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Abstract
Background  Current mainstream cardiovascular magnetic resonance-feature tracking (CMR-FT) methods, including 
optical flow and pairwise registration, often suffer from the drift effect caused by accumulative tracking errors. 
Here, we developed a CMR-FT method based on deformable groupwise registration with a locally low-rank (LLR) 
dissimilarity metric to improve myocardial tracking and strain estimation accuracy.

Methods  The proposed method, Groupwise-LLR, performs feature tracking by iteratively updating the entire 
displacement field across all cardiac phases to minimize the sum of the patchwise signal ranks of the deformed 
movie. The method was compared with alternative CMR-FT methods including the Farneback optical flow, a 
sequentially pairwise registration method, and a global low rankness-based groupwise registration method via a 
simulated dataset (n = 20), a public cine data set (n = 100), and an in-house tagging-MRI patient dataset (n = 16). The 
proposed method was also compared with two general groupwise registration methods, nD + t B-Splines and pTVreg, 
in simulations and in vivo tracking.

Results  On the simulated dataset, Groupwise-LLR achieved the lowest point tracking errors (p = 0.13 against pTVreg 
for the temporally averaged point tracking errors in the long-axis view, and p < 0.05 for all other cases), voxelwise 
strain errors (all p < 0.05), and global strain errors (p = 0.05 against pTVreg for the longitudinal global strain errors, and 
p < 0.05 for all other cases). On the public dataset, Groupwise-LLR achieved the lowest contour tracking errors (all p 
< 0.05), reduced the drift effect in late-diastole, and preserved similar inter-observer reproducibility as the alternative 
methods. On the patient dataset, Groupwise-LLR correlated better with tagging-MRI for radial strains than the other 
CMR-FT methods in multiple myocardial segments and levels.

Conclusions  The proposed Groupwise-LLR reduces the drift effect and provides more accurate myocardial tracking 
and strain estimation than the alternative methods. The method may thus facilitate a more accurate estimation of 
myocardial strains for clinical assessments of cardiac function.
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Background
Myocardial strain is a sensitive measure of the left ven-
tricular mechanical function, which can be useful to aid 
the diagnosis and prognosis of various diseases [1–3]. 
Cardiovascular magnetic resonance-feature tracking 
(CMR-FT) estimates myocardial strains from routinely 
performed cine MRI images using feature tracking 
algorithms [4]. Compared with the reference standard 
tagging-MRI, CMR-FT does not need additional time-
consuming sequences and facilitates retrospective strain 
analysis [5]. However, it is well known that CMR-FT 
based on regular cine does not estimate regional strain 
accurately [6, 7]. Since regional strain is often hypothe-
sized to be more sensitive to the early progresses of car-
diac diseases, a more accurate estimation of the regional 
strain with advanced feature tracking algorithms is highly 
desirable.

Current commercial software tools for CMR-FT 
often use optical flow or pairwise registration for track-
ing of the myocardium across adjacent cardiac phases 
[8]. However, studies have shown that these frame-by-
frame tracking methods often cause an accumulation of 
tracking errors through the early frames. These errors 
become greater for later frames, which eventually cause 
inaccurate feature tracking and strain estimation, often 
referred to as the drift effect [9]. Several methods have 
been proposed to address this challenge. One method is 
based on drift compensation, which approximates the 
drift by a linear function and subtracts the trend from 
the estimated strain [10]. However, since the linearity of 
the drift is assumed only for simplicity, the compensa-
tion is highly empirical and does not truly eliminate the 
accumulative tracking errors. Another type of pairwise 
CMR-FT methods seeks to directly align every frame to 
the end-diastolic frame [9, 11]. Although such methods 
can avoid the drift effect, large deformations between 
distant frames such as end-diastole and end-systole can 
cause even more severe tracking errors [12]. In addition, 
there are also attempts to mitigate the errors by combin-
ing forward and backward registration passes [13–15]. 
However, the tracking errors caused by pairwise align-
ment still exist in both passes and are not guaranteed 
to be offset when combined. Recently, groupwise regis-
tration has shown the potential to reduce the drift effect 
by simultaneously aligning all cine images to a common 
reference frame. For example, Metz et al. proposed a 
deformable groupwise registration method for tissue 
tracking, which used a sum of the voxelwise signal vari-
ances as the dissimilarity metric since a well-aligned 
set of images should have a low signal variation across 
time [16]. Qiao et al. implemented a similar groupwise 

registration method for myocardial tracking via cine MRI 
images and demonstrated an improved tracking accu-
racy over pairwise registration [17]. In addition to signal 
variance, signal low-rankness across the spatiotempo-
ral domain can also be used as a dissimilarity metric for 
groupwise registration. If the registration is perfect and 
the temporal signal variation is spatially consistent, the 
aligned images should encompass a low-rank property, 
which can be used to guide the registration. For example, 
Peng et al. decomposed the spatiotemporal images into 
an error term, which should be sparse, and a set of well-
aligned images, which should have the low-rank property 
[18]. They then combined the sparsity and low-rankness 
into a single dissimilarity metric to guide the groupwise 
registration, and found improved accuracy and efficiency 
when compared with other registration methods. Haase 
et al. extended this method by introducing nonparamet-
ric deformation and total variation regularization, and 
found improved accuracy compared with alternative 
groupwise registration methods for several motion track-
ing applications [19]. However, none of these studies on 
groupwise registration evaluated the accuracy and repro-
ducibility for strain estimation.

