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Abstract 

Purpose  Training machine learning models to segment tumors and other anomalies in medical images is an impor-
tant step for developing diagnostic tools but generally requires manually annotated ground truth segmentations, 
which necessitates significant time and resources. We aim to develop a pipeline that can be trained using readily 
accessible binary image-level classification labels, to effectively segment regions of interest without requiring ground 
truth annotations.

Methods  This work proposes the use of a deep superpixel generation model and a deep superpixel clustering model 
trained simultaneously to output weakly supervised brain tumor segmentations. The superpixel generation model’s 
output is selected and clustered together by the superpixel clustering model. Additionally, we train a classifier using 
binary image-level labels (i.e., labels indicating whether an image contains a tumor), which is used to guide the train-
ing by localizing undersegmented seeds as a loss term. The proposed simultaneous use of superpixel generation 
and clustering models, and the guided localization approach allow for the output weakly supervised tumor segmen-
tations to capture contextual information that is propagated to both models during training, resulting in superpixels 
that specifically contour the tumors. We evaluate the performance of the pipeline using Dice coefficient and 95% 
Hausdorff distance (HD95) and compare the performance to state-of-the-art baselines. These baselines include 
the state-of-the-art weakly supervised segmentation method using both seeds and superpixels (CAM-S), and the Seg-
ment Anything Model (SAM).

Results  We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Segmentation 
Challenge (BraTS) 2020 dataset and labels indicating the presence of tumors to train and evaluate the pipeline. 
On an external test cohort from the BraTS 2023 dataset, our method achieved a mean Dice coefficient of 0.745 
and a mean HD95 of 20.8, outperforming all baselines, including CAM-S and SAM, which resulted in mean Dice coef-
ficients of 0.646 and 0.641, and mean HD95 of 21.2 and 27.3, respectively.

Conclusion  The proposed combination of deep superpixel generation, deep superpixel clustering, and the incorpo-
ration of undersegmented seeds as a loss term improves weakly supervised segmentation.

Keywords  Image segmentation, Weakly supervised learning, Convolutional neural networks, Superpixels, Glioma, 
Magnetic resonance imaging
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Introduction
Segmentation is crucial in medical imaging for local-
izing regions of interest (ROI), which can then assist in 
the identification of anomalies. Machine learning (ML) 
can automate the analysis and segmentation of medi-
cal images with excellent performance [1], on computed 
tomography [2], ultrasound [3, 4], and magnetic reso-
nance (MR images) [5–7]. However, training ML seg-
mentation models demands large datasets of manually 
annotated medical images which are not only tedious 
and expensive to acquire, but also may be inaccessible for 
specific diseases such as rare cancers.

In brain tumor analysis, ML segmentation models 
and supervised learning have demonstrated the abil-
ity to annotate ROIs in MR images when a sufficient 
number of manually annotated patient scans are avail-
able [8]. For specific tumor types, such as pediatric low-
grade gliomas, accurate ROI segmentation is required for 
downstream tasks, including molecular subtype identi-
fication and treatment planning [9]. However, conven-
tional supervised learning approaches are limited by their 
dependence on large annotated datasets, making them 
impractical in scenarios with insufficient labeled data.

Alternative frameworks, including unsupervised learn-
ing, transfer learning, multitask learning, semi-super-
vised learning, and weakly supervised learning, have been 
developed to address these limitations. Unsupervised 
learning, while applicable in the absence of labeled data, 
typically yields lower performance [10]. Transfer learning 
leverages patterns learned from external datasets, ena-
bling improved performance with limited annotated data 
[11]. Multitask learning facilitates simultaneous training 
on primary and auxiliary tasks when multiple ground 
truth labels are available [12]. Semi-supervised learning 
is applicable when a subset of the dataset is annotated 
[13], and weakly supervised learning enables segmenta-
tion models to localize anomalies using image-level clas-
sification labels [14], which are less expensive to acquire 
than pixel-level annotations.

This study focuses on leveraging image-level binary 
labels to differentiate cancerous from non-cancerous 
images for pixel-wise tumor segmentation, utilizing 
weakly supervised learning as the primary framework. 
The main limitation of the existing weakly supervised 
learning methods is the gap between them and the super-
vised methods in terms of performance.

Class activation maps (CAM) and attention maps 
are frequently used for weakly supervised tumor seg-
mentation when the only available ground truths are 
image-level classification labels. The classification 
labels are used to train a classifier which is then used 
to acquire the CAMs or attention maps. CAMs have 
been used in a variety of medical imaging problems 

including the segmentation of organs [15], pulmonary 
nodules [16], and brain lesions [17]. Classifier archi-
tectures such as PatchConvNet have been specifically 
designed to generate accurate attention maps [18]. 
Multiple Instance Learning (MIL) is another approach 
to weakly supervised segmentation that trains a model 
using instances arranged in sets, which in this case are 
patches of an image, and then outputs a prediction 
for the whole set by aggregating the predictions cor-
responding to the instances within the set [19]. Addi-
tionally, a multi-level classification network (MLCN) 
which was designed for multi-class brain tumor seg-
mentation has also been demonstrated to be effective 
for single-class segmentation [20].

