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Abstract 

Background Alzheimer’s Disease is a neurodegenerative condition leading to irreversible and progressive brain 
damage, with possible features such as structural atrophy. Effective precision diagnosis is crucial for slowing disease 
progression and reducing the incidence rate and morbidity. Traditional computer-aided diagnostic methods using 
structural MRI data often focus on capturing such features but face challenges, like overfitting with 3D image analysis 
and insufficient feature capture with 2D slices, potentially missing multi-planar information, and the complementary 
nature of features across different orientations.

Methods The study introduces MHAGuideNet, a classification method incorporating a guidance network utilizing 
multi-head attention. The model utilizes a pre-trained 3D convolutional neural network to direct the feature extrac-
tion of multi-planar 2D slices, specifically targeting the detection of features like structural atrophy. Additionally, 
a hybrid 2D slice-level network combining 2D CNN and 2D Swin Transformer is employed to capture the interrelations 
between the atrophy in different brain structures associated with Alzheimer’s Disease.

Results The proposed MHAGuideNet is tested using two datasets: the ADNI and OASIS datasets. The model achieves 
an accuracy of 97.58%, specificity of 99.89%, F1 score of 93.98%, and AUC of 99.31% on the ADNI test dataset, dem-
onstrating superior performance in distinguishing between Alzheimer’s Disease and cognitively normal subjects. 
Furthermore, testing on the independent OASIA test dataset yields an accuracy of 96.02%, demonstrating the model’s 
robust performance across different datasets.

Conclusion MHAGuideNet shows great promise as an effective tool for the computer-aided diagnosis of Alzheimer’s 
Disease. Within the guidance of information from the 3D pre-trained CNN, the ability to leverage multi-planar infor-
mation and capture subtle brain changes, including the interrelations between different structural atrophies, under-
scores its potential for clinical application.
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Introduction
Alzheimer’s Disease (AD) is one of the most prevalent 
progressive neurological diseases and a primary cause 
of dementia [1]. AD typically causes prominent amnes-
tic cognitive impairment. The presentation with short-
term memory difficulty is the most common symptom 
but the impairments in expressive speech, visuospatial 
processing, and executive functions also often occur [2]. 
Since no cure has been developed for AD yet, the current 
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treatment is focused on reducing the progress speed to 
a severe stage. Therefore, an early precision diagnosis is 
crucial for slowing the disease’s development and reduc-
ing the incidence rate and morbidity.

Clinically, sMRI provides high-resolution structural 
images of the brain, enabling the observation of ana-
tomical and functional neural changes associated with 
AD. In clinical practice, experienced radiologists visu-
ally assess the sMRI images using standardized rating 
scales to determine the extent of atrophy in specific 
areas such as the medial temporal lobe, posterior brain, 
or entire brain. For example, the Medial Temporal Atro-
phy (MTA) score, illustrated in Fig. 1, reflects the sever-
ity of atrophy in the medial temporal lobe [3]. However, 
the manual analysis of the images is not only time-con-
suming but also inherently subjective, heavily relying on 
the abilities and experience of a clinician. Additionally, 
processing massive and complex sMRI images is a chal-
lenging task for clinicians.

With the development of machine learning (ML) 
techniques, many algorithms employing medical imag-
ing have emerged for computer-aided diagnosis (CAD) 
applications. For instance, DermoNet [4] has shown 
significant improvements in dermoscopic disease rec-
ognition, highlighting the effectiveness of deep learn-
ing models in medical image analysis. Building on 
these advances, numerous CAD algorithms for AD 
utilizing sMRI have also been proposed. Traditional 
ML approaches split brain sMRI images into different 
regions of interest (ROIs) using a structural template 
and apply specific algorithms to discern structural vari-
ations or volume changes in the areas crucial to AD 
progression [5–7]. Subsequently, these features are 
input into an ML model for classification, such as a ran-
dom forest or support vector machine. However, this 
approach requires a manual feature selection procedure, 
limiting the model’s ability to capture complex patterns 
in the data. In contrast, convolutional neural networks 
(CNNs), which is a deep learning model, autonomously 
derive discriminative features from sMRI images, pro-
viding superior generalization capabilities [8–11]. This 

automatic feature extraction is advantageous for captur-
ing intricate patterns in medical images, which is essen-
tial for accurate disease diagnosis. Despite their efficacy, 
however, CNNs face limitations in learning contextual 
information. This results in difficulties in recognizing 
long-range dependencies and correlations among dis-
tant anatomical regions in sMRI analysis. Such chal-
lenges arise because critical regional changes are not 
isolated but intricately interconnected. To overcome 
the limitations of CNNs, some research has focused on 
integrating attention mechanisms to enhance feature 
extraction. Bakkouri et  al. [12] proposed a multi-scale 
feature extraction and attention-based network, which 
demonstrates the effectiveness of combining multi-level 
representations with attentional mechanisms for down-
stream tasks. Furthermore, novel Transformer-based 
models such as the Vision Transformer (ViT) [13] and 
Swin Transformer [14] have been introduced, yielding 
impressive results compared to CNNs. The Swin Trans-
former demonstrates an improved performance over 
traditional CNNs by more effectively integrating local 
details, long-range dependencies, and global contex-
tual information, which is vital in comprehending the 
complex structure of brain images. In addition, some 
literature has proposed models that combine CNN 
and Transformer. In [15], a 2.5D-subject method and a 
two-stream structure combining CNN and Swin Trans-
former were developed to enhance the ability to capture 
features.

