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Abstract 

Purpose This study aims to design an auxiliary segmentation model for thyroid nodules to increase diagnostic accu-
racy and efficiency, thereby reducing the workload of medical personnel.

Methods This study proposes a Dual-Path Attention Mechanism (DPAM)-UNet++ model, which can automatically 
segment thyroid nodules in ultrasound images. Specifically, the model incorporates dual-path attention modules 
into the skip connections of the UNet++ network to capture global contextual information in feature maps. The 
model’s performance was evaluated using Intersection over Union (IoU), F1_score, accuracy, etc. Additionally, a new 
integrated loss function was designed for the DPAM-UNet++ network.

Results Comparative experiments with classical segmentation models revealed that the DPAM-UNet++ model 
achieved an IoU of 0.7451, an F1_score of 0.8310, an accuracy of 0.9718, a precision of 0.8443, a recall of 0.8702, 
an Area Under Curve (AUC) of 0.9213, and an HD95 of 35.31. Except for the precision metric, this model outperformed 
the other models on all the indicators and achieved a segmentation effect that was more similar to that of the ground 
truth labels. Additionally, ablation experiments verified the effectiveness and necessity of the dual-path attention 
mechanism and the integrated loss function.

Conclusion The segmentation model proposed in this study can effectively capture global contextual information 
in ultrasound images and accurately identify the locations of nodule areas. The model yields excellent segmentation 
results, especially for small and multiple nodules. Additionally, the integrated loss function improves the segmenta-
tion of nodule edges, enhancing the model’s accuracy in segmenting edge details.

Keywords Ultrasound image segmentation, Thyroid nodule segmentation, Dual path attention module, Computer 
aided diagnosis, Deep learning

Introduction
Thyroid nodules are joint endocrine dysfunctions caused 
by the localized irregular proliferation of thyroid cells [1]. 
While most thyroid nodules are benign, some can pro-
gress to thyroid cancer. Globally, thyroid cancer ranks 
as the seventh most common cancer [2], with a nota-
bly higher incidence in women. Statistics indicate that 
the incidence rate of thyroid cancer is 4.6% in men and 
13.6% in women, making it three times more prevalent in 
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women [2]. Furthermore, the incidence of thyroid cancer 
is increasing annually due to the increasing presence of 
radioactive substances in the environment and unhealthy 
dietary habits. Therefore, early detection and treatment 
of thyroid nodules are essential for reducing the poten-
tial risk of cancer and avoiding unnecessary biopsies and 
surgeries [3].

Ultrasound examination is widely utilized for detect-
ing thyroid diseases because of its simplicity, real-time 
efficiency, and low cost. In ultrasound images, clinicians 
diagnose thyroid nodules’ benign or malignant nature 
based on solidity, echogenicity, calcification, shape, and 
aspect ratio. Ultrasound images typically suffer from low 
resolution and contrast, often plagued by speckle noise 
and echo interference [4]. Moreover, the thyroid is sur-
rounded by structures such as the trachea, blood vessels, 
and muscles, which further blur the boundaries between 
the thyroid and these adjacent tissues due to the influ-
ence of artifacts and speckle [5]. The diverse appearances, 
shapes, and sizes of thyroid nodules add to the complex-
ity of ultrasound image segmentation [6]. The annotation 
of thyroid nodules is time-consuming and requires the 
expertise of experienced clinicians, leading to increased 
time costs. Consequently, it is crucial to develop an auto-
mated segmentation approach that not only improves 
segmentation accuracy [7] but also significantly lessens 
the workload of medical staff.

The development of modern image processing technol-
ogy promotes the application of computer-aided diag-
nosis in the field of thyroid nodule ultrasound diagnosis, 
alleviating doctors’ workloads and improving diagnostic 
objectivity [8]. Traditional medical image segmentation 
methods mostly use image processing techniques such as 
thresholding, edge detection, and morphology. Senthil-
kumaran et al. [9] proposed a local adaptive thresholding 
method to segment medical images. Szenasi et  al. [10] 
employed a distributed region growing method to seg-
ment major images in colon tissue samples. Singh et  al. 
[11] cropped the regions of interest from the input color 
fundus images and subsequently applied a series of steps, 
including adaptive median filtering, histogram equaliza-
tion, and morphological processing. Finally, the segmen-
tation of the optic disc and cup was achieved using the 
maximally stable extremal regions (MSER) method. Deep 
learning has been widely applied in the field of ultra-
sound image segmentation due to its significant ability 
to enhance diagnostic accuracy and efficiency [12–18]. 
Yang et  al. [19] combined the Res-U-net framework 
with a priori level set methods to increase the accuracy 
of thyroid tumor segmentation and then trained a clas-
sification network by sharing the segmentation network’s 
shallow layers, ultimately achieving the classification of 
different thyroid tumors. Nie et al. [20] proposed a fully 