Another approach to weakly supervised segmentation 
is to utilize superpixels. Superpixels are pixels grouped 
based on various characteristics, including pixel gray 
levels and proximity. By grouping pixels together, super-
pixels capture redundancy and reduce the complexity of 
computer vision tasks, making them valuable for image 
segmentation [21–23]. The Superpixel Pooling Network 
(SPN) is an example of a weakly supervised segmentation 
method that uses superpixels generated from algorithms 
such as Felzenszwalb’s algorithm to aid the segmenta-
tion task [23]. Superpixels generated using Simple Linear 
Iterative Clustering (SLIC) have also been used to refine 
CAMs over multiple steps to generate pseudo labels 
which can then be used to train a segmentation model 
[24]. Superpixels can also be generated using ML-based 
approaches such as Fully Convolutional Networks (FCN) 
which generate oversegmented superpixels with less 
computational complexity [25].

Transformers have become a prominent approach to 
many computer vision tasks including image segmen-
tation. However, transformer architectures require 
large datasets to be effectively trained [26], which are 
not available for many medical contexts such as pediat-
ric cancer. Transformers have been trained using large, 
varied datasets to produce foundational segmentation 
models that have strong zero-shot and few-shot gen-
eralization, the most notable of which is the Segment 
Anything Model (SAM) [27]. Foundational segmenta-
tion models have the potential to circumvent dataset 
requirements for medical contexts due to their ability 
to generalize beyond data observed during training. 
A foundational segmentation model for the medical 
space known as MedSAM has also been proposed [28], 
but these segmentation models are limited by a reli-
ance on user prompts to segment specific objects. SAM 
requires manually selected points indicating the pres-
ence and/or absence of desired objects or manually 
selected bounding boxes while MedSAM specifically 
requires manually selected bounding boxes. Therefore, 
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using such foundational models introduces more man-
ual effort than image-level classification labels, unless 
the prompt acquisition is automated. In addition, both 
SAM and MedSAM require RGB image inputs, which 
prevent multimodal medical image inputs.

We hypothesize that superpixels can be leveraged 
to acquire additional contextual information, thereby 
improving weakly supervised segmentation  perfor-
mance. We propose to simultaneously train a super-
pixel generation model and a superpixel clustering 
model using localization seeds acquired from a classi-
fier trained with the image-level labels. For each pixel, 
the superpixel generator assigns association scores to 
each potential superpixel, and the clustering model 
predicts weights for each superpixel based on their 
overlap with the tumor. Pixels are soft clustered based 
on their association with highly weighted superpixels 
to form segmentations. The superpixel models combine 
information from the pixel intensities of the superpixels 
with information from the localization seeds, yielding 
segmentations that are consistent with both the classi-
fier understanding from the localization seeds and the 
pixel intensities of the MR images.

The novelty of the work is summarized by the follow-
ing points:

•	 We combine a deep superpixel generation and clus-
tering module into a weakly supervised brain tumor 
segmentation pipeline that improves performance 
of the models on MR images.

•	 We derive image-specific masks, which are referred 
to as localization seeds, from binary classifier 
trained to identify cancerous images. We propose 
the use of undersegmented seeds rather than more 
accurate seeds as priors for training the models, 
and demonstrate that using the undersegmented 
seeds leads to improved weakly supervised segmen-
tation.

•	 We compare our proposed algorithm with multi-
ple benchmark models such as foundational mod-
els, supervised learning, and other superpixel-based 
weakly supervised methods.

To outline the structure of this manuscript beyond the 
introduction,  the Materials and methods  section pre-
sents the datasets, the data preprocessing, the proposed 
methodology, the implementation details, and the met-
rics used for evaluation. The Results section presents the 
performance of the proposed pipeline, baseline methods, 
and variants of the proposed pipeline, including ablation 
studies. The Discussion section discusses the key findings 
and limitations of the research, and the Conclusions sec-
tion presents the conclusions of the work.

Materials and methods
Datasets and preprocessing
Similar to other state-of-the-art brain tumor segmen-
tation models [8, 29], the proposed pipeline relies on 
multimodal 4-channel MR images as inputs. As such, 
we form our dataset using the 369 3-dimensional (3D) 
T1-weighted, post-contrast T1-weighted, T2-weighted, 
and T2 Fluid Attenuated Inversion Recovery 
(T2-FLAIR) MR image volumes from the Multimodal 
Brain Tumor Segmentation Challenge (BraTS) 2020 
dataset [30–34]. These volumes were combined to form 
369 3D multimodal volumes with 4 channels, where 
the channels represent the T1-weighted, post-contrast 
T1-weighted, T2-weighted, and T2-FLAIR images for 
each patient. Only the training set of the BraTS dataset 
was used because it is the only one with publicly avail-
able ground truths.