In this work, we sought to develop a strain estimation 
method based on deformable groupwise registration with 
a locally low-rank (LLR) dissimilarity metric and evalu-
ate its accuracy and reproducibility. Previous myocardial 
tracking studies have shown that global low-rankness can 
be used to guide groupwise registration [18, 19]; how-
ever, it is well-known that signals in cine MRI are often 
locally low-rank rather than globally low-rank [20]. Dif-
ferent tissues in cine MRI may encompass signal varia-
tions of different patterns, and thus the global rank can 
be relatively high even after motion compensation. For 
example, the myocardial intensity may present a peri-
odic variation across the cardiac cycle due to through-
plane motion and the fresh spin effect. The blood signals 
may also change irregularly due to turbulent flows. The 
banding and flow artifacts commonly observed in cine 
MRI can disturb regional signals in the image. There-
fore, Locally Low Rankness (LLR) may be a better metric 
to measure the alignment of cine images over the car-
diac cycle. The baseline methods for evaluation included 
three alternative CMR-FT methods (optical flow, pair-
wise registration, and global low-rankness (GLR)-based 
groupwise registration) and two general groupwise reg-
istration methods (nD + t B-Splines [16] and pTVreg 
[21]). We compared our methods with all the baseline 
methods in terms of myocardial tracking accuracy via a 
simulated dataset (XCAT) [22] and a public cine dataset 
(ACDC) [23]. We further compared our method with the 
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alternative CMR-FT methods in terms of strain estima-
tion accuracy and reproducibility via the simulated data-
set, public cine dataset, and an in-house tagging-MRI 
patient dataset.

Methods
Groupwise registration formulation
The goal of groupwise registration is to simulta-
neously align all cine images to a common ref-
erence frame. Let f (x, t)  represent the cine 
image sequence, where the spatial coordinate 
x ∈ Ω = {(x, y)| 1 ≤ x ≤ Nx, 1 ≤ y ≤ Ny}  and the 
temporal coordinate 1 ≤ t ≤ Nt. Nx, Ny, and Nt repre-
sent the pixel number in the x direction, pixel number 
in the y direction, and frame number, respectively. The 
deformed cine image sequence can be expressed as

	
∼
f (x, t) = f (T (x, t) , t) = f (x + d (x, t) , t) , � (1)

where T (x, t) = x + d (x, t) is the transformation field 
and d (x, t) is the displacement field. We use the free-
form deformation modeling of the displacement field 
[24]. Specifically, given a control point mesh Φ(i, j, t) 
with uniform control point spacing δ, d (x, t) is mod-
eled by a linear combination of control points with cubic 
B-spline coefficients as

	
d (x, t) =

3∑

k=0

3∑

l=0

Bk (u) Bl (v)Φ (i + k, j + l, t), � (2)

where i = � (x − 1)/δ �,  j = � (y − 1)/δ �
, u = (x − 1)/δ − � (x − 1)/δ � , 
v = (y − 1)/δ − � (y − 1)/δ � , and Bk (u)  is the k-th 
basis function of the B-splines. By constraining the tem-
poral average of the transformation or displacement field 
to be an identity map or zero, we register all images to an 
average common reference frame:

	

1

Nt

Nt∑

t=1

T(x, t) = x ⇔ 1

Nt

Nt∑

t=1

d(x, t) = 0,� (3)

Which based on Eq. (2) is equivalent to 

	

1

Nt

Nt∑

t=1

Φ(i, j, t) = 0. � (4)

GLR and LLR dissimilarity metrics
To register all images in 

∼
f (x, t) , we can use either the 

previously described GLR metric [18, 19] or the proposed 
LLR metric. To use the GLR metric, one firstly reformu-
lates the entire series of images into a Casorati matrix:

	

C =





f̃ (x1, 1) f̃ (x1, 2) · · · f̃ (x1,Nt)

f̃ (x2, 1) f̃ (x2, 2) · · · f̃ (x2,Nt)
... ... . . . ...

f̃ (xL, 1) f̃ (xL, 2) · · · f̃ (xL,Nt)



 ∈ RL×Nt, � (5)

where L = NxNy is the total number of voxels, and the l
-th row holds the signal in the l-th voxel. GLR assumes 
the Casorati matrix is rank-deficient if all images are well 
aligned. The GLR dissimilarity is thus determined by the 
nuclear norm of C :