convolutional neural network that combines a multiscale 
input layer and an attention guidance module. They used 
the attention guiding module to filter features, elimi-
nate noise, and reduce the negative impact of the back-
ground. Yadav et  al. [21] applied a speckle reduction 
filter to process thyroid ultrasound images, followed by 
segmentation using Hybrid-UNet. Experimental results 
demonstrated that this method effectively segmented 
thyroid nodules and cystic components. Chen et al. [22] 
used deep convolutional neural networks to encode 
local view features. They devised unique graph convolu-
tion components that dynamically capture the interplay 
between high- and low-level characteristics by estab-
lishing graphs across numerous layers. Furthermore, to 
enhance feature fusion, they employed a channel-aware 
graph attention mechanism that efficiently fuses mul-
tisource feature information to improve the accuracy of 
thyroid nodule segmentation.

However, traditional medical image segmentation 
methods are susceptible to image noise and intensity 
variations [23], which can result in either over-segmen-
tation or under-segmentation. Some deep learning seg-
mentation techniques focus primarily on local feature 
extraction, lacking the ability to capture and utilize the 
contextual information of the entire input image, mak-
ing it challenging to effectively integrate global context 
[24]. Additionally, capturing long-range dependencies 
from an overall image perspective is difficult, leading to 
the neglect of important dispersed features in medical 
images.

In response to the above issues, this paper proposes a 
DPAM-UNet++ network. By incorporating a dual-path 
attention mechanism into the skip connections of the 
UNet++ architecture, the model effectively captures crit-
ical information from the feature maps, integrates global 
contextual information, and focuses on the areas where 
nodules are located while minimizing the influence of 
image noise and other irrelevant factors. Additionally, 
an integrated loss function is introduced to enhance the 
model’s accuracy in segmenting nodule edges. In sum-
mary, the main contributions of this paper are as follows: 

(1) A dual-path attention mechanism has been pro-
posed and integrated into the skip connections of 
the UNet++ network, enhancing the overall seg-
mentation performance of the model. This dual-
path attention mechanism consists of two path-
ways: the first utilizes a global attention mechanism 
to capture information from the global context, 
while the second combines spatial and channel 
attention to extract both channel and spatial infor-
mation from the feature maps. The collaboration of 
these two pathways allows the model to effectively 
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focus on critical regions, thereby improving seg-
mentation accuracy.

(2) An integrated loss function has been designed to 
enhance the effectiveness of the segmentation. This 
loss function combines multiple loss components, 
strengthening the model’s optimization of edge 
details in important feature maps by taking similar-
ity into account.

The structure of the remainder of this paper is as follows: 
the “Materials and methods” section describes the data-
set, data processing techniques, and model architecture; 
the “Results” section presents the experimental findings; 
the “Discussion” section analyzes these results; and the 
“Conclusion” section summarizes the main conclusions.

Materials and methods
Dataset
We conducted this research using the TN3K public data-
set [4], which includes 3,493 ultrasound images sourced 
from 2,421 patients. Based on the publicly available divi-
sion of the TN3K dataset, the training set contains 2,879 
ultrasound images, and the test set contains 614 ultra-
sound images. All data have undergone ethical review.

Experimental setup
The machine specifications used in this experiment are 
detailed in Table  1. Additionally, the model was trained 
using PyTorch version 2.0.1 and CUDA 11.2. The versions 
of the libraries used in this experiment are as follows: 
Numpy 1.23.5, Torchvision 0.15.2, and OpenCV 4.8.1.78. 
The learning rate for the model was set to 0.00001, with a 
batch size of 6. The input size for the network was 512×
512, and the model was trained for 100 epochs. The input 
convolutional kernel size was 7 × 7, with a stride of 2. Fur-
thermore, a padding of (3,3) was employed to preserve 
important edge information. The activation function 
used was the ReLU function. The RMSprop optimizer 
was utilized, with a weight decay coefficient of 1e-8 
and a momentum coefficient of 0.9. During the training 

phase, we implemented data augmentation strategies 
using the Torchvision library to enhance the model’s 
generalization and robustness. Specifically, data augmen-
tation was applied with a 75% probability, including ran-
dom horizontal flips, random vertical flips, and random 
combinations of horizontal and vertical flips. The hyper-
parameters involved in the experiment are listed in 
Table 2.