The images were preprocessed by first cropping each 
image and segmentation map using the smallest bound-
ing box which contained the brain, clipping all non-zero 
intensity values to their 1 and 99 percentiles to remove 
outliers, normalizing the cropped images using min-max 
scaling, and then randomly cropping the images to fixed 
patches of size 128× 128 along the coronal and sagittal 
axes, as done by Henry et al. [5] and Wang et al. [35] in 
their work with BraTS datasets. The 369 available patient 
volumes were then split into 295 (80%), 37 (10%), and 
37 (10%) volumes for the training, validation, and test 
cohorts, respectively.

The 3D multimodal volumes were then split into axial 
slices to form multimodal 2-dimensional (2D) images 
with 4 channels. After splitting the volumes into 2D 
images, the first 30 and last 30 slices of each volume 
were removed, as done by Han et al. [36] because these 
slices lack useful information. The training, validation, 
and test cohorts had 24635, 3095, and 3077 stacked 2D 
images, respectively. For the training, validation, and 
test cohorts, respectively; 68.9%, 66.3%, and 72.3% of 
images were cancerous. The images will be referred to 
as X = {x1, x2, ..., xN } ∈ R

N ,4,H ,W  , where N is the num-
ber of images, H = 128 , and W = 128 . Ground truths 
for each slice yk were assigned 0 if the corresponding 
true segmentations were empty, and 1 otherwise.

To assess generalizability, we also prepared the BraTS 
2023 dataset [30–32, 34, 37] for use as an external test 
cohort during evaluation. To do so, we removed data 
from the BraTS 2023 dataset that appeared in the BraTS 
2020 dataset, preprocessed the images as was done 
for the images in the BraTS 2020 dataset, and then 
extracted the cross-section with the largest tumor area 
from each patient. This resulted in 886 images from the 
BraTS 2023 dataset.



Page 4 of 13Yoo et al. BMC Medical Imaging          (2024) 24:335 

Proposed weakly supervised segmentation method
We first trained a classifier model to identify whether an 
image contains a tumor, then generated localization seeds 
from the model using Randomized Input Sampling for 
Explanation of Black-box Models (RISE) [38]. The locali-
zation seeds used the classifier’s understanding to assign 
each pixel in the images to one of three categories. The 
first, referred to as positive seeds, indicate regions of the 
image with a high likelihood of containing a tumor. The 
second, referred to as negative seeds, indicate regions 
with a low likelihood of containing a tumor. The final 
category, referred to as unseeded regions, correspond to 
the remaining areas of the images and indicated regions 
of low confidence from the classifier. This resulted in 
positive seeds that undersegment the tumor, and nega-
tive seeds that undersegment the non-cancerous regions. 
Assuming that the seeds were accurate, these seeds sim-
plified the task of classifying all the pixels in the image 
to classifying all the unseeded regions in the image, and 
provided a prior on image features indicating the pres-
ence of tumors. The seeds were used as pseudo-ground 
truths to simultaneously train both a superpixel genera-
tor and a superpixel clustering model which, when used 
together, produced the final refined segmentations from 

the probability heat map of the superpixel-based segmen-
tations. Using undersegmented seeds, rather than seeds 
that attempt to precisely replicate the ground truths, 
increased the acceptable margin of error and reduced the 
risk of accumulated propagation errors.

A flowchart of the proposed methodology is presented 
in Fig.  1. We chose to use 2D images over 3D images 
because converting 3D MR volumes to 2D MR images 
yields significantly more data samples and reduces mem-
ory costs. Many state-of-the-art models such as SAM 
and MedSAM use 2D images [27, 28], and previous work 
demonstrated that brain tumors can be effectively seg-
mented from 2D images [39].

Stage 1: Training the classifier model
The classifier model was trained to output the prob-
ability that each xk ∈ X contains a tumor, where 
X = {x1, x2, ..., xN } ∈ R

N ,4,H ,W  is a set of brain MR 
images, and N is the number of images in X. Prior to 
being input to the classifier, the images were upsam-
pled by a factor of 2. The images were not upsampled for 
any other model in the proposed method. This classifier 
model was trained using Y = {y1, ..., yN } as the ground 
truths, where yk is a binary label with a value of 1 if xk 

Fig. 1  Flowchart of proposed weakly supervised segmentation method. For the localization seeds component; green indicates positive seeds, 
magenta indicates negative seeds, black indicates unseeded regions. Solid lines represent use as inputs and outputs. The superpixel generation 
model uses a fully convolutional AINet architecture [40] and outputs each pixel’s association with each of the 64 potential superpixels. The 
superpixel clustering network uses a ResNet-18 architecture and outputs a score for each of the 64 superpixels indicating the likelihood that each 
superpixel contains a tumor. The labels used to train the method are binary image-level labels which indicate the presence or absence of tumors
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contains tumor and 0 otherwise. The methodology is 
independent of the classifier architecture, and thus, other 
classifier architectures can be used instead.

Stage 2: Extracting localization seeds from the classifier 
model using RISE
RISE is a method proposed by Petsiuk et al. that gener-
ates heat maps indicating the importance of each pixel in 
an input image for a given model’s prediction [38]. RISE 
first creates numerous random binary masks which are 
used to perturb the input image. RISE then evaluates the 
change in the model prediction  when the input image 
is perturbed by each of the masks. The change in model 
prediction at each perturbed pixel is then accumulated 
across all the masks to form the heat maps.