Recent advancements have led to the development 
of 3D CNN, which facilitates feature extraction at 
the subject-level across the entire image, as opposed 
to the slice-level analysis characteristic of 2D CNNs 
[16]. While this approach is promising for capturing 
the spatial relationships in 3D data, it also faces chal-
lenges such as a higher propensity for overfitting on 
smaller datasets and longer training durations due 
to increased computational demands. Notably, each 
slice of the sMRI image across different planes con-
tains significant local information, as shown in Fig. 2. 
Therefore, considering both global information at the 

Fig. 1 Visual example of medial temporal atrophy(MTA) in different stages of brain atrophy where the L denotes left and the R denotes right. The 
MTA score is graded ranging from 0 to 4, with a higher score indicating a greater degree of atrophy
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subject-level and diverse local information at the slice-
level could provide valuable insights. Global informa-
tion is instrumental in comprehending changes in the 
overall brain structures, whereas local information 
is crucial for detecting subtle alterations in specific 
areas. Considering both is essential for the accurate 
diagnosis of AD.

In this study, to address the issue of excessive reliance 
on doctors’ experience and skills in the clinical diagnosis 
of AD, we design a CAD method called MHAGuideNet 
(Multi-head Attention Guide Network). This method 
overcomes some of the limitations found in previous 
CAD methods. CNN-based methods have limitations 
in learning feature dependencies, while the lesion areas 
in patients show certain correlations. Transformer-
based methods are less capable of capturing subtle local 
changes in AD lesion areas compared to CNNs. Addi-
tionally, previous studies have focused on extracting fea-
tures from the entire image or specific directional slices, 
ignoring the complementarity between features from 
different perspectives. Moreover, due to the relatively 
small dataset of medical images, it is difficult to capture 
lesions through equal treatment of all input features in 
limited iterative training. The MHAGuideNet harnesses 
the strengths of the pre-trained 3D CNN model to guide 
the feature extraction process in 2D slices from coronal, 
sagittal, and axial planes. This strategy not only augments 
the model’s ability to comprehend intricate brain struc-
tures but also mitigates computational demands to a sig-
nificant degree.

The main contributions of this study are summarized 
as follows:

(1) To enable rapid and accurate CAD of Alzheimer’s 
Disease, we propose MHAGuideNet, which integrates a 
guidance network. This guidance component skillfully 
utilizes features extracted from 3D images to direct the 
2D slices feature extraction process. The significance 
of this guidance strategy lies in its ability to detect 
detailed information in multi-planar 2D slices while 
concurrently encapsulating the complex spatial rela-
tionships inherent in 3D images. This approach affords 
a more holistic and nuanced understanding of the atro-
phy and abnormalities associated with AD.

(2) For a more nuanced and precise analysis of sMRI 
images, we deploy a multi-head attention mechanism 
within the guidance network. This mechanism selec-
tively focuses on the most salient regions within the 3D 
feature map, effectively directing the analysis of sub-
sequent 2D slices toward the regions of interest. Such 
precision in guiding the feature extraction process is 
pivotal for synthesizing a comprehensive and accurate 
brain representation.

(3) Integrating local details and long-range depend-
encies is essential for capturing the complex correla-
tions of brain structure within the 2D slice. To achieve 
this, we combine the 2D CNN and the 2D Swin Trans-
former with the attentional feature fusion mechanism 
in the 2D slice-level network of MHAGuideNet. This 
approach harnesses the CNNs’ proficiency in extract-
ing local and fine-grained features at the slice-level, 
while the Swin Transformer excels in capturing long-
range dependencies and contextual information. The 

Fig. 2 The information of the regions of interest in different planes, including sagittal plane, coronal plane and axial plane
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synergy of these technologies in our network facili-
tates a more in-depth, contextually enriched analysis 
of sMRI images, leading to a potentially more accurate 
and reliable diagnosis of Alzheimer’s Disease.

Method
Our proposed model is a hybrid deep learning system 
combining a guidance mechanism with 2D slice-level 
feature processing, informed by 3D image features 
from a pre-trained 3D CNN. The model architecture, 
depicted in Fig.  3, a pre-trained 3D CNN guides the 

2D network to focus on significant regions and the 2D 
slice-level network integrates 2D CNN and 2D Swin 
Transformer modules to extract the planar features 
of the slices and establish semantic connections using 
contextual information for capturing relationship fea-
tures across different regions of an image. The final 
output involves concatenating the guided 2D features 
in a fully connected layer, followed by a softmax layer 
for categorization probabilities. In the Algorithm 1, we 
provide a detailed example to illustrate the application 
of our method.

Fig. 3 The overall architecture of the proposed MHAGuideNet, including pre-trained 3D CNN network, 2D slice-level network and novel guidance 
network
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Algorithm 1 MHAGuideNet for AD diagnosis

Pre‑trained 3D CNN network
To extract information including volumetric information 
and intricate spatial relationships from 3D image data 
to guide the 2D slice-level feature extracting, we use a 
pre-trained 3D CNN network. This technique effectively 
captures spatial correlations across all three dimensions, 

making it ideal for analyzing volumetric sMRI data. 
In the 3D CNN architecture, the design incorporates 
a series of distinct blocks. Each of these blocks is com-
posed of several layers: a 3D convolution layer, followed 
by a 3D Batch Normalization (BN) layer, a ReLu activa-
tion layer, and culminating with a 3D max pooling layer. 
This sequential arrangement is repeated across all four 
blocks. After these blocks, a 3D average pooling layer 
condenses the multi-channel feature maps into a singu-
lar vector to encapsulate the global information derived 
from the preceding layers. We pre-train the network to 
classify AD and CN and subsequently utilize the output 
of average pooling as the 3D feature for guidance.