Model
As illustrated in the Fig. 1, the DPAM-UNet++ network 
is composed of four main components: the encoder, 
decoder, skip connections, and the DPAM module 
integrated into specific skip connections. The encoder 
extracts features, the decoder progressively restores the 
spatial resolution of feature maps, and the skip connec-
tions transmit high-resolution features from the encoder 
to the decoder. The DPAM module further refines the 
network’s capability to capture detailed features by focus-
ing on global contextual information.

The encoder leverages ResNet34 as its backbone (high-
lighted by the dashed box in the figure). The input image 
is first processed through a 7 × 7 convolutional layer with 
a stride of 2, followed by normalization and ReLU activa-
tion, generating the initial feature map x0,0. This feature 
map undergoes max pooling and is successively passed 
through the four layers of ResNet34, resulting in down-
sampled feature maps x1,0 , x2,0 , x3,0 , and x4,0 , thus com-
pleting the downsampling process. Down-sampling is 
represented by black solid arrows pointing downward in 
the figure.

Following feature extraction by the encoder, the 
decoder restores the spatial resolution of the feature 
maps. This is achieved by upsampling (marked by black 
solid arrows pointing upward in the figure) the down-
sampled feature maps using nearest-neighbor interpo-
lation, followed by concatenation with high-resolution 
feature maps from the encoder through skip connections. 
The concatenated feature maps are then processed by the 

Table 1 System environment and specifications

Environment Details Specifications

Device Processor Intel Xeon Silver 4210

Device GPU NVIDIA Tesla T4

Device Memory 32G DDR4

Device Storage 8T HDD

Operating System Ubuntu

Coding Language Python

Libraries Used PyTorch/Numpy/
OpenCV/Torchvision

Table 2 All hyperparameters of the experiment

Parameter Value

Learning Rate 0.00001

Batch Size 6

Epochs 100

Optimizer RMSprop

Weight Decay 1e-8

Momentum 0.9

Input Convolution Kernel Size 7x7

Stride 2
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DecoderBlock, which applies a sequence of convolutional 
layers, normalization, and ReLU activation, yielding the 
decoded output feature maps.

After decoding, feature maps x0,1 , x0,2 , x0,3 , and x0,4 
undergo convolution at different scales to produce the 
corresponding output feature maps (logit1, logit2, logit3, 
and logit4). These maps capture multi-scale semantic 
information, allowing the network to effectively balance 
both local and global features. The network then com-
bines the output maps through a weighted summation 
to generate the final fused feature map, logit. The logit 
is subsequently upsampled to the input image size using 
bilinear interpolation, ensuring that the spatial resolu-
tion of the output feature map matches that of the input 
image.

Additionally, the black dashed arrows in the figure rep-
resent skip connections, which transfer high-resolution 
features between the encoder and decoder, facilitating 
the accurate restoration of spatial information. The red 
dashed arrows denote the DPAM module, which inte-
grates global attention, channel attention, and spatial 

attention mechanisms. By doing so, DPAM enhances 
the network’s ability to focus on global contextual infor-
mation, enabling more precise feature extraction and 
improving the model’s capacity to accurately identify 
nodule regions.

DPAM
The structure of the DPAM module is illustrated in Fig. 2. 
This module takes the feature maps extracted by the 
encoder as input and processes them through the Global 
Attention Module (GAM) [25] and the Global Context 
(GC) Module [26]. The outputs of these modules are con-
catenated with the original feature maps. The GC module 
captures global contextual information, while the GAM 
extracts channel and spatial features. Together, they gen-
erate an enhanced feature map that incorporates more 
critical information.

To optimize computational efficiency and enhance 
the model’s adaptability to different applications, the 
Efficient Channel Attention (ECA) [27] replaces the 
traditional Channel Attention (CA) in the GAM. The 

Fig. 1 Structure of DPAM-UNet++

Fig. 2 DPAM structure, where Concate denotes feature concatenation
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overall architecture of the GAM is depicted in Fig. 3a, 
which revolves around the ECA and Spatial Attention 
(SA) submodules. Specifically, the input feature F1 first 
passes through the ECA submodule to obtain Mc(F1). 
Then, F1 is elementwise multiplied with Mc(F1), and 
the result is input to the SA submodule to obtain 
Ms(F2). Finally, Mc(F1) and Ms(F2) are elementwise 
multiplied, resulting in the final output feature F3. This 
design allows the GAM module to capture and utilize 
key image features more efficiently, enhancing the over-
all image segmentation performance.