We applied RISE to our classifier to generate heat maps 
Hrise ∈ R

N ,H ,W  for each of the images. The heat maps 
indicate the approximate likelihood for tumors to be pre-
sent at each pixel. These heat maps were converted to 
localization seeds by setting the pixels corresponding to 
the top 20% of values in Hrise as positive seeds, and set-
ting the pixels corresponding to the bottom 20% of val-
ues as negative seeds. S+ = {s+1 , s+2 , ..., s+N } ∈ R

N ,H ,W  
is defined as a binary map indicating positive seeds and 
S− = {s−1 , s−2 , ..., s−N } ∈ R

N ,H ,W  is defined as a binary 
map indicating negative seeds. Any pixel not set as either 
a positive or negative seed was considered uncertain. 
Once all the seeds were generated, any images considered 
healthy by the classifier had their seeds replaced by new 
seeds. These new seeds did not include any positive seeds 
and instead set all pixels as negative seeds, which mini-
mized the risk of inaccurate positive seeds from healthy 
images causing propagation errors.

Stage 3: Training the proposed superpixel generation 
and clustering models for weakly supervised segmentation
The superpixel generation model and the superpixel 
clustering model were trained to output the final seg-
mentations without using the ground truth segmen-
tations. The superpixel generation model assigns NS 
soft association scores to each pixel, where NS is the 
maximum number of superpixels to generate, which 
we set to 64. The association maps are represented by 
Q = {q1, ..., qN } ∈ R

N ,NS ,H ,W  , where N is the number of 
images in X, and qk ,s,py,px is the probability that the pixel 
at (py, px) is assigned to the superpixel s. Soft associa-
tions may result in a pixel having similar associations to 
multiple superpixels. The superpixel clustering model 
then assigns superpixel scores to each superpixel indi-
cating the likelihood that each superpixel represents a 
cancerous region. The superpixel scores are represented 
by R = {r1, ..., rN } ∈ R

N ,NS where rk ,s represents the prob-
ability that superpixel s contains a tumor. The pixels can 

then be soft clustered into a tumor segmentation by per-
forming a weighted sum along the superpixel association 
scores using the superpixel scores as weights. The result 
of the weighted sum is the likelihood that each pixel 
belongs to a tumor segmentation based on its association 
with strongly weighted superpixels.

The superpixel generator takes input xk and outputs a 
corresponding value qk by passing the direct output of the 
superpixel generation model through a SoftMax function 
to rescale the outputs from 0 to 1 along the Ns superpixel 
associations. The clustering model receives a concatena-
tion of xk and qk as input, and the outputs of the clus-
tering model are passed through a SoftMax function to 
yield superpixel scores R. Heatmaps Hspixel+ ∈ R

N ,H ,W  
that localize the tumors can be acquired from Q and R by 
multiplying each of the NS association maps in Q by their 
corresponding scores R, and then summing along the NS 
channels as shown in (1). The superpixel generator archi-
tecture is based on AINet proposed by Wang et al. [40], 
which is a FCN-based superpixel segmentation model 
that uses a variational autoencoder. The innovation intro-
duced by AINet is the association implantation module 
which improves superpixel segmentation performance by 
allowing the model to directly perceive the associations 
between pixels and their surrounding candidate super-
pixels. We altered AINet, which outputs local superpixel 
associations, to output global associations instead so that 
Q could be passed into the superpixel clustering model. 
This allowed the generator model to be trained in tandem 
with the clustering model. Two different loss functions 
were used to train the superpixel generation and cluster-
ing models. The first loss function, Lspixel+ , was proposed 
by Yang et  al. [25] and minimizes the variation in pixel 
intensities and pixel positions in each superpixel. This 
loss is defined in (2), where p represents a pixel’s coor-
dinates ranging from (1, 1) to (H, W), and m is a coeffi-
cient used to tune the size of the superpixels, which we 
set as 3

160 . We selected this value for m by multiplying the 
value suggested by the original work, 3

16000 [25], by 100 to 
achieve the desired superpixel size. ls and us are the vec-
tors representing the mean superpixel location and the 
mean superpixel intensity for superpixel s, respectively. 
The second loss function, Lseed , is a loss from the Seed, 
Expand, and Constrain paradigm for weakly supervised 
segmentation. This loss was designed to train models 
to output segmentations that include positive seeded 
regions and exclude negative seeded regions [41]. This 
loss is defined in (1)-(4) where C indicates whether the 
positive or negative seeds of an image sk is being evalu-
ated. These losses, when combined together, encourage 
the models to account for both the localization seeds 
S and the pixel intensities. This results in Hspixel+ local-
izing the unseeded regions that correspond to the pixel 
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intensities in the positive seeds. The combined loss is 
presented in (5), where α is a weight for the seed loss. The 
output Hspixel+ can then be thresholded to generate final 
segmentations Espixel+ ∈ R

N ,H ,W .
While the superpixel generation and clustering mod-

els were trained using all images in X, during inference 
the images predicted to be healthy by the classifier were 
assigned empty output segmentations.

