 
of classification accuracy in comparison to state-of-
the-art approaches for shape-based learning that do 
not require point-to-point correspondences. On the 
one hand, we employ classification approaches using 
a MultiLayer Perceptron ( MLP ), as well as a Convolu-
tional Neural Network ( CNN ) applied on the area- and 
conformal-based shape differences as proposed in  [16], 
however, using our generalized differences based on the 
isophotic metric. On the other hand, we show results for 
MeshCNN [17] ( MCNN ) as reported by  [32] (note that 
these are rather an upper bound for the accuracy since 
maximal test accuracies are reported instead of using 
proper stopping criteria). In contrast to first methods 
based on the functional maps framework, MCNN is 
applied directly on the shape-forming triangular mesh. 
Note that MLP, CNN and MCNN are following the 
inductive learning approach. We evaluated all methods 
on a 70%/30% training/testing split, performing a strati-
fied Monte Carlo cross-validation drawing 300 times for 
MLP, CNN, GCN and due to its high computational cost 
10 times for MCNN. This comparison employs the data 
set derived in [32] (see “Data” section). The results, sum-
marized in Fig.  5, indicate that the transductive GCN 
approach achieves the highest ( 79.2% ) average classifica-
tion accuracy, CNN and MCNN are approximately on 
par ( 77.0%/76.7% ), and MLP achieves the lowest perfor-
mance with 74.9% accuracy.

Ablation and hyper‑parameter study
We further investigate the performance of the proposed 
grading system under varying hyper-parameter choices 
and sets of input anatomies/features. In this set of experi-
ments, we use the extended ADNI data set that not only 
features a higher cardinality but also comprises shapes of 
both right and left hippocampi.
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We start with an analysis of the classification perfor-
mance depending on the choice of ω , which weights the 
contribution of the third fundamental form IIIS and, 
hence, the degree to which the resulting shape differ-
ences are aware of the extrinsic geometry of the sur-
face S. While IIIS is invariant when resizing a surface 
(e.g. when changing units), the first fundamental form 
IS scales quadratically. This motivates to parameterize 
ω as a linear combination of a factor α and a surface 
quantity that also scales quadratically with surface size. 
In this study, we opted for the simple choice ω = αℓ2 , 
where ℓ is the length of the bounding box diagonal. 
Based on this, we investigated the performance of our 
classifier conditioned on area-based haS,ω and conformal 
hcS,ω shape differences for left and right hippocampi. We 
sampled α logarithmically in the intervall [0, 1] and per-
formed 100-fold Monte Carlo cross-validation for each 
sample. Figure  6 provides a summary of the obtained 

classification accuracies. These results reveal a depend-
ency of the accuracy with a maximal average accuracy 
of 86.0% for α = 2−6 . This is a significant improvement 
(t-test: t(198) = 2.66, p = .008 ) over the purely intrinsic 
shape differences ( α = 0 ) with an average accuracy of 
84.3% , demonstrating the advantage of our novel extrin-
sic shape differences. We further investigated the per-
formance of the best configuration ( α = 2−6 ) in terms 
of precision, recall/sensitivity, and specificity yielding 
86.6% , 81.0% , and 89.9% on average, respectively. The 
experiment also reveals decreasing performance gains 
for larger and smaller values of α substantiating the 
need for task-specific tuning of the extend to which 
extrinsic and intrinsic geometry are blended—a feature 
not present in previous functional map-based charac-
terizations such as those based on offset surfaces  [27] 
that underlie numerous constraints  [37], e.g. local 
curvature.

Fig. 5 The proposed GCN approach achieves the highest average classification accuracy of 0.787± 0.055 followed by CNN ( 0.77± 0.06 ), MCNN 
( 0.767± 0.038 ) and MLP ( 0.749± 0.074 ) [16, 17]

Fig. 6 Classification accuracy depending on parameter ω (in terms of multiples α of the squared length of the bounding box diagonal); higher 
values yield shape differences with increasing influence of extrinsic geometry, while 0 corresponds to the purely intrinsic differences. (  median;  
mean)
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We further performed an ablation study to analyze the 
accuracy of the proposed grading system when condi-
tioned on different anatomies and shape differences. In 
particular, we evaluated configurations that take area-
based and/or conformal shape differences for right, left, 
and both hippocampi shapes as input. In Table  1, we 
provide average classification accuracies determined via 
100-fold Monte Carlo cross-validation for the extended 
ADNI data set as well as the smaller reference data set 
from [32], which we augmented by the corresponding left 
hippocampi. Overall, this study shows that area-based 
shape difference are most informative to the grading task, 
while the combination with the conformal ones yields 
the best results. Additionally, we observe an improved 
accuracy for grading when taking both left and right hip-
pocampi into account, especially for the larger data set 
that shows up to 5% increase as compared to grading 
from a single hippocampus.