The ECA submodule focuses on refining the channel 
feature representation, as illustrated in Fig. 3b. The input 
feature F1 undergoes global average pooling (GAP) to 
generate a channel descriptor. This descriptor is passed 
through a neural network with a single hidden layer, pro-
ducing the efficient channel attention map Mc(F1).

The SA submodule, depicted in Fig. 3c, is designed to 
capture spatial dependencies within the feature map. 
The input feature F2 is first convolved with a 7 × 7 ker-
nel, reducing the number of channels from C to C/r. 
These intermediate features are then convolved with 
another 7 × 7 kernel, restoring the number of channels 

Fig. 3 Structure of GAM
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to C. Finally, the feature map passes through a sigmoid 
activation function, generating the spatial attention map 
Ms(F2). This activation function normalizes weights 
and enhances stability within the attention mecha-
nism, thereby ensuring the effectiveness of the attention 
module.

Figure 4 illustrates the structure of the GCBlock mod-
ule. This module first uses a 1x1 convolution layer and 
Softmax function to model the context of the input fea-
tures. The context information is then elementwise mul-
tiplied with the input features and then transformed 
through another 1x1 convolution layer, LayerNorm, and 
ReLU functions. The transformed features are added 
elementwise to the input features, producing the final 
output feature. The GCBlock module enhances the fea-
ture map’s representation capability by incorporating the 
global context, enabling the model to perform well in 
complex scenarios.

By combining the outputs of the GAM and GCBlock 
with the original feature maps, the DPAM module cre-
ates a new feature map rich in contextual and attention 
information. This method improves segmentation accu-
racy and enhances feature map representational capacity, 
making them more suitable for various complex segmen-
tation tasks. In conclusion, the DPAM module is crucial 
for optimizing feature map representation and improv-
ing segmentation performance. The pseudocodes for the 
GAM and GC attention modules are presented in Algo-
rithms 1 and 2, respectively.

Algorithm 1 Global Attention Module (GAM)

Algorithm 2 Global Context (GC) Block

Loss function
The integrated loss function combines the advantages of 
various loss functions to provide a more comprehensive 
evaluation of the model’s performance. This approach 
enables the model to capture finer details in the images, 
thereby enhancing segmentation accuracy [28–30]. We 
propose the following loss function:

Lbce , Ldice , Llovasz , and Lssim in this equation denote 
BCELoss, DiceLoss [31], LovaszLoss [32] and SSIMLoss 
[33], respectively. BCELoss is often used in binary seg-
mentation tasks. The formula for BCELoss is as follows:

where gi and si represented the ground truth and model 
predictions, respectively. DiceLoss measures the degree 
of similarity between ground truth and model predic-
tions. The formula for DiceLoss is:

where X and Y represented the number of elements in 
the ground truth and predicted images, respectively, 
LovaszLoss, explicitly designed for image segmentation 
tasks, is particularly effective in handling class imbalance. 
Its main feature optimizes the Jaccard index (Intersection 
over Union, IoU), a key metric for evaluating image seg-
mentation performance. The formula for LovaszLoss is as 
follows:

(1)L total = L bce + L dice + L lovasz + L ssim

(2)Lbce = −

N

i

[gi log si + (1− gi) log(1− si)]

(3)Ldice = 1− 2|X ∩ Y |/|X + Y |

Fig. 4 Structure of GCBlock
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where �Ji is the marginal contribution of pixel i to the 
Jaccard index, and gi and si are the ground truth and pre-
dicted values, respectively. SSIMLoss can help the seg-
mentation model preserve the structural information of 
the image better. The formula for SSIMLoss is as follows:

In this equation, c1 and c2 are constants, x and y denote 
the actual and predicted images, respectively, and µ , σ , and 
σxy denote the mean, variance, and covariance of these two 
images, respectively. The new composite loss function con-
sists of multiple loss functions. BCELoss evaluates the dif-
ference between the predicted and actual values pixel by 
pixel. DiceLoss measures the similarity between the exact 
labels and the predicted images. LovaszLoss can solve the 
class imbalance problem in image segmentation. SSIMLoss 
improves the accuracy of boundary segmentation. Com-
bining these loss functions can enhance segmentation from 
multiple perspectives, such as pixel level, sample similarity, 
image structure, and segmentation boundaries.