Implementation details
For the classifier model, we used a VGG-16 architecture 
[42] with batch normalization, whose output was passed 
through a Sigmoid function. The classifier was trained to 
optimize the binary cross-entropy between the output 
probabilities and the binary ground truths using an Adam 
optimizer with β1 = 0.9,β2 = 0.999, ǫ = 1e − 8 , and a 
weight decay of 0.1 [43]. The classifier was trained for 100 
epochs using a batch size of 32. The learning rate was ini-
tially set to 5e − 4 and then decreased by a factor of 10 
when the validation loss did not decrease by 1e − 4.

When using RISE, we set the number of masks for an 
image to 4000 and used the same masks across all images.

For the clustering model, we used a ResNet-18 archi-
tecture [44] with batch normalization. The superpixel 
generation and clustering models were trained using an 
Adam optimizer with β1 = 0.9,β2 = 0.999, ǫ = 1e − 8 , 
a weight decay of 0.1. The models were trained for 100 
epochs using a batch size of 32. The learning rate was 
initially set to 5e − 4 , which was halved every 25 epochs. 
The weight for the seed loss, α , was set to 50.

Evaluation metrics
We evaluated the segmentations generated by our pro-
posed weakly supervised segmentation method and 
comparative methods using Dice coefficient (Dice) and 
95% Hausdorff distance (HD95). We also evaluated the 
seeds generated using RISE and seeds generated for other 
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comparative methods using Dice, HD95, and a met-
ric that we refer to as undersegmented Dice coefficient 
(U-Dice).

Dice is a common metric in image segmentation that 
measures the similarity between two binary segmenta-
tions. Dice compares the pixel-wise agreement between 
the generated and ground truth segmentations using 
a value from 0 to 1. 0 indicates no overlap between the 
two segmentations while 1 indicates perfect overlap. A 
smoothing factor of 1 was used to account for division by 
zero with empty segmentations and empty ground truths.

The Hausdorff distance is the maximum distance 
among all the distances from each point on the border of 
the generated segmentation to their closest point on the 
boundary of the ground truth segmentations. Therefore, 
Hausdorff distance represents the maximum distance 
between two segmentations. However, Hausdorff dis-
tance is extremely sensitive to outliers. To mitigate this 
limitation of the metric, we used HD95 which is the 95th 
percentile of the ordered distances. HD95 values of 0 
indicate perfect segmentations while greater HD95 values 
indicate segmentations with increasingly flawed bounda-
ries. HD95 was set to 0 when either the segmentations/
seeds or the ground truths had empty segmentations.

U-Dice is an alteration to Dice that measures how 
much of the seeds undersegment the ground truths. We 
used this measure because our method assumes that the 
seeds undersegment the ground truths rather than pre-
cisely contouring them. Therefore, this measure can be 
used to determine the impact of using undersegmented 
seeds as opposed to more oversegmented seeds. A value 
of 1 indicates that the seeds perfectly undersegment the 
ground truths and a value of 0 indicates that the seed 
does not have any overlap with the ground truth. A 
smoothing factor of 1 was also used for the U-Dice. The 
equation for Dice is presented in Eq. 6 and the equation 
for U-Dice is presented in Eq. 7, where A is the seed or 
proposed segmentation and B is the ground truth.

Results
We trained our models using images X and binary 
image-level labels Y without using any segmentation 
ground truths. The classifier achieved a test accuracy of 
0.933 using a decision threshold of 0.5. Table 1 presents 
the per-image Dice and HD95 between the output seg-
mentations for our proposed method and the ground 

(6)Dice =
2|A ∩ B| + 1

|A| + |B| + 1

(7)U-Dice =

{

0 if |A| = 0, |B| > 0
|A∩B|+1
|A|+1 otherwise
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truth segmentations, with the proposed method written 
in bold text. The table also includes the Dice and HD95 
across correctly classified images and across incorrectly 
classified images.