Guidance network
The 3D image data contains rich spatial information that 
is crucial for diagnosing Alzheimer’s Disease. However, 
using 3D networks also presents certain risks. While 
the 3D CNN network excels at capturing the spatial 
relationships in 3D data that are missed by 2D slices, it 
faces challenges such as a higher propensity for overfit-
ting on smaller datasets and longer training times due 
to increased computational demands. To address these 
issues, we propose a guidance network that leverages the 
3D information captured by the pre-trained 3D CNN to 
enhance 2D slice-level feature extraction. An example of 
this process is illustrated in Fig. 4. The visualization dem-
onstrates how 3D features extracted by the 3D CNN are 
processed by the guidance network to generate attention 
features. These attention features subsequently guide the 
extraction of 2D features. The heatmap reveals that the 
regions of interest in the 3D features correspond to the 
highlighted areas in the 2D feature maps.

As shown in Fig.  3, the guidance network comprises 
two main components: the guidance linear block and 
the multi-head attention mechanism. In the guid-
ance linear block, the output of the 3D CNN network 
Xin = [x1, x2, . . . , xM ]T ∈ R

M×C is transformed into an attention 
vector which is represented as � = [φ1,φ2, . . . ,φN ]

T , 
where N  is the output dimension of the linear layer. Here, 

Fig. 4 Heatmap showing guidance of 2D feature extraction by 3D features. The visualization illustrates the process where 3D features extracted 
by 3D CNN are processed by a guidance network to obtain attention features. These attention features then guide the extraction of 2D features. The 
heatmap shows that the regions of interest in the 3D features correspond to the highlighted areas in the 2D feature maps
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xm ∈ R
1×C , with M being the number of features and C 

the dimension of each feature in the 3D feature space. 
The transformation by the linear attention layer is crucial 
as it reduces the dimensionality of the 3D features from 
M × C to N  , making them more manageable and suit-
able for guiding the 2D feature extraction process. The 
mathematical formulation of this layer is as follows:

where Wa is the weight of and b is the bias vector. To con-
vert the attention vector into a guidance signal � , a soft-
max activation function is applied as follows:

The softmax function normalizes the attention vec-
tor. The resulting guidance signal emphasizes the most 

(1)� = XinWa + b Wa ∈ R
C×N

; b ∈ R
N ,

(2)� = Softmax(�) � ∈ R
N .

significant features of the 3D images. To further refine the 
guidance process, a multi-head attention mechanism is 
employed as shown in Fig. 5. This layer facilitates a com-
plex, nuanced interaction between the 3D and 2D feature 
spaces. The attention mechanism dynamically adjusts to 
the input data, allowing the model to focus on the most 
relevant spatial features extracted from the 3D data for 
more precisely directing the processing of subsequent 2D 
slices towards the regions of importance. When employing 
a h-head multi-head attention mechanism, the input guid-
ance signal � is first mapped into queries (Q), keys (K), and 
values (V), with each mapping defined by the correspond-
ing weight matrices ( WQ , WK , WV  ). This process can be 
expressed through the following formulas:

(3)Q = � ·WQ, K = � ·WK , V = � ·WV .

Fig. 5 Multi-head attention mechanism calculation process
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Subsequently, each mapping is split into h independ-
ent attention heads, for i = 1, . . . , h , each head i utiliz-
ing distinct weight matrices WQi,WKi,WVi.

Next, attention scores are computed for each head i, 
using the dot product of queries Qi and keys Ki , nor-
malized by the square root of the dimensionality dk:

where dk is the dimensionality of Qi and Ki . Applying the 
softmax operation to each head yields attention weights 
Softmaxi , which are then applied to the corresponding 
values Vi.

Finally, the outputs from all heads are concatenated 
or averaged to obtain the ultimate multi-head atten-
tion output:

For guidance, we employ the output of the multi-
head attention mechanism to individually modulate 
each slice-level feature map from sagittal, coronal, 
and axis. This process ensures that each plane is spe-
cifically adjusted based on the guidance derived from 
the 3D feature information. Specifically, For each 2D 
feature map from different anatomical planes (sag-
ittal F2Dsag , coronal F2Dcor and axis F2Daxi ), we use the 
attentional guidance signal � for weighting to form the 
guided 2D features:

where F2Dsag , F2Dcor , F2Daxi denote the feature maps 
from the sagittal, coronal, and axis 2D slice-level net-
works respectively, and ⊙ represents element-wise 
multiplication.

After guiding each of these feature maps, we concat-
enate them to form the final integrated feature repre-
sentation Fg:

This concatenated feature Fg offers a comprehen-
sive view, encompassing enhanced 2D features from 
all three anatomical planes adeptly informed by the 
spatial information discerned from the 3D data. This 
nuanced application of the guidance linear and multi-
head attention mechanism ensures that each ana-
tomical direction is distinctly influenced by the 3D 
features, providing a robust and detailed basis for the 
diagnostic tasks.