Conclusion and future work
In this work, we presented a geometric classification 
scheme from shape data employing a flexible, yet descrip-
tive characterization of shape variability. Based on a 
graph convolutional neural network, we further perform 
transductive inference taking into account the irregular 
structure in sampling patterns of clinical data sets. Fur-
thermore, we extended the functional characterization of 
shape variation via an alternative metric that is sensitive 
to extrinsic curvature and employed a geometric lineari-
zation based on the Log-Euclidean framework for posi-
tive matrices.

In application to Alzheimer’s disease diagnosis, we 
achieved classification performance that surpasses 
recent work for deep learning on 3D surfaces  [17] as 
well as inductive inference from functional descrip-
tions  [16]. Furthermore, our method is able to signifi-
cantly decrease the gap towards Riemannian shape 
spaces that rely on the more restrictive setting of dense 
vertex correspondence [32] and for which 80.4% classi-
fication accuracy has been reported. Note that Alzhei-
mer’s disease is characterized by various structural and 
functional changes in the brain implying that diagnosis 
should be based on a holistic assessment. Indeed, state-
of-the-art approaches in Alzheimer’s disease diagnosis 

are typically based on multiple neuroimaging modali-
ties  [38], viz. structural and functional magnetic reso-
nance imaging (s/fMRI), diffusion tensor imaging and 
positron emission tomography. As the focus of our 
work is on classification from generalized shape rep-
resentations, we designed the experiments to explore 
the descriptive power of the proposed shape represen-
tation in combination with GCN-based transductive 
learning. Nonetheless, the experiments show that our 
approach achieves classification performance com-
petitive to recent image-based approaches [39, 40] that 
are conditioned on full sMRI scans. Consequently, a 
promising direction for future work is to augment our 
shape-based approach with functional descriptors such 
as brain connectomes that also lie in the SPD matrix 
cone [41].

In this extended version, we explored to what extent 
the Alzheimer’s disease classification can be improved 
by taking both left and right hippocampi into account. 
To this end, we expanded the data set introduced 
in  [32] to include both anatomies on the one hand, 
and, on the other, we add all baseline shapes for which 
segmentation masks are available in ADNI-2 including 
those that show topological artifacts, viz. are of genus 1. 
Conditioning the proposed model on both hippocampi 
resulted in significant improvements over classification 
from either left or right ones.

An interesting direction for future work is the graph 
construction itself, which should be further analyzed 
as it poses a structural core element in our setup 
and potentially is the key property for discrimina-
tive tasks such as disease grading. Another direction 
is to explore the rapidly expanding set of graph con-
volutional architectures for our transductive learn-
ing approach. In particular, recent advancements [19] 
provide neural models that can take advantage of both 
the geometry of the input domain as well as the fea-
ture space alleviating the need for linearization of 
the latter. Overall, we further plan to investigate the 
potential of our approach for topologically-varying 
and incomplete shape collections in order to broaden 
the scope of shape analysis methodology and to pro-
vide more extensive empirical evidence of its perfor-
mance in the future.

Table 1 Accuracy of proposed classifier for Alzheimer’s disease when conditioned on left and/or right hippocampi as well as area-
based and/or conformal shape differences

# Right Left Both

h
a
S,ω h

c
S,ω h

∗
S,ω h

a
S,ω h

c
S,ω h

∗
S,ω h

a
S,ω h

c
S,ω h

∗
S,ω

120 77.9% 61.9% 79.2% 79.3% 67.3% 80.3% 80.4% 63.6% 81.5%

238 80.2% 70.2% 81.3% 80.2% 67.8% 81.9% 84.0% 71.4% 86.0%
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