We also present the performance of baseline methods 
for comparison. The first baseline method is the pro-
posed method using a seed loss weight of 10 ( α = 10 ) 
rather than a seed loss weight of 50 ( α = 50 ). This is to 
determine the impact of the seed loss weight on the seg-
mentation performance. The second baseline method is 
the performance of the AINet architecture used by the 
superpixel generator model with the superpixel compo-
nents removed and altered to directly output segmen-
tations. This method, referred to as Ablation (Seeds), 
serves as an ablation study that investigates the impact 
of removing the superpixel generation component from 
the proposed method. The third baseline method is the 
performance of the superpixel model with the super-
pixel clustering component removed. For this baseline, 
instead of using the superpixel clustering model to select 
superpixels, a superpixel was selected if a majority of the 
superpixel overlapped with positive seeds from RISE. 
This method is referred to as Ablation (Superpixels), and 
presents the impact of removing the superpixel cluster-
ing component from the proposed method. The fourth 
baseline method is our proposed method with the VGG-
16 classifier replaced by a PatchConvNet classifier [18]. 
For this baseline, we used the attention maps from Patch-
ConvNet in place of the RISE generated seeds to train our 
superpixel generation and clustering models. The fifth 
baseline method is a pretrained SAM model provided 
by Meta [27]. As SAM was trained on RGB images, we 
used the T2-FLAIR channel of each image converted to 
RGB as inputs to the SAM baseline. To generate the user 
prompts required by SAM to segment specific regions, 
for each image we used the center of mass for the largest 
positive seed region from RISE as a positive object point 
and the center of masses of all negative seed regions from 
RISE as negative object points. The sixth baseline is the 
MLCN method simplified to be applicable for single-
class segmentation as described in the original work [20]. 
For the seventh baseline, we evaluated the performance 
of our proposed method when trained in a fully super-
vised fashion rather than a weakly supervised fashion to 
evaluate the performance gap between weakly supervised 
and fully supervised segmentation.

In addition, we compared our proposed method with 
three other methods designed for weakly supervised 
segmentation. The first is the SPN which relies on pre-
generated superpixels [23], which we generated using 
Felzenszwalb’s Algorithm with a scale of 100 and a stand-
ard deviation of 0.5. resulting in approximately 100 pre-
generated superpixels per image. The second is a MIL 

baseline that we trained using a VGG-16 model with 
batch normalization [19]. At each epoch, we extracted 50 
patches of shape 128× 128 from the images after upsam-
pling them to 512× 512 . At each iteration, we set the 
20% of patches with the highest predictions to be cancer-
ous and 20% of patches with the lowest predictions to be 
non-cancerous, as these thresholds were demonstrated 
to be effective in the original work and are consist-
ent with the thresholds we used when generating seeds 
using RISE. The third is a weakly supervised segmenta-
tion method for cardiac adipose tissue which we will 
refer to as the CAM-Superpixels (CAM-S) method [24]. 
This method generates CAMs from a classifier and then 
uses pre-generated superpixels to refine the CAMs into 
pseudo-labels over multiple steps, which are then used to 
train a segmentation model. In addition, we also evalu-
ated the performance of our model when trained with the 
pseudo labels generated from the CAM-S method instead 
of the localization seeds generated using RISE.

The SPN, MLCN, SPN, MIL, and CAM-S methods dif-
fer from the other baselines in that they are not variants 
of the proposed method, and thus do not assign empty 
segmentations to images classified as non-cancerous. To 
allow for effective comparison, we present the perfor-
mance of these baseline methods with empty segmenta-
tions assigned to images classified as non-cancerous by 
the classifier trained for our proposed method.

In addition, we present the generalizability of each 
model by evaluating the models on the BraTS 2023 test 
cohort. These results can be found under the BraTS 2023 
columns in Table 1.

Each of the presented methods uses a decision thresh-
old to convert the output probability maps to binary 
segmentations. The decision threshold for each method 
was determined by evaluating the Dice on the valida-
tion cohort at threshold intervals of 0.1 and choosing the 
threshold that yielded the maximum validation Dice. The 
proposed methods used thresholds of 0.6 and 0.9 for seed 
loss weights of 50 and 10, respectively, while the abla-
tion (seeds) and PatchConvNet methods used thresholds 
of 0.5 and 0.9, respectively. The ablation (superpixels) 
method did not use a decision threshold and instead 
set superpixels with more than 50% overlap with posi-
tive seeds as segmented regions. The proposed method 
trained using CAM-S seeds used a threshold of 0.9 and 
the proposed method trained under fully supervised 
training used a threshold of 0.8. The SPN, MIL, MLCN, 
and CAM-S models used thresholds of 0.9, 0.3, 0.1, and 
0.8 respectively.

Figure  2 presents three images from the test set and 
their corresponding segmentations generated at each 
step of the pipeline. In addition, Fig. 2 also presents the 
outputs from the SAM, MLCN, and CAM-S baselines, 
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as well as the true segmentations. The SAM, MLCN, 
and CAM-S baselines are the only visualized baselines 
because they were the only baseline methods with com-
parable performance to the proposed method.

Table  2 presents the Dice, HD95 and U-Dice of the 
RISE seeds used for the proposed method and the other 
seeds used in the comparative methods. These results 
serve to indicate the potential propagation errors from 
the seeds and explain the performance change when 
training the proposed method using different seeds 
as presented in Table  1. It can be seen that the CAM-S 
seeds outperformed the positive seeds generated using 
RISE in terms of both Dice and HD95 but was worse 
than the positive seeds in terms of U-Dice, indicating 
that the CAM-S seeds were more accurate to the tumors 
but the positive seeds from RISE better undersegmented 
the tumors. Considering that in Table  1, the proposed 
method achieved Dice of 0.745 on the BraTS 2023 test 
cohort, while the proposed method trained on the 
CAM-S and PatchConvNet seeds achieved Dice of 0.583 
and 0.134, respectively, this demonstrates that using 

undersegmented seeds instead of more accurate seeds 
can lead to improved performance.