(4)ψi = Softmax
Qi · K

T
i

dk
· Vi,

(5)� = Concat([ψ1;ψ2; . . . ;ψh]).

(6)

Fgsag = F2Dsag ⊙�,

Fgcor = F2Dcor ⊙�,

Fgaxi = F2Daxi ⊙�,

(7)Fg = Concat
(

Fgsag , Fgcor , Fgaxi
)

.

2D slice‑level network
Alzheimer’s Disease is a neurodegenerative condition 
marked by the progressive deterioration of crucial brain 
regions. Notably, the hippocampus, essential for memory 
formation, is often among the first areas impacted, lead-
ing to memory loss. As AD advances, other cerebral cor-
tex areas, such as the amygdala, which is responsible for 
emotion regulation, and the hypothalamus, which man-
ages daily physiological activities, also degenerate. These 
changes are interlinked, each affecting the other, and are 
critical to understanding AD’s holistic progression. To 
accurately detect subtle changes in these key brain regions 
in AD patients and understand how these alterations col-
lectively influence brain function from multi-planar 2D 
slices, our 2D slice-level network combines 2D CNN and 
2D Swin Transformer with attention feature fusion mech-
anism. The input to the 2D slice-level feature network 
consists of 40 automatically selected central slices from 
three anatomical planes: sagittal, coronal, and axial. Each 
plane is processed separately by its dedicated slice-level 
network, with 3D image features providing guidance to 
account for the unique characteristics of each orientation.

Residual module and advanced module
The 2D slice-level feature extract network is designed 
for sophisticated feature extraction in complex image 
datasets. The network initiates with a standard 2D con-
volutional layer for preliminary feature detection. This 
is followed by batch normalization and ReLU activation, 
which provide stability and introduce non-linearity. The 
core of the network comprises multiple residual mod-
ules. Each primary residual module within the network 
contains two convolutional layers, accompanied by batch 
normalization and ReLU activation. A shortcut connec-
tion is included in these modules to mitigate the issue of 
vanishing gradients. On the basic standard residual mod-
ule, we incorporate AFF [17] to introduce both local and 
global attention mechanisms for refined feature extrac-
tion to form our advanced module. As depicted in Fig. 3, 
these advanced modules employ dual branches at varying 
scales to extract channel attention weights: one for global 
feature channel attention via global pooling, and the 
other for local feature channel attention via point-wise 
convolution. After attention extraction, the feature maps 
are fused based on these attention weights.

Swin Transformer module
For deeper feature processing and relationship cap-
turing, the network incorporates the Swin Trans-
former module. This module’s window-based attention 
mechanism is pivotal for detecting complex patterns 
and contextual information, significantly surpassing 
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the capabilities of traditional convolutional methods. 
To effectively address the computational demands of 
global self-attention designed in conventional Trans-
former modules, the Swin Transformer employs multi-
head self attention (MSA) within confined windows. 
The module is configured in two distinct ways: the 
Window-based MSA (W-MSA) focuses on local win-
dow self-attention, while the Shifted Window-based 
MSA (SW-MSA) enhances the facilitation of informa-
tion interaction across different windows.

As illustrated in Fig.  6, the Swin Transformer mod-
ule significantly enhances feature correlation, resulting 
in strong correlations compared to the medium corre-
lations observed without it. This demonstrates that the 
inclusion of the Swin Transformer improves the cor-
relation between the captured multi-plane and multi-
slice features, thereby enhancing the robustness and 
accuracy of our method.

Classification module
The guided features from the sagittal, coronal, and 
axis planes are concatenated and then passed through 
the fully connected layer. The softmax function 
applied to the final layer’s output provides the prob-
ability of the subject’s categorization into specific 
classes, such as Alzheimer’s Disease or Cognitively 
Normal (CN). For classification purposes, we employ 
the cross entropy loss function, Lp , which is formu-
lated to be straightforward yet effective. The loss 
function is defined as:

where N represents the total number of subjects in the 
dataset, and C denotes the number of categories. ync is 
an indicator variable that is 1 if the true class for the n-
th subject is c, and 0 otherwise. The term pnc represents 
the predicted probability that the n-th subject belongs to 
class c, as outputted by the model.

Experiment & results
Dataset and preprocessing
The dataset utilized in this research is sourced from 
two publicly accessible databases: the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (http:// adni. loni. 
usc. edu/) [18] and the Open Access Series of Imaging 
Studies (OASIS) (https:// sites. wustl. edu/ oasis brains/) 
[19]. Specifically, this study employs the ADNI-1, 
ADNI-2, and OASIS-1 datasets, which consist of 
T1-weighted magnetic resonance imaging (MRI) brain 
scans. The ADNI sample includes 524 subjects, com-
prising 254 patients with AD and 270 CN individuals. 
The dataset is divided into 60% for training, 20% for 
validation, and 20% for testing. To evaluate the model’s 
generalizability, an independent test set consisting of 
50 AD and 48 CN subjects from the OASIS dataset is 
used. The demographic characteristics of the subjects 
are detailed in Table 1. Additionally, cognitive function 
is assessed using the Mini-Mental State Examination 
(MMSE) scores, where higher scores indicate better 
cognitive performance and lower scores suggest poten-
tial cognitive impairment.