	
DGLR =‖ C‖∗ =

Nt∑

t=1

σt, � (6)

where σ t is the t-th singular value of C .
In cardiac cine imaging, however, signals may be spa-

tially inconsistent even after registration, due to a set of 
confounders such as motion, blood flow, and artifacts. 
As a result, the post-registration global rank may be still 
high, rendering GLR less effective for the guidance of 
the registration. Figure 1 illustrates this problem using a 
realistic cine movie example. From the illustration, it is 
clear that the local signal rank is more sensitive to the 
elimination of motion than the global signal rank. For 
example, the rank for voxels surrounding the myocar-
dium border is reduced significantly by the registration. 
Therefore, we propose to use the LLR metric, which uni-
formly partitions the spatial domain into Nc overlapped 
square patches with a prespecified patch size and spac-
ing, reformulates the patches into local Casorati matri-
ces, and computes the sum of the nuclear norm of these 
local Casorati matrices:

	
DLLR =

Nc∑

k=1

‖ Ck‖∗ =
Nc∑

k=1

Nt∑

t=1

σk,t, � (7)

where Ck  is the local Casorati matrix associated with the 
k-th patch, and σk,t is the t-th singular value of Ck .

Regularization
To enforce the spatiotemporal regularity of the deforma-
tion field, we use a combination of spatial and tempo-
ral regularization terms. For the spatial smoothness, we 
introduce a bending-energy-based regularization term 
over the spatial domain [24]:
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Rspatial =

Nt∑

t=1

∑

x∈ Ω

∥∥∥∥
∂ 2T

∂ x2
(x, t)

∥∥∥∥
2

2

+ 2

∥∥∥∥
∂ 2T

∂ x∂ y
(x, t)

∥∥∥∥
2

2

+

∥∥∥∥
∂ 2T

∂ y2
(x, t)

∥∥∥∥
2

2

.

� (8)

For the temporal smoothness, we introduce a second-
order regularization term over the temporal domain 

	
Rtemporal =

Nt∑

t=1

∑

x∈ Ω

∥∥∥∥
∂ 2T

∂ t2
(x, t)

∥∥∥∥
2

2

. � (9)

We approximate the partial derivates in Rspatial and 
Rtemporal by the finite differences. Furthermore, given 
the cyclic motion of the heart, we adopt cyclic finite dif-
ferences in Rtemporal to enforce the consistency of the 
motion between the first frame and the last frame.

As a result, the proposed LLR-based groupwise regis-
tration (Groupwise-LLR) is formulated as 

	

min
ϕ

DLLR + λ Rspatial + µ Rtemporal

s.t.
1

Nt

∑
Nt
t=1ϕ (i, j, t) = 0,

� (10)

where λ and µ are the regularization coefficients, and 
the constraint is from Eq. 4. Inspired by a previous study 
on groupwise registration [25], we implemented the pro-
jected gradient descent algorithm to solve this problem 

in a coarse-to-fine multi-resolution framework. In this 
framework, the proposed method firstly estimates the 
deformation at the lowest resolution level to roughly 
align the images. Then, the method gradually refines the 
deformation at higher resolution levels to achieve more 
accurate alignment. We initialize the control point mesh 
Φ(i, j, t) as zero, leading to zero displacements across all 
cardiac phases.

Strain estimation
After obtaining the temporally resolved transformation 
field, we estimate the transformation field from the first 
image (end-diastole) to each later image by a two-step 
process, in which the coordinate x  in the end-diastolic 
image is firstly mapped to the common reference frame, 
and then to the t-th image. Mathematically, this process 
is represented by

	 T1→t (x) = T
(
T−1 (x, 1) , t

)
, � (11)

where T1→t (x) represents the transformation field from 
the first image to the t-th image. Based on the estimated 
T1→t (x), the Green-Lagrange strain tensor [26] is evalu-
ated by

	
E (x, t) =

1

2

[
(∇ xT1→t (x))

T∇ xT1→t (x)− I
]
, � (12)

Fig. 1  The maps of LLR cost—a surrogate of the patchwise signal rank—of a cine image sequence in the ACDC dataset before (Row 1) and after (Row 2) 
registration. Row 3 shows the relative difference between Row 1 and Row 2. Note that the rank reduction is highly region-dependent, with high reduc-
tions (~ 40%) in regions with large motion, such as the myocardial borders. Some regions have a high rank even after image registration, such as the blood 
pool. GLR, which is equivalent to LLR with a patch size of 128 (the rightmost column), assumes the rank is globally low after image registration. However, 
as the rightmost column shows, the post-registration global rank is still high, resulting in only a ~ 10% rank reduction
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where ∇ x represents the Jacobian operator about x  
(implemented using finite differences) and I  is an identity 
matrix of size two. The strain along a certain direction is 
then computed by

	 eu (x, t) = (u (x))TE (x, t)u (x) , � (13)

where u (x)  is the strain direction field determined by 
segmentation of the left ventricular myocardium in the 
end-diastolic image. For those long-axis slices, u (x)  
represents the longitudinal direction; for those short-
axis slices, u (x)  represents the circumferential or radial 
direction. The global longitudinal strain (GLS) is esti-
mated by averaging the strain values over the left ven-
tricular myocardium within a single long-axis slice. The 
global circumferential strain (GCS) and global radial 
strain (GRS) are estimated by averaging the strain values 
over the left ventricular myocardium within a specified 
slice (e.g., base, mid-ventricle, apex) or across multiple 
slices covering the entire left ventricle.