Evaluation metrics
We use metrics such as Intersection over Union (IoU), F1_
score, Accuracy, Precision, HD95, Recall, to measure the 
segmentation performance of the model. These evaluation 
metrics are defined below:

(4)Llovasz =

N
∑

i=1

�Ji max(0, 1− gisi)

(5)
Lssim = (2µxµy + c1)(2σxy + c2)/

(

µ2

x + µ2

y + c1

)(

σ 2

x + σ 2

y + c2

)

(6)IoU = TP/(FP + FN + TP)

(7)Accuracy = (TN + TP)/(TN + TP + FN + FP)

(8)Precision = TP/(TP + FP)

(9)Recall = TP/(TP + FN )

HD95 measures the quality of segmentation bounda-
ries by calculating the 95th percentile of the maximum 
distance between the predicted values and the ground 
truth. In addition, we evaluated the performance of the 
model using a confusion matrix. The detailed explana-
tions of TP (True Positive), TN (True Negative), FP (False 
Positive), and FN (False Negative) in the formula are as 
follows: TP indicates that the model correctly classified 
pixels as part of the thyroid nodule region; TN indi-
cates that the model correctly classified pixels as part 
of the background region; FP refers to the model incor-
rectly classifying background pixels as part of the nodule 
region; and FN refers to the model incorrectly classifying 
nodule pixels as part of the background region.

Results
Model segmentation performance
We compared the DPAM-UNet++ network model with 
a series of advanced models widely used in image seg-
mentation tasks, including UNet [34], CMUNeXt [35], 
TRFE+ [4], DeepLabV3+ [36], TransUNet [37], SGU-
Net [38], and TransAttUNet [39]. As shown in Table  3, 
apart from the accuracy metric where TransUNet scored 
higher, the DPAM-UNet++ model outperformed the 
other models in the remaining metrics.

In Fig. 5, we provide the segmentation results for dif-
ferent models, with each row depicting the same ultra-
sound image segmented by various models. Original and 
GT in Fig.  5 denote original image and ground truth, 
respectively. The DPAM-UNet++ model’s segmentation 
results are visibly the closest to the ground truth labels, 
maintaining nodule boundary information more accu-
rately. Figure  6 shows the receiver operating character-
istic (ROC) curves for the various segmentation models 
on the TN3K dataset, revealing that DPAM-UNet++ 
achieved an AUC value of 0.9213, outperforming the 
other models.

(10)F1_score = 2TP/(FP + FN + 2TP)

Table 3 Segmentation results of different models

Model F1_score IoU Accuracy Precision Recall HD95

SGUNet [38] 0.7323 0.6298 0.9540 0.8522 0.7120 60.06

UNet [34] 0.7486 0.6507 0.9583 0.8184 0.7668 62.27

CMUNeXt [35] 0.7812 0.6908 0.9643 0.8194 0.8192 50.47

TransAttUNet [39] 0.7992 0.7054 0.9645 0.8374 0.8271 39.56

TRFE+ [4] 0.8003 0.7109 0.9663 0.8536 0.8172 40.44

DeepLabV3+ [36] 0.8058 0.7159 0.9681 0.8525 0.8208 36.50

TransUNet [37] 0.8067 0.7188 0.9667 0.8574 0.8161 37.73

DPAM-UNet++(ours) 0.8310 0.7451 0.9718 0.8443 0.8702 35.31
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Fig. 5 The effect diagram of different model segmentation

Fig. 6 ROC curves for different segmentation models
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Ablation study of the DPAM module
Table 4 presents the results of the ablation experiments 
on the DPAM attention module. The results indicate 
that the DPAM attention module increases the F1 score 
by 1.74% compared with the baseline. Additionally, the 
F1 score and IoU metric of the DPAM attention mod-
ule outperform those of the other attention modules, 
significantly enhancing the segmentation accuracy. The 
segmentation effects of the ablation experiments on the 

attention modules are shown in Fig. 7. The figure clearly 
shows that the introduction of the DPAM attention 
module allows the segmentation model to more accu-
rately capture and identify nodule regions, performing 
excellently in handling multiple and small nodules. Fur-
thermore, to visually demonstrate the effectiveness of 
the proposed attention module, we employed the Grad-
CAM visualization technique to generate attention heat-
maps for different attention modules integrated into the 
UNet++ baseline, as shown in Fig. 8. The model with the 
DPAM attention module more effectively focuses on the 
significant nodule areas.