(8)Lp = −
1

N

N
∑

n=1

C
∑

c=1

ync log(pnc),

Fig. 6 Feature correlations heatmaps before and after combining with the Swin Transformer module. Values closer to 1 indicate a stronger 
correlation

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://sites.wustl.edu/oasisbrains/
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To optimize the model’s focus on relevant brain 
structures, a series of preprocessing steps is applied 
to T1-weighted MRI images before model train-
ing. These steps were conducted using the Com-
putational Anatomy Toolbox CAT12 (available at 
https:// neuro- jena. github. io/ cat/). Figure  7 depicts 
the preprocessing pipeline, which includes AC-PC 
correction, alignment with the MNI template, skull 
stripping, and segmentation into gray matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF). 
Consequently, this process yields standardized 3D 
GM images with dimensions of 121× 145× 121 with 
a spatial resolution of 1.5× 1.5× 1.5mm3 , serving as 
the input for our model. For the slice-level network, 
40 2D slices are automatically selected from the cen-
tral region of each plane. This choice is driven by the 
fact that the central region of the brain typically har-
bors the most critical anatomical structures perti-
nent to AD, thereby providing a focused and relevant 
dataset for the analysis.

Experimental setup and evaluation criteria
The proposed model is implemented on Python 3.7.16 
and Pytorch 1.10.0 with an Intel Core i5-12400F with 16 
GB of RAM and an NVIDIA GeForce RTX 3090 GPU 
24GB. The loss function in Eq. (8) is adopted to super-
vise the learning of the model parameters, which are 
optimized by the Adam optimizer with a learning rate 
of 0.001. To avoid over-fitting, we add an early stopping 
mechanism during the training process.

We evaluated the model performance from multi-
ple perspectives by using metrics including classifica-
tion accuracy (ACC), sensitivity (SEN), specificity (SPE), 
F1 score (F1), and the area under the receiver operating 
characteristic curve (AUC). These metrics are respectively 
defined as:

where TP denotes true positive, TN denotes true nega-
tive, FP denotes false positive, and FN denotes false 
negative. The AUC characterizes the classification per-
formance of the methods, the performance is better 
when AUC is closer to 1.

Comparison with different methods
To demonstrate the effectiveness of the proposed MHA-
GuideNet, we conducted a comparative analysis of the 
task of AD vs. CN classification with other methods. All 
methods are compared by training and testing on the 
same subjects from the ADNI dataset. Specifically, we 
have reproduced three models that utilize 3D sMRI: 3D 
Trans-ResNet [20], 3D ResNet [21], and 3D Swin Trans-
former [22]. Additionally, two 2D models are included 
that use the coronal slices from the same train dataset, 
with each subject’s central 40 slices selected: DE-ViT [23] 
(based on Vision Transformer) and 2D ResNet [24]. Fur-
thermore, we have also reproduced a combined 3D and 
2D model, M3T [25], for greater comparison. The experi-
ment results are shown in Table 2. The results presented 
in the table demonstrate the effectiveness of combining 
3D images and 2D slices for AD vs. CN classification. 
The proposed MHAGuideNet outperforms models that 
utilize only 2D or 3D modalities, achieving an accuracy 
of 0.9758 and an AUC of 0.9931. Furthermore, the incor-
poration of transformer models enhances results com-
pared to traditional CNN architectures, as evidenced by 

(9)

ACC =
TP+ TN

TP+ TN+ FP+ FN
,

SEN =
TP

TP+ FN
,

SPE =
TN

TN+ FP
,

F1 =
2× PRE× SEN

PRE+ SEN
,

PRE =
TP

TP+ FP
,

Table 1 Demographic information for each dataset and category. The MMSE score ranges from 0 to 30, with higher scores indicating 
better cognitive function. Each subject in every group has one 3D image and 120 slices (40 coronal, 40 sagittal, and 40 axial)

Dataset Group Train Val Test Age Gender MMSE
(3D images/2D slices) (3D images/2D 

slices)
(3D images/2D 
slices)

(Mean ± SD) (M/F) (Mean ± SD)

ADNI [18] AD 152/18240 51/6120 51/6120 75.52 ± 9.58 116/138 19.53 ± 4.47

MCI 205/24600 68/8160 68/8160 76.25 ± 9.58 167/174 22.85 ± 6.33

CN 162/19440 54/6480 54/6480 76.26 ± 6.76 125/145 26.13 ± 5.83

OASIS-1 [19] AD - - 50/6000 74.22 ± 8.71 21/29 20.15 ± 4.83

CN - - 48/5760 73.80 ± 7.85 26/22 27.20 ± 5.90

https://neuro-jena.github.io/cat/
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Fig. 7 The preprocessing pipeline of structural magnetic resonance imaging. The pipeline includes AC-PC correction, alignment with the MNI 
template, skull stripping and segmentation

Table 2 Comparison of different models for AD vs. CN classification, trained on the ADNI training dataset and tested on the ADNI test 
dataset