Baseline methods
The proposed Groupwise-LLR was compared with the 
Farneback optical flow [27], a commercially available 
pairwise registration method [28], and the GLR-based 
groupwise registration (Groupwise-GLR) based on both 
simulated and in-vivo data. Among these alternative 
CMR-FT methods, the optical flow and pairwise registra-
tion estimate the transformation field between each pair 
of the neighboring images, i.e., Tt−1→t (x), 2 ≤ t ≤ Nt. 
The transformation field T1→t (x) is then a composition 
of the neighboring transformation fields. Groupwise-
GLR was implemented in the same way as Groupwise-
LLR except for the use of a GLR dissimilarity metric. The 
proposed method was also compared with two general 
groupwise registration methods, nD+t B-Splines [16] and 
pTVreg [21], in simulations and in vivo tracking. Among 
them, nD + t B-Splines uses an nD + t B-spline deforma-
tion model and a sum of the voxelwise signal variances 
as the dissimilarity metric. pTVreg uses a similar LLR 
metric as the proposed one. However, pTVreg extracts 
nonoverlapped patches to compute the LLR metric and 
fixes the patch size for all resolution levels. In com-
parison, Groupwise-LLR partitions the spatial domain 
into overlapped patches to enhance the continuity of 
the estimated motion among neighboring patches, and 
adjusts the patch size along with the image resolution 
to improve the consistency of the multi-resolution opti-
mization. Additionally, pTVreg is characterized by the 
total variation regularization, which is different from the 
second-order Tikhonov regularization used in this work. 
Furthermore, it should be emphasized that the proposed 
Groupwise-LLR is the first strain estimation method 
based on groupwise registration while the two baseline 

groupwise registration methods have not been applied 
for strain estimation before.

Implementation details
All methods were implemented with MATLAB (R2022a, 
MathWorks, Natick, MA, USA). The parameters of each 
method were manually tuned for the simulated and in 
vivo experiments. For the proposed Groupwise-LLR, the 
number of resolution levels was 3 and the downsampling 
factor between two adjacent resolution levels was 2. The 
regularization coefficients were not reweighted between 
different resolution levels. The cubic interpolation was 
used for image downsampling and the linear interpo-
lation was used for image warping. The patch size and 
spacing used to sample the local Casorati matrices were 
5 and 3 pixels at the lowest resolution level and doubled 
each time moving to the next level. The control point 
spacing, spatial regularization coefficient λ, and tem-
poral regularization coefficient µ  were 6 and 7 pixels, 
6х10− 4 and 1х10− 3, 0.06 and 0.1 for the simulated data-
set and two in vivo datasets, respectively. We determined 
the regularization coefficients using a semi-quantitative 
approach based on small separate trial datasets. For the 
simulated experiments, we firstly set λ = 5х10− 4 based on 
a manual inspection of the spatial smoothness of the dis-
placement fields. We then varied the ratio µ /λ from 0.1 
to 1000, and found that µ /λ = 100 minimized the EPE 
over the simulated trial dataset. Thus, we fixed µ /λ = 
100 hereafter. We varied λ from 2х10− 4 to 1х10− 3 with 
a step of 2х10− 4, and found that λ = 6х10− 4 minimized 
the EPE over the simulated trial dataset. For the in-vivo 
experiments, we tried different values of λ from 5х10− 4 
to 2.5х10− 3 with a step of 5х10− 4, and found that λ = 
1х10− 3 minimized the mean contour distances over the 
in-vivo trial dataset. The optimization at each resolution 
level was terminated when the relative value change of 
the cost function was less than a tolerance of 1х10− 5.

Simulations
The simulated cine MRI dataset was generated by a 
digital phantom (XCAT) [22] and its MRI extension 
MRXCAT [29]. Specifically, XCAT was used to gener-
ate the cardiac-phase-resolved 3D tissue masks of 20 
subjects, each with a different gender, cardiac anatomy, 
and cardiac motion pattern. The corresponding trans-
formation field was also generated for each subject. 
Interpolation was then used to generate 2D cine movies 
in a 2-chamber slice and 7 or 8 short-axis slices, with 
a 1.5 mmх1.5 mm resolution and 24 frames. MRXCAT 
was then used to generate the signal intensity of each 
tissue in cine MRI. The studied feature tracking meth-
ods were performed in each slice to estimate the strains. 
The tracking quality was evaluated by end-point error 
(EPE), which is the difference between the estimated 
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transformation field and its ground truth, averaged over 
the entire myocardium at end-systole or over the entire 
cardiac cycle. Strain error was computed at end-systole 
for both voxelwise (VSE) and global (GSE) levels, where 
the former was an average of absolute strain difference 
between the estimated strain and ground truth over the 
entire myocardium, and the latter was the absolute dif-
ference between the global estimated strain and global 
ground truth strain.