Discussion
Key findings
When comparing the performance of the proposed 
method with the SPN and MIL baseline methods, the 
proposed method and the Ablation  (Seeds) method sig-
nificantly outperformed SPN and MIL in both Dice and 
HD95. The improved performance indicates that the SPN 
and MIL methods, while being effective in tasks with 
large training datasets, can worsen in tasks with limited 
available data such as brain tumor segmentation. MIL 
is frequently used for weakly supervised segmentation 
of histopathology images because of the need to inter-
pret the large gigapixel resolution images in patches. We 
believe the significantly reduced spatial dimensions and 
resolutions of the MR images negatively impacted the 
performance of the MIL baseline. The MR images lacked 
the resolution required to extract patches with sufficient 
information that only occupied a small portion of its 

Fig. 2  Visualization of T2-FLAIR channel of MR images, generated superpixels, output segmentations from the proposed method, output 
segmentations from the SAM, MLCN, and CAM-S baselines, and the true segmentations for three examples

Table 2  Comparison of seeds generated using RISE, PatchConvNet and CAM-S

Dice coefficients, 95% Hausdorff distances, and undersegmented Dice coefficients between the seeds generated for the evaluated methods and true segmentations

Seeds Dice HD95 U-Dice

Test BraTS 2023 Test BraTS 2023 Test BraTS 2023

RISE (Positive) 0.485 0.522 26.0 25.3 0.732 0.900

RISE (Negative) 0.946 0.922 0.000 0.000 0.900 0.857

PatchConvNet 0.005 0.001 69.3 89.9 0.026 0.015

CAM-S 0.610 0.594 19.3 27.2 0.560 0.569
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source image. As such, the MIL baseline was unable to 
effectively learn to segment the tumors.

PatchConvNet also suffered from the smaller dataset 
size. The PatchConvNet classifier was not able to gener-
ate effective undersegmented positive and negative seeds 
to guide the training of the superpixel generator and clus-
tering models. This can be attributed to the smaller data-
set size, which PatchConvNet was not designed for, and 
the use of attention-based maps for the seeds. With the 
smaller dataset size, PatchConvNet was unable to acquire 
an effective understanding of the tumors. As a result, the 
attention maps acquired from PatchConvNet did not 
consistently undersegment the cancerous and non-can-
cerous regions, which is a critical assumption when using 
the seeds. Using a VGG-16 classifier and generating the 
seeds using RISE resulted in localization seeds that tend 
to undersegment the cancerous and non-cancerous 
regions despite the limited available data.

CAM-S achieved the highest Dice and the lowest HD95 
among the baseline methods, having produced seeds that 
outperformed the positive RISE seeds in both Dice and 
HD95. However, the proposed method trained with the 
RISE seeds outperformed the proposed method trained 
with the seeds from the CAM-S method. We attribute 
the difference in performance to the fact that the positive 
RISE seeds better undersegmented the tumors compared 
to the CAM-S seeds. The proposed method assumes that 
the positive seeds undersegment the tumors and the 
negative seeds undersegment the non-cancerous regions. 
The undersegmentation creates uncertain regions that 
add a margin of error for the seeds, which mitigates 
potential propagation errors originating from imperfect 
seeds.

SAM achieved similar performance to CAM-S and suc-
cessfully segmented some images but failed to segment 
difficult cases as shown in Fig.  2. These results indicate 
that methods such as RISE can be used to automatically 
generate points which can be used as prompts for foun-
dational segmentation models. However, the inability for 
SAM to segment multimodal images and the poor per-
formance of SAM on smaller, less distinct tumors dem-
onstrates the need for models developed and trained for 
specific medical tasks, especially in weakly-supervised 
contexts. It should be noted that SAM was the only 
method to have reasonable performance on incorrectly 
classified images, which is expected due to SAM being 
the only pretrained model  among the evaluated mod-
els, and therefore being unaffected by the classifier’s 
performance.

The use of simultaneously generated superpixels is a 
key novelty of our work. When using traditional super-
pixel generation algorithms, the precision of the segmen-
tations is dependent on the number of superpixels, as 

fewer superpixels can result in less refined boundaries. 
Training a deep learning model to generate superpixels 
simultaneously with a superpixel clustering model allows 
for the gradients of the loss functions that  encourage 
accurate segmentations to propagate through the super-
pixel generation model. This allows the superpixel gen-
eration model to not just learn to generate superpixels, 
but also to generate a lower number of superpixels with 
refined boundaries around the tumors. Thus, simultane-
ous generation and clustering of superpixels using neural 
networks improves the segmentation performance when 
using superpixels for segmentation.

Figure  2 demonstrates how the proposed method can 
reduce the number of outputted superpixels despite 
using a predefined number of superpixels. In our test 
cohort, the models reduced the number of superpixels 
from a predefined limit of 64 to approximately 22 per 
image by outputting 64 superpixels but having the major-
ity of superpixels have no associated pixels.