Method Architecture ADNI test dataset

ACC SEN SPE F1 AUC 

Only using 3D images

3D Trans-ResNet [20] 3D CNN + 2D Transformer 0.9143 0.8431 0.9815 0.9053 0.9683

3D ResNet [21] 3D CNN 0.8095 0.7843 0.8333 0.8000 0.9187

3D Swin Transformer [22] 3D Transformer 0.8857 0.8431 0.9258 0.8776 0.9330

Only using 2D slices

DE-ViT [23] 2D Transformer 0.9048 0.9412 0.9704 0.9057 0.9563

2D ResNet [24] 2D CNN 0.7905 0.8431 0.7407 0.7963 0.8228

3D images + 2D slices

M3T [25] 3D CNN + 2D CNN + 2D Transformer 0.9616 0.9412 0.9815 0.9600 0.9899

MHAGuideNet (ours) 3D CNN + 2D CNN + 2D Transformer 0.9758 0.8863 0.9989 0.9398 0.9931
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the higher accuracy of the 3D Trans-ResNet at 0.9143. In 
comparison with the M3T model, although our method 
falls slightly short in terms of sensitivity and F1 score, our 
model provides better overall accuracy, specificity, and 
AUC.

Ablation studies
Impact of guidance network
To emphasize the importance of the guidance network, 
we compare the proposed MHAGuideNet against models 
using the only 3D CNN network and the only 2D slice-
level network. Furthermore, To highlight the critical role 
of the guidance network in processing multi-planer data 
(coronal, sagittal, and axial planes) for enhanced model 
performance, we examine two configurations: (1) first 
concatenating features from the three planes and then 
applying the guidance network on the combined features, 
and (2) applying the guidance network independently on 
each plane before concatenating them (as implemented 
in our MHAGuideNet). It is important to note that we 
train the models on the four configurations mentioned 
above using the ADNI dataset. The diagrams illustrating 
the training loss, validation loss, and AUC are presented 
in Fig. 8.

The results, as presented in Table 3, demonstrate that 
employing the guidance network individually on each 
plane leads to remarkable improvements compared to 
the 3D-only and 2D-only networks on both the ADNI 
and OASIS test datasets. On the ADNI test dataset, 
MHAGuideNet achieves a 2.90% increase in accuracy 
and 2.05% in AUC compared to the only 3D CNN net-
work. Relative to the 2D-only network, MHAGuideNet 
achieves improvements of 1.45% in accuracy and 0.24% 
in AUC. These metrics highlight the model’s superior 
diagnostic performance. Additionally, only the 3D CNN 
network and the 2D slice-level network exhibit a notice-
able drop in performance on the independent OASIS 
test dataset, indicating limited generalization beyond the 
ADNI dataset. In contrast, MHAGuideNet maintains 

robust performance across both datasets, highlighting 
its enhanced generalization ability. Moreover, the results 
reveal that independently processing each plane with the 
guidance network achieves improvements across perfor-
mance metrics.

Impact of slice number
Table  4 presents a comparison of performance metrics 
between the 40-slice and full-slice configurations on the 
ADNI test dataset. The results show that both configura-
tions perform comparably across most metrics, with only 
minor variations. Notably, the sensitivity is slightly higher 
in the full-slice configuration, potentially due to the 
broader range of diagnostic features captured by using all 
slices. However, this comes at the cost of a longer average 
prediction runtime (RT) of 0.8746 seconds, compared to 
0.6532 seconds for the 40-slice configuration.

Overall, these results suggest that the full-slice setup 
offers a marginal increase in sensitivity but at the expense 
of efficiency, while the 40-slice configuration achieves 
similar performance with a more favorable runtime, 
making it a more practical choice for time-sensitive 
applications.

Impact of different planes
To gain a deeper understanding of the efficiency of our 
model in guiding multi-planar slices (coronal, sagittal, 
and axial planes), we conduct a comparative analysis of 
employing slice-level features within individual planes 
and across all planes. As shown in Table  5, the results 
reveal optimal performance metrics, including ACC, 
SEN, SPE, F1, and AUC, when considering information 
from all three planes simultaneously. This demonstrates 
the model’s capacity to capture intricate features by inte-
grating data from multiple planes. Compared with the 
sagittal plane and the coronal plane, the axial plane per-
forms better on ACC, SEN, and SPE. Considering clini-
cians mainly analyze the ventricle enlargement in the 
axial or coronal planes, and hippocampus atrophy in the 

Fig. 8 Diagram illustrating the training loss, validation loss and AUC during the training on the ADNI dataset



Page 12 of 16Nie et al. BMC Medical Imaging          (2024) 24:338 

Ta
bl

e 
3 

Co
m

pa
ris

on
 o

f c
la

ss
ifi

ca
tio

n 
pe

rf
or

m
an

ce
 w

ith
 a

nd
 w

ith
ou

t t
he

 g
ui

da
nc

e 
ne

tw
or

k 
on

 tw
o 

da
ta

se
ts

D
iff

er
en

t c
on

fig
ur

at
io

n
A

D
N

I t
es

t d
at

as
et

O
A

SI
S 

te
st

 d
at

as
et

A
CC

 
SE

N
SP

E
F1

AU
C 

A
CC

 
SE

N
SP

E
F1

AU
C 

O
nl

y 
3D

 C
N

N
 n

et
w

or
k

0.
94

68
0.

75
00

0.
99

85
0.

85
71

0.
97

26
0.

75
00

0.
68

00
0.

82
61

0.
76

00
0.

83
13

O
nl

y 
2D

 s
lic

e-
le

ve
l n

et
w

or
k

0.
96

13
0.

86
36

0.
98

77
0.