Ablation study of loss functions
We conducted ablation experiments to demonstrate the 
effectiveness and necessity of the proposed loss function. 
As shown in Table 5, the ablation study results indicate 
significant improvements in both the IoU and F1_score 
with the inclusion of LovaszLoss and SSIMLoss. Spe-
cifically, the addition of LovaszLoss increased the IoU 
by 1.48% and the F1_score by 1.28%. In comparison, the 

Table 4 Attention module ablation experiment

Where Baseline is a UNet++ model

Model ECA GC GAM IoU F1_score

Baseline 0.7311 0.8136

Baseline ✓ 0.7244 0.8085

Baseline ✓ 0.7370 0.8208

Baseline ✓ 0.7286 0.8143

Baseline ✓ ✓ 0.7451 0.8310

Fig. 7 Plot of segmentation results of the attention module ablation experiment
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Fig. 8 Attention heatmap for different attention modules

Table 5 Loss function ablation experiments

Model BCELoss DiceLoss LovaszLoss SSIMLoss IoU F1_score HD95

DPAM-UNet++ ✓ 0.7270 0.8125 40.50

DPAM-UNet++ ✓ 0.7304 0.8135 39.73

DPAM-UNet++ ✓ ✓ 0.7276 0.8138 39.58

DPAM-UNet++ ✓ ✓ ✓ 0.7424 0.8266 36.12

DPAM-UNet++ ✓ ✓ ✓ 0.7411 0.8244 33.93

DPAM-UNet++ ✓ ✓ ✓ ✓ 0.7451 0.8310 35.31
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inclusion of SSIMLoss resulted in a 1.35% increase in the 
IoU and a 1.06% increase in the F1_score. More impor-
tantly, when LovaszLoss and SSIMLoss were combined, 
the improvements in the IoU and F1_score were even 
more pronounced, with increases of 1.75% and 1.72%, 
respectively. These results validate the complementary 
nature of the two loss functions, indicating that their 
combination can more comprehensively enhance the 
model’s segmentation performance. Additionally, the 
model trained with the integrated loss function achieved 
the lowest HD95 value, compared to models trained with 
individual loss functions. This demonstrates that the pro-
posed integrated loss function can effectively optimize 
the segmentation of nodule boundaries.

Hyperparameters and confusion matrix
Figures 9 and 10 illustrate the training loss and training 
accuracy of the model, respectively. As shown in Fig. 9, 
the loss value of the model exhibits a clear downward 
trend as the number of iterations increases. In Fig.  10, 
the training accuracy gradually improves from 0.87 to 
0.95. The reduction in the loss function indicates that the 
model is progressively learning the underlying patterns 
and features of the data during training. The increase 
in accuracy suggests that the discrepancy between the 
model’s predictions and the actual outcomes is gradu-
ally decreasing. Figure 11 presents the confusion matrix, 
obtained by per-pixel classification and normalization 
of the segmentation results. From this matrix, it is evi-
dent that the probability of correctly identifying nodules 
(true label: nodule, predicted label: nodule) is 0.86, which 

further demonstrates the model’s effectiveness in recog-
nizing nodule regions.

Discussion
The early detection and treatment of thyroid nodules are 
crucial for preventing thyroid cancer. Currently, the diag-
nosis of thyroid nodules relies primarily on radiologists 
segmenting ultrasound images, a process that is both 
time-consuming [40] and highly dependent on the physi-
cian’s expertise [41]. Therefore, designing an automated 
segmentation method to assist physicians in diagnosis 
is highly important. In this study, we incorporated the 
DPAM attention module into the skip connections of the 
UNet++ network to capture global contextual informa-
tion in feature maps. Additionally, we design a novel inte-
grated loss function to increase the model’s robustness 
and adaptability to complex environments.