Experiments on the ACDC dataset
The ACDC dataset [23] contains 100 subjects evenly 
distributed over five study groups: dilated cardiomyopa-
thy (DCM), myocardial infarction (MI), abnormal right 
ventricle (ARV), hypertrophic cardiomyopathy (HCM), 
and normal cardiac anatomy and function (NOR). For 
each subject, a series of short-axis cine images were 
acquired with a balanced steady-state free-precession 
(bSSFP) sequence on a 1.5T (Siemens Area, Siemens 
Medical Solutions, Germany) or 3T (Siemens Trio Tim, 
Siemens Medical Solutions, Germany) clinical scan-
ner. Manual segmentation of the end-diastolic and 
end-systolic myocardium is provided by the dataset. To 
evaluate the tracking accuracy of a method, the end-
diastolic epicardial and endocardial contours were first 
tracked to the end-systolic phase. Then, the mean dis-
tance between the tracked and annotated end-systolic 
contours was computed in the basal, mid-ventricular, 
and apical slices. To evaluate the inter-observer repro-
ducibility of the measured strains, the end-diastolic 
endocardium and epicardium were independently con-
toured by a reader (3 years of cardiac MR experience) in 
a subset (n = 30) of the ACDC dataset, and the intraclass 
correlation coefficients (ICC) of the end-systolic global 
strains (radial and circumferential) based on the anno-
tations by the dataset and the reader were calculated. To 
evaluate the intra-observer reproducibility, the same set 
of data was annotated by the same reader over one year 
later, and the ICC based on the two annotations by this 
reader were calculated.

Experiments on the patient dataset
The patient study was approved by the institutional 
review board. All patients provided informed writ-
ten consent. The clinical dataset contains 16 patients (9 
male, age 51 ± 14 years) scanned between February 2016 
and February 2017 on a 3T scanner (Philips Ingenia Eli-
tion, Philips Healthcare, Nederland). Clinical indications 
included normal (n = 3), coronary heart diseases (n = 4), 
connective tissue diseases (n = 4), nonischemic heart dis-
eases (n = 3), and other (n = 2). All patients were scanned 
with a bSSFP cine sequence and a tagging-MRI sequence. 
The bSSFP cine sequence used the following parameters: 
TR = 2.8 ms, TE = 1.4 ms, bandwidth = 1890 Hz/pixel, flip 

angle = 45°, FOV = 268х280 mm2, matrix size = 134х140, 
slice thickness = 7  mm, number of phases = 30. The 
tagging-MRI sequence had the following parameters: 
TR = 5.9 ms, TE = 3.6 ms, bandwidth = 432  Hz/pixel, flip 
angle = 10°, tag spacing = 7  mm, FOV = 229х280 mm2, 
matrix size = 154х188, slice thickness = 8 mm, number of 
phases = 9 to16. For each subject, only the matched cine 
and tagging images at basal, mid-ventricular, and api-
cal short-axis slices were analyzed. The left ventricular 
myocardium in each end-diastolic cine or tagging image 
was annotated according to the AHA 16-segment model 
[30]. The tagging images were analyzed by pairwise reg-
istration following a previous work [31]. The end-systolic 
global and segmental strains estimated by the CMR-FT 
methods were compared with those by tagging using 
ICC.

Statistics
Continuous variables were reported as mean ± stan-
dard deviation. The Wilcoxon signed rank test was per-
formed to determine whether two continuous variables 
were equivalent. The effect size of the Wilcoxon signed 
rank test was computed by dividing the absolute stan-
dardized test statistic z by the square root of the num-
ber of sample pairs. Following Cohen’s classification 
[32], the threshold of the effect size for a small, medium, 
and large effect are 0.1, 0.3, and 0.5, respectively. For 
evaluation of the inter/intra-observer reproducibility, 
ICC was calculated using a single rating, absolute agree-
ment, and 2-way mixed-effects model; for evaluation of 
the cine-tagging correlation, ICC was calculated using 
a single rating, consistency, and 2-way mixed-effects 
model [33]. Bland-Altman analysis was also performed 
to evaluate the inter/intra-observer reproducibility of 
each method. All statistical analyses were performed 
with MATLAB and SPSS (Version 26, IBM, New York, 
USA). P values less than 0.05 were considered statisti-
cally significant.

Results
Simulations
Figure  2 shows changes of the EPE, VSE, and global 
strains over the entire cardiac cycle for one simulated 
subject. Groupwise-LLR achieved the lowest errors for 
tracking and strain estimation over the entire cardiac 
cycle. The largest improvement of Groupwise-LLR was 
found at end-systole (orange arrows). In late-diastole 
(blue arrows), the four groupwise methods were more 
accurate than the pairwise registration and Farne-
back optical flow, both of which suffered from the drift 
effect. Groupwise-LLR led to improved strain accuracies 
compared with the other methods, with a substantial 
improvement in the radial strain estimation.
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Table  1 compares the values of EPEES, EPEall, VSEES, 
and GSEES from the studied methods over the entire 
simulated dataset. Groupwise-LLR achieved lower 
EPEES and EPEall compared with the other methods for 
both long-axis and short-axis views (p = 0.13 against 
pTVreg for EPEall in the long-axis view, and p < 0.05 for 
all other cases). Furthermore, Groupwise-LLR achieved 
lower VSEES and GSEES than the other methods for all 
strain types (p = 0.05 against pTVreg for the longitudinal 
GSEES, and p < 0.05 for all other cases). In particular, the 
improvement of radial strain accuracy by Groupwise-
LLR was relatively substantial.