90
47

0.
99

07
0.

77
55

0.
70

00
0.

85
42

0.
76

09
0.

82
35

M
H

A
G

ui
de

N
et

 w
ith

 c
on

ca
te

na
te

d 
pl

an
es

0.
96

14
0.

84
09

0.
99

38
0.

90
24

0.
97

32
0.

91
84

0.
86

42
0.

98
00

0.
92

45
0.

95
77

M
H

A
G

ui
de

N
et

 w
ith

 s
ep

ar
at

e 
pl

an
es

0.
97

58
0.

88
63

0.
99

89
0.

93
98

0.
99

31
0.

96
02

0.
87

20
0.

99
10

0.
92

71
0.

98
85

 - 
Co

m
pa

re
 w

ith
 3

D
 n

et
w

or
k 

on
ly

( ↑
2.

9%
)

( ↑
13

.6
3%

)
( ↑

0.
04

%
)

( ↑
8.

72
%

)
( ↑

2.
05

%
)

( ↑
21

.0
2%

)
( ↑

19
.2

0%
)

( ↑
16

.4
9%

)
( ↑

16
.7

1%
)

( ↑
15

.7
2%

)

 - 
Co

m
pa

re
 w

ith
 2

D
 n

et
w

or
k 

on
ly

( ↑
1.

45
%

)
( ↑

2.
27

%
)

( ↑
1.

12
%

)
( ↑

3.
51

%
)

( ↑
0.

24
%

)
( ↑

18
.4

7%
)

( ↑
17

.2
0%

)
( ↑

13
.6

8%
)

( ↑
16

.6
2%

)
( ↑

16
.5

0%
)



Page 13 of 16Nie et al. BMC Medical Imaging          (2024) 24:338  

coronal plane [26, 27], our model MHAGuideNet has dif-
ferent abilities to analyze each plane and we can observe 
the importance to use all of the three planes in classifying 
sMRI images.

Impact of Swin Transformer module
The changes observed in AD subjects, such as cortical 
and hippocampal atrophy, are interconnected rather than 
isolated. The Swin Transformer module, integrated into 
our model, exhibits the capability to discern subtle altera-
tions in these pivotal brain regions and capture intercon-
nections between these changes. To assess the influence 
of incorporating the Swin Transformer in our model, as 
shown in the results presented in Table  6, we evaluate 
the impact of utilizing different quantities of Swin Trans-
former modules, ranging from zero to three, at the origi-
nal spatial locations. The experimental results show that 
the model achieves the highest performance in terms of 
ACC, SEN, F1, and AUC when three Swin Transformer 
modules are utilized. However, considering the compre-
hensive factors such as computational complexity and 
model parameters, we find that the inclusion of only two 
Swin Transformer is sufficient.

Robustness evaluation
To ensure the robustness of MHAGuideNet, we con-
duct 5-fold cross-validation on the ADNI datasets, 
using 203 AD subjects and 216 CN subjects in the train 
dataset and validation dataset, excluding those in the 
test dataset. As shown in Table  7, the mean accuracy, 
sensitivity, specificity, AUC, and F1 score across 5 folds 
are all high, with low standard deviations, indicating 
the model’s stability and robustness across different 
data splits.

Simultaneously, we simulate real-world imag-
ing artifacts by adding Gaussian noise to the sMRI 
images in the ADNI datasets. As shown in Table 8, the 
model maintains high performance even as noise lev-
els increase, with only a slight degradation in metrics, 
demonstrating its resilience to noisy inputs.

Attention maps
To demonstrate the ability of the proposed MHAGu-
ideNet in extracting features, we employ Grad-CAM 
[28] for feature visualization. Figure  9 illustrates nota-
ble brain regions in attention areas in the AD and CN 
classification tasks from the sagittal, coronal, and axial 
views, respectively. In the task of diagnosis of AD, the 
model’s attention spans across areas of the cortex brain, 
with a pronounced focus on the ventricles and the hip-
pocampus in three planes which indicates a widespread 

Table 4 Performance comparison between 40-slice and full-slice configurations on the ADNI test dataset. RT represents the average 
prediction runtime, with lower values indicating better performance

Slice ACC SEN SPE F1 AUC RT (s)
Number

Full Slices 0.9524 0.9216 0.9815 0.9495 0.9910 0.8746

40 Slices 0.9758 0.8863 0.9989 0.9398 0.9931 0.6532

Table 5 The experiment results of different planes used for 
guidance, including using sagittal plane, coronal plane, axial 
plane and multi planes

Different ACC SEN SPE F1 AUC 
Plane

Sagittal 0.9557 0.8324 0.9748 0.9175 0.9817

Coronal 0.9688 0.8465 0.9755 0.9078 0.9917

Axial 0.9691 0.8544 0.9877 0.9014 0.9879

ALL 0.9758 0.8863 0.9989 0.9398 0.9931

Table 6 The impact of Swin Transformer module with different 
number

Num ACC SEN SPE F1 AUC 

0 0.9302 0.8147 0.9212 0.8878 0.9407

1 0.9596 0.8814 0.9747 0.9270 0.9789

2 0.9758 0.8863 0.9989 0.9398 0.9931

3 0.9865 0.8977 0.9948 0.9504 0.9947

Table 7 5-fold cross-validation of the proposed MHAGuideNet 
on the ADNI dataset

ACC SEN SPE F1 AUC 

Mean 0.9689 0.8901 0.9930 0.9302 0.9926

Std Dev 0.0052 0.0087 0.0011 0.0043 0.0024

Table 8 Noise robustness validation of the proposed 
MHAGuideNet on the ADNI dataset