In Fig. 2, the superpixels do not perfectly contour the 
segmented regions because the segmentations are cal-
culated using a weighted sum of the superpixel scores 
based on their association with each pixel. Thus, pix-
els whose most associated superpixel is not primarily a 
part of the segmented region can be segmented so long 
as it has a sufficiently high association score with the 
primarily segmented superpixel. As such, the segmenta-
tions cannot be generated simply by selecting superpixels 
outputted by the method, they need to be soft clustered 
using the superpixel association and weights. Despite 
the lower number of superpixels when using higher seed 
loss weights, the method is still able to segment smaller 
tumors. It can also be seen that superpixels outside the 
tumor regions do not align with brain subregions or local 
patterns. This indicates that the superpixels are tuned to 
segment specifically brain tumors. While Fig.  2 implies 
that only one superpixel is approximately required for 
each image, we argue that the clustering component has 
the benefit of allowing this method to be applied to tasks 
with multiple localized anomalies in each image.

Limitations
A limitation of this method is its reliance on superpixels 
which are computed based on pixel intensity. While the 
superpixels provide valuable information that improves 
segmentations of brain tumors, the superpixels also pro-
vide constraints on the set of problems this method can 
be applied to. In particular, this method would be ineffec-
tive for segmenting non-focal ROIs.

In addition, the proposed method relies on the 
localization seeds to be trained effectively. Despite 
not requiring the localization seeds during inference, 
poor localization seeds during training can lead to 
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poor segmentations during inference. In addition, no 
steps were taken to improve the RISE seeds. We con-
sider the seed generation beyond the scope of this work 
but note that the lack of seed refinement could lead to 
propagation errors. The performance of the PatchCon-
vNet baseline demonstrates the importance of seed 
accuracy. PatchConvNet was unable to output effective 
localization seeds for this specific task and using the 
seeds from PatchConvNet with our proposed method 
decreased the Dice coefficient from 0.691 to 0.134 on 
the test cohort. As such, effective localization seeds 
from an accurate classifier that undersegment the can-
cerous and non-cancerous regions are crucial for effec-
tive performance using the proposed method.

Another limitation is that this method cannot be 
trained end-to-end. While the method is a weakly 
supervised approach as it does not require any segmen-
tation ground truths to train, it can also be interpreted 
as a fully supervised classification task followed by an 
unsupervised superpixel generation and clustering 
task. Without seeds generated from an accurate clas-
sifier, the downstream models will fail. Many clinical 
contexts have classifiers available that can be applied to 
this method. However, the proposed method cannot be 
applied to contexts without classifiers that require end-
to-end training.

A shortcoming of this study is its use of 2D images 
rather than 3D images due to the GPU memory costs 
required to generate 3D superpixels using an FCN-based 
superpixel generation model. The method is not limited 
to 2D images and thus it is of interest to explore appli-
cations of this method in 3D contexts. Previous studies 
have demonstrated that 3D segmentation leads to supe-
rior performance compared to 2D segmentation, which 
suggests that this method could be improved further 
when applied to 3D images [45].

As is the case with other weakly supervised segmenta-
tion methods, the performance of our proposed method 
does not match the performance of fully supervised train-
ing. However, weakly supervised segmentation methods 
serve a different purpose than fully supervised segmenta-
tion methods. Weakly supervised segmentations are very 
effective at generating initial segmentations that can be 
revised by radiologists or for downstream semi-super-
vised training to reduce workload on medical datasets 
that lack manual annotations. In summary, despite the 
lower performance of our proposed method compared to 
fully supervised training, our proposed method is effec-
tive for generating initial segmentations when manually 
annotated training data is not available.

Integrating multiple stages and modules into the pipe-
line increases the complexity of the proposed method. 
In future work, the complexity and running time of the 

pipeline, and the effect of implementing parallel compu-
tation [46–48] should be investigated.

Regularization has been demonstrated to improve 
model robustness during training, with particular ben-
efits in mitigating bias toward majority classes [49]. 
Such regularization could be applied to the classifier 
model to improve extracted localization seeds and 
further mitigate seed propagation errors. In addition, 
image preprocessing can be used to account for noise 
and artifacts that frequently occur in medical images 
[2, 3]. The MR images in the BraTS datasets used in 
this study were preprocessed and made available. When 
applying the proposed methodology to unprocessed 
medical images, preprocessing techniques such as sto-
chastic resonance theory [2, 50–52] have the potential 
to improve performance and should be explored fur-
ther in future work.

Conclusions
We introduced a weakly supervised superpixel-based 
approach to segmentation that incorporates contextual 
information through simultaneous superpixel genera-
tion and clustering. Integrating superpixels with locali-
zation seeds provides information on the boundaries 
of the tumors, allowing for the segmentation of tumors 
only using image-level labels. We demonstrated that 
using undersegmented seeds as opposed to seeds that 
attempt to accurately contour tumors can mitigate 
propagation errors from suboptimal seeds and lead 
to improved performance. This work can be used to 
improve the development of future weakly supervised 
segmentation methods through the integration of deep 
superpixels.
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