ACDC dataset.

Tracking quality
Figure  3 compares the tracking quality of all the stud-
ied methods, measured by the mean distance between 
each predicted contour and manually drawn contour at 
end-systole. For both epicardial and endocardial con-
tours, Groupwise-LLR achieved significantly lower 
mean distances (1.72 ± 0.57  mm and 2.11 ± 1.33  mm) 

than Farneback optical flow (1.88 ± 0.72  mm and 
2.50 ± 1.61  mm, both p<0.01), pairwise registration 
(1.80 ± 0.72 mm and 2.30 ± 1.47 mm, both p<0.01), nD + t 
B-Splines (1.87 ± 0.77  mm and 2.21 ± 1.51  mm, both 
p<0.01), pTVreg (1.80 ± 0.69  mm and 2.29 ± 1.56  mm, 
both p<0.01), and Groupwise-GLR (1.85 ± 0.73  mm, 
p<0.01 and 2.17 ± 1.48  mm, p<0.05). These results dem-
onstrate the superiority of Groupwise-LLR in terms of 
tracking quality.

Strain accuracy
Figure 4 shows the global strain curves of three subjects, 
each from a different study group. For every CMR-FT 
method, the MI and DCM subjects had lower strains 
than the control. However, whereas the two groupwise 
methods generated strains closer to zero at late-diastole, 
the two pairwise methods generated nonzero strains 
in late-diastole due to the drift effect (arrows). Figure  5 
shows the mid-ventricular strain maps of an MI subject, 
who has wall thinning and akinesia in the septum. All 
four methods captured the reduction of radial strain in 

Fig. 2  Plots of the end-point errors (EPE), voxelwise strain errors (VSE), and global strains (GS) over a cardiac cycle for one simulated subject. The curves 
were plotted as a function of normalized time. Groupwise-LLR achieved the lowest errors among the studied methods for tracking, voxelwise strain 
estimation, and global strain estimation. The largest improvement occurred at end-systole (orange arrows). In late-diastole, the four groupwise meth-
ods were more accurate than Farneback optical flow and pairwise registration (blue arrows) due to the elimination of the drift effect. LAX = long-axis; 
SAX = short-axis; LS = longitudinal strain; CS = circumferential strain; RS = radial strain
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the septum; however, Farneback showed more inaccu-
rate strains compared with the other methods. The late-
diastolic displacement and strain estimates also appeared 
more accurate with the groupwise registration methods, 
due to the elimination of the drift effect. An additional 
movie file shows the estimated strain maps across the 
whole cardiac cycle [see Additional file 1].

Figure 6 shows the mean and 95% confidence interval 
of the global strain curves over each study group obtained 
by different methods. One can notice the systematic 
occurrence of drift effects in late-diastole with the two 
pairwise methods (arrows), which was largely reduced by 
the two groupwise methods. The mean absolute value of 
the late-diastolic GCS/GRS were 1.51%/4.11% for Farne-
back optical flow and 1.33%/4.09% for the pairwise reg-
istration. In comparison, the mean absolute value of the 
late-diastolic GCS/GRS were 0.74%/1.60% for Group-
wise-GLR, and 1.00%/1.98% for Groupwise-LLR.

Table 2 shows the end-systolic global strains obtained 
by different methods for each study group. Groupwise-
LLR generated a significantly greater GRS for every study 
group than the other methods, while the GCS was more 
similar. These trends were consistent with the findings 
from the simulated dataset.

Reproducibility
Figure  7 shows the inter-observer reproducibility of 
each CMR-FT method using ICC [33]. For all methods, 
the ICC of GCS was “moderate” to “excellent” while the 
ICC of GRS was “excellent”. Figure  8 shows the results 
of the intra-observer reproducibility evaluation. For all 
methods, the ICC of both GCS and GRS were “excellent”. 
These results suggest that the four methods have similar 
inter/intra-observer reproducibility.

Patient dataset
Table  3 compares the ICC of different methods with 
tagging for end-systolic global strains. For end-systolic 
GCS, pairwise registration, Groupwise-GLR, and Group-
wise-LLR all showed a stronger correlation with tagging 
than Farneback optical flow. For end-systolic GRS, both 
groupwise methods showed a stronger correlation with 
tagging than the optical flow and pairwise registration 
in the mid-ventricular slice (r = 0.80 and 0.78 vs. r = 0.55 
and 0.72), apical slice (r = 0.50 and 0.57 vs. r = 0.46 and 
0.39), and mean over the three slices (r = 0.65 and 0.69 
vs. r = 0.49 and 0.56). All feature tracking-based global 
strains had a significant correlation with those based on 
tagging-MRI, except the apical radial strain measured by 
the pairwise registration (p = 0.06).