ACC SEN SPE F1 AUC 

0% Noise 0.9758 0.8863 0.9989 0.9398 0.9931

10% Noise 0.9645 0.8734 0.9901 0.9287 0.9856

20% Noise 0.9532 0.8605 0.9813 0.9176 0.9781

30% Noise 0.9418 0.8476 0.9725 0.9065 0.9707
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cortical involvement in AD. It is worth noting that these 
highlighted brain regions in the AD diagnosis align with 
findings from earlier clinical studies [29]. Additionally, 
Fig. 9 demonstrates that the heat map areas are distrib-
uted across three planes. This distribution suggests that 
our model has the potential ability to analyze AD-related 
abnormalities in the brain.

Discussion
Although many works have achieved encouraging 
results in computer-aided AD diagnosis based on sMRI 
using deep learning, there are still many limitations 
in applying the methods to the clinic. Traditional 3D 
CNN-based methods training can lead to increased 
model complexity and computational overhead, while 
2D slice-based methods may miss important multi-
planar information. In this study, we propose MHA-
GuideNet to address these limitations. Our method 
employs a guidance network to leverage 3D volumet-
ric information for guiding 2D slice feature extraction 
across three planes, effectively capturing comprehen-
sive spatial information with reduced computational 
cost. Additionally, the integration of CNN and Swin 
Transformer allows the model to capture the interrela-
tions between different structural atrophies associated 
with Alzheimer’s Disease, improving the detection of 
structural changes associated with AD.

Experiment results reveal that integrating 3D volu-
metric guidance with multi-planar 2D slice-level feature 
extraction significantly improves diagnostic performance 
compared to using 3D or 2D data alone. By integrat-
ing CNN and Swin Transformer, our model effectively 

captures both local structural features and long-range 
dependencies, addressing the limitations of CNNs in 
handling global context and structural relationships. Our 
comparisons suggest that MHAGuideNet achieves com-
petitive performance relative to other methods, high-
lighting its effectiveness.

In the early stages of Alzheimer’s Disease, identify-
ing and diagnosing mild cognitive impairment (MCI) 
is crucial for enabling early interventions. Conse-
quently, we also conduct experiments to assess the 
performance of the proposed MHAGuideNet in the 
MCI diagnosis. We use 341 MCI subjects from the 
ADNI datasets, and the demographic information is 
provided in Table 1.

As shown in Fig.  10, we design two distinct binary 
classification tasks: AD vs. MCI and MCI vs. CN. The 
proposed MHAGuideNet demonstrates limitations in 
classifying MCI, achieving accuracies of only 74.41% for 
AD vs. MCI and 80.78% for MCI vs. CN. These results 
highlight the challenges in distinguishing between subtle 
differences in cognitive impairment stages, which may be 
due to overlapping characteristics among these catego-
ries. Addressing this issue may require further explora-
tion of additional features.

Another limitation is observed when the model is 
tested on unseen OASIS datasets. Although the per-
formance metrics remain relatively high, there is a 
slight decrease in accuracy compared to the results 
obtained on the ADNI dataset. This suggests that while 
the model generalizes well, it may not fully capture the 
variations present in different datasets, indicating room 
for improvement in its adaptability to new data.

Fig. 9 The attention maps on sagittal, coronal, and axial plane in the AD vs. CN task
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Conclusion
Alzheimer’s Disease is a neurodegenerative condition 
that leads to irreversible and progressive brain damage, 
often characterized by structural atrophy. Computer-
aided diagnostic methods based on sMRI data effectively 
identify these pathological features. However, existing 2D 
methods struggle to capture comprehensive multi-planar 
information, while 3D approaches are prone to overfit-
ting and high computational overhead. To address these 
limitations, this study proposes MHAGuideNet, which 
leverages 3D guidance information and 2D slice features 
to enhance diagnostic accuracy and robustness. The 
study demonstrates that incorporating 3D guidance with 
multi-planer 2D slices and combining CNN with Swin 
Transformer enhances diagnostic performance, robust-
ness, and the ability to capture both localized atrophy 
and spatial relationships.

Comprehensive evaluations using the ADNI test data-
set demonstrate that MHAGuideNet achieves an accu-
racy of 97.58%, specificity of 99.89%, and AUC of 99.31% 
in the classification of AD versus CN subjects. Moreo-
ver, on the independent OASIS test dataset, the model 
maintains a robust performance with an accuracy of 
96.02% and an AUC of 98.85%. Compared to using only 
the 3D CNN network, MHAGuideNet demonstrates 
an improvement of 2.90% in accuracy. When compared 
to using only the 2D slice-level network, the increase is 
1.45% in accuracy. These results prove the effectiveness 
of the proposed model in fully utilizing spatial informa-
tion from 3D images and local detail features.

Future research will focus on enhancing the model’s 
ability to detect MCI, further advancing early diagno-
sis of Alzheimer’s Disease. Additionally, incorporating 
clinical text data with imaging features to develop a more 
comprehensive diagnostic framework could contribute to 
developing a more comprehensive diagnostic framework.
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