Currently, dual-path attention networks are widely 
applied in medical image segmentation. Sun et al. [42] 
combined position and channel attention modules to 
propose a dual-attention module, which they integrated 
into the skip connections of the TransUNet network, 
enhancing the model’s ability to capture segmentation 
details. However, spatial attention mechanisms were 
not incorporated into the skip connections. Cui et  al. 
[43] introduced a dual dilated gated attention module 
by merging dilated spatial and channel gated attention 
mechanisms into the skip connections of the UNet 
network, achieving satisfactory segmentation results 
but without incorporating global context information. 
Similarly, Luo et al. [44] combined adaptive spatial and 

Fig. 9 Model loss graphs
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channel attention to create an adaptive dual-path atten-
tion module integrated with UNet, yet they also did not 
utilize global context. To capture critical information 
from the feature maps from global, channel, and spatial 
perspectives, we propose the DPAM attention module, 
which consists of two paths: one for capturing global 
context and the other for extracting spatial and channel 
features.

We utilized 3,493 thyroid ultrasound images from 
2,421 patients and conducted comparative experiments 
with seven typical deep learning segmentation models. 
The experimental results demonstrate that the proposed 
segmentation model can accurately identify lesion loca-
tions by disregarding irrelevant information, thereby 
improving segmentation accuracy. Moreover, the model 
can finely segment the edges of nodules, making the 

Fig. 10 Model accuracy graphs

Fig. 11 Pixel level binary classification confusion matrix
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segmentation results closer to the ground truth and fur-
ther enhancing precision.

Multiple nodules are a common clinical finding, and 
the probability of these nodules becoming malignant 
is similar to or even greater than that of a single nodule 
[45]. The DAPM module introduced in this study effec-
tively utilizes global contextual information from feature 
maps to detect nodules accurately, offering significant 
improvements in identifying multiple nodules. As shown 
in Table 3, our model’s recall rate is significantly higher 
than those of the other models, outperforming the sec-
ond-best TransAttUNet model by 4.31%. This indicates 
the model’s strong ability to detect multiple nodules, 
as evidenced by the ablation experiments in Fig.  7. The 
excellent performance is attributed to the incorporation 
of the DPAM module, which extracts features from dif-
ferent perspectives and scales, enhancing the feature 
representation for small and multiple nodules and thus 
improving the recall rate. Figure 8 shows that the model 
with the DPAM attention module accurately identifies 
significant nodule regions while ignoring irrelevant fac-
tors, increasing the segmentation accuracy. Where the 
irrelevant factors are marked with a red boxed line in the 
figure.

The use of an integrated loss function helps the model 
capture finer details in images, improving segmentation 
precision [30]. In this study, we innovatively introduced 
LovaszLoss and SSIMLoss on top of BCELoss and Dice-
Loss to form a new integrated loss function. By combin-
ing the advantages of each loss function, we improve the 
segmentation accuracy of the model. As shown in Fig. 5, 
the segmentation results of our proposed model closely 
align with the ground truth. Additionally, the high AUC 
values and well-formed ROC curves in Fig. 6 further vali-
date the model’s superior performance.

Conventional medical segmentation models are prone 
to noise interference [46], and many deep learning-based 
segmentation models focus primarily on local features, 
often ignoring global features [47]. This study intro-
duces the DPAM attention module to capture global 
feature information within feature maps and utilizes an 
integrated loss function to optimize the segmentation of 
nodule edges. This method enhances the accuracy and 
efficiency of nodule segmentation from both global and 
local perspectives, helps reduce misdiagnosis due to lim-
ited physician experience and decreases the workload of 
doctors. This method has potential for use in the future 
clinical auxiliary diagnosis of thyroid nodules.

While our study produced promising results, there 
are still several limitations: the dataset size remains 
relatively small despite enhancing the studied image 
data through data augmentation. Therefore, in future 

research, we plan to use generative adversarial net-
works for ultrasound data augmentation and train the 
model with augmented data to further enhance seg-
mentation performance.

Conclusion
This study innovatively introduces a dual-path atten-
tion module integrated into the skip connections of 
the UNet++ network, along with a novel integrated 
loss function, successfully enhancing the segmentation 
accuracy of thyroid nodules. Comparative experiments 
with other models demonstrate that our approach 
excels in detecting multiple nodules and achieving 
precise edge segmentation. These results contribute 
to improved efficiency and accuracy in thyroid nod-
ule segmentation and provide new insights for clinical 
decision support, potentially advancing the precision 
and intelligence of thyroid nodule diagnosis. In future 
research, we will further explore this method and inves-
tigate additional optimization strategies to enhance the 
model’s performance and generalization capabilities, 
ultimately contributing more significantly to the pre-
cise diagnosis and treatment of thyroid nodules.
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