Figure 9 shows the bull’s eye plots of the per-segment 
ICC of each method relative to tagging-MRI. For the cir-
cumferential strain, pairwise registration, Groupwise-
GLR, and Groupwise-LLR achieved similar performances Ta
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and outperformed Farneback optical flow. For the radial 
strain, Groupwise-LLR yielded higher correlation coeffi-
cients than Farneback optical flow, pairwise registration, 
and Groupwise-GLR in 13, 10, and 13 of 16 segments, 
respectively, suggesting an improved accuracy in regional 
radial strain estimates.

Discussion
In this work, we propose a novel CMR-FT method based 
on deformable groupwise registration with an LLR dis-
similarity metric. We evaluated the myocardial tracking 
quality, strain accuracy, and strain inter/intra-observer 
reproducibility of the proposed method via simulated 
and in vivo data. The simulations show that the pro-
posed Groupwise-LLR method was more accurate in 
both tracking and strain estimation than the other meth-
ods. Results on the ACDC dataset show that the pro-
posed method improved tracking quality and suppressed 
the drift effect common for optical flow and pairwise 

registration. However, the studied CMR-FT methods 
were similarly reproducible. The patient data show that 
Groupwise-LLR achieved a stronger correlation with tag-
ging for the radial strains in the median slice, apical slice, 
and most myocardial segments.

Feature tracking based on cardiac cine MRI has drawn 
increasing attention due to its reproducibility, ease of use, 
and excellent value for risk stratification and prognosis of 
cardiac diseases [4, 34, 35]. Optical flow and pairwise reg-
istration are currently the major algorithms used in exist-
ing commercial software [8, 36]. However, since both of 
them track the myocardium frame-by-frame, small errors 
within each tracking step can accumulate to a larger 
error, resulting in a less accurate evaluation of myocar-
dial contractility in the later cardiac phases [9]. On the 
other hand, although groupwise registration has been 
postulated to provide more accurate myocardial tracking 
[16, 17], little data exist to evaluate the accuracy of strains 
measured by the groupwise registration methods. Our 

Fig. 3  Comparison of the tracking quality of different methods on the ACDC dataset. The height of each bar represents the mean value of the mean 
distance between the predicted contour by each method and the manually drawn contour at end-systole. The error bar indicates the standard deviation. 
For each subject, only the basal, mid-ventricular, and apical slices were used for the contour tracking. The p value and effect size (es) from the one-sided 
Wilcoxon sign rank test are labeled over each bar for the three alternative methods. Groupwise-LLR showed a significant reduction of mean distance 
compared with the other methods for both the epicardial and endocardial contours
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findings filled this niche by showing that groupwise reg-
istration methods indeed generate more accurate strain 
estimates than those pairwise methods, especially for the 
radial strain which has been proven to be highly related 
to amyloidosis [37], myocarditis [38], aortic stenosis [39], 
etc. Furthermore, by minimizing the drift effect, the pro-
posed method provides a more accurate estimation of the 
strains in the diastolic phase. The diastolic function of the 
heart can be affected by various diseases, such as heart 
failure and cardiomyopathies [40, 41]. Therefore, the 
improved accuracy in the estimation of diastolic strains 
and strain rates may translate to more accurate diagnosis 
and prognosis of the relevant diseases. In addition to the 
evaluation of the left ventricular function, the proposed 
method may also be used to analyze the function of other 
chambers, such as the right ventricle [42] and left atrium 

[43]. For these chambers, the assessment of diastolic 
function is also very important. For example, the strains 
for the left atrium are usually divided into reservoir 
strain, conduit strain, and booster strain, where the lat-
ter two occur in the diastolic phase [44]. A more accurate 
estimation of these diastolic strains may provide more 
accurate evidence for diagnosis and prognosis of various 
diseases.”

Recently, due to the rapid advances of machine learn-
ing, many CMR-FT methods based on deep learn-
ing have been proposed [17, 45–50]. However, these 
learning-based feature tracking methods were almost all 
based on pairwise registration, and thus still suffer from 
the same problem as their optimization-based counter-
parts. On the other hand, although some learning-based 
groupwise registration methods have also been proposed 

Fig. 4  Global circumferential and radial strain curves of three subjects from different study groups in the ACDC dataset. The curves were plotted as a 
function of normalized time. The end-diastolic and end-systolic mid-ventricular images of each subject are shown at the top of each column. Normally, 
the strain at the end of the cardiac cycle should be nearly zero due to the periodicity of the cardiac motion. However, in the presence of the drift effect, 
the estimated late-diastolic strain can be significantly different from zero, which is observed for the Farneback optical flow and pairwise registration but 
not for the groupwise methods. ED = end-diastolic; ES = end-systolic; DCM = dilated cardiomyopathy; MI = myocardial infarction; NOR = normal cardiac 
anatomy and function; GCS = global circumferential strain; GRS = global radial strain
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Fig. 5  Mid-ventricular cine images of a subject with 
myocardial infarction in the ACDC dataset and the cor-
responding end-systolic and late-diastolic displacement 
fields, circumferential strain maps, and radial strain maps. 
The septal wall (arrows) exhibited abnormal thinning 
and akinesia due to the presence of infarction. Farne-
back caused nonsmooth estimates of the circumferential 
strain and underestimates of the radial strain in the an-
terior wall. Both Farneback and pairwise registration suf-
fered from the drift effect and manifested nonnegligible 
displacements and strains in the late-diastolic phase. 
The groupwise registration methods demonstrated a 
smoother circumferential strain map, more accurate 
radial strain estimates, and a reduction of drift effect. 
ED = end-diastolic; ES = end-systolic; LD = late-diastolic 
(corresponding to the last frame); CS = circumferential 
strain; RS = radial strain

 

Fig. 6  The mean and confidence interval of the global circumferential and radial strain curves over each study group (n = 20) in the ACDC dataset. Each 
curve represents an average global strain, with different colors representing different study groups. The shade around each curve represents the 95% con-
fidence interval at each time point. The arrows highlight the systematic drift effect of the Farneback optical flow and pairwise registration. GCS = global 
circumferential strain; GRS = global radial strain; DCM = dilated cardiomyopathy; MI = myocardial infarction; ARV = abnormal right ventricle; HCM = hyper-
trophic cardiomyopathy; NOR = normal cardiac anatomy and function
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recently for cardiac cine MRI [51–53], none of them 
have been applied to strain estimation. The improve-
ment of our method over traditional pairwise feature 
tracking indicates that the application of learning-based 
groupwise registration methods could potentially yield 
a more accurate assessment of the strains. Additionally, 
learning-based strain estimation methods usually require 
a relatively diverse training dataset to ensure generaliz-
ability for different diseases, scanners, and image quali-
ties. However, for some anatomies, such as the right 
atrium and pulmonary artery, such a diverse dataset has 
not been publicly available. As our method is completely 
unsupervised, its application to strain estimation for 
other chambers and vessels can be more easily available.

The study and technique have limitations. Firstly, we 
did not evaluate the longitudinal strain over the in vivo 
datasets. However, the results on the simulated data-
set preliminarily validated the potential of the proposed 
method for longitudinal strain estimation. Secondly, 
we only validated our method using a relatively small 
patient cohort. Further evaluation based on a larger and 
more diverse patient cohort is highly warranted. Thirdly, 
we only applied our method to 2D cine images and thus 
could not avoid the errors caused by the out-of-plane 
motion. Application of the method while exploiting the 
correlation between adjacent image planes may partially 
account for the influence of the through-plane motion 
[54]. Furthermore, the development of 3D cine imag-
ing methods [55, 56] and strain estimation methods may 
provide an ultimate solution to this issue. Fourthly, since 
we did not assess the proposed method for different 
field strengths, slice thicknesses, flip angles, resolutions, 
sequences (e.g., GRE), and artifacts (e.g., severe banding 
and flow artifacts [57]), it is not yet known how robust 
the method is to images of different qualities. Although 
the proposed groupwise registration method may be 
relatively robust to low-quality images due to the exploi-
tation of the context information of the whole image 
sequence, this awaits systematic investigation in large-
cohort clinical studies. Finally, the computational time of 
the proposed method is relatively long. The typical com-
putational time of the four CMR-FT methods for pro-
cessing a single cine movie was 0.8s (Farneback optical 
flow), 33s (pairwise registration), 24s (Groupwise-GLR), 
and 38s (Groupwise-LLR). However, the computational 
time of the proposed method is still within a reasonable 
range. Further accelerations can be obtained by adopting 
patchwise parallel computation for the LLR dissimilarity 
and a more efficient optimization algorithm. Moreover, 
learning the complex groupwise optimization process 
with an end-to-end neural network may also reduce the 
computational time to a large extent.
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Fig. 7  Bland-Altman analysis for the inter-observer reproducibility evaluation of the end-systolic global strains based on the ACDC dataset. The intraclass 
correlation coefficient (ICC) and its 95% confidence interval were labeled at the top of each plot. The four methods had similar inter-observer reproduc-
ibility. The disagreement of global circumferential strain (GCS) was greater than that of global radial strain (GRS) for every method. ES = end-systolic; 
DCM = dilated cardiomyopathy; MI = myocardial infarction; ARV = abnormal right ventricle; HCM = hypertrophic cardiomyopathy; NOR = normal cardiac 
anatomy and function

 

Fig. 8  Bland-Altman analysis for the intra-observer reproducibility evaluation of the end-systolic global strains based on the ACDC dataset. The intraclass 
correlation coefficient (ICC) and its 95% confidence interval were labeled at the top of each plot. The four methods manifested similarly high intra-
observer reproducibility. GCS = global circumferential strain; GRS = global radial strain; ES = end-systolic; DCM = dilated cardiomyopathy; MI = myocardial 
infarction; ARV = abnormal right ventricle; HCM = hypertrophic cardiomyopathy; NOR = normal cardiac anatomy and function
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Conclusions
In conclusion, we developed a CMR-FT method based on 
deformable groupwise registration with an LLR dissimi-
larity metric. Our results based on simulated and in vivo 
datasets suggest that the method improves the accuracy 
of myocardial tracking and strain estimation compared 
with previous methods. Application of the proposed 
method may thus facilitate a more accurate assessment of 
the myocardial function in the clinical setting, especially 
along the radial direction and in the diastolic phase.
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