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Abstract
Introduction Gadolinium-based T1-weighted MRI sequence is the gold standard for the detection of active multiple 
sclerosis (MS) lesions. The performance of machine learning (ML) and deep learning (DL) models in the classification 
of active and non-active MS lesions from the T2-weighted MRI images has been investigated in this study.

Methods 107 Features of 75 active and 100 non-active MS lesions were extracted by using SegmentEditor and 
Radiomics modules of 3D slicer software. Sixteen ML and one sequential DL models were created using the 5-fold 
cross-validation method and each model with its special optimized parameters trained using the training-validation 
datasets. Models’ performances in test data set were evaluated by metric parameters of accuracy, precision, sensitivity, 
specificity, AUC, and F1 score.

Results The sequential DL model achieved the highest AUC of 95.60% on the test dataset, demonstrating its superior 
ability to distinguish between active and non-active plaques. Among traditional ML models, the Hybrid Gradient 
Boosting Classifier (HGBC) demonstrated a commendable test AUC of 86.75%, while the Gradient Boosting Classifier 
(GBC) excelled in cross-validation with an AUC of 87.92%.

Conclusion The performance of sixteen ML and one sequential DL models in the classification of active and non-
active MS lesions was evaluated. The results of the study highlight the effectiveness of sequential DL approach 
and ensemble methods in achieving robust predictive performance, underscoring their potential applications in 
classifying MS plaques.
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Introduction
Multiple Sclerosis (MS) is a chronic autoimmune disease 
where the immune system wrongly attacks the central 
nervous system (CNS) [1, 2]. This immune-mediated dis-
ease is one of the most common causes of neurological 
disability in young adults and affects the quality of life of 
2.5  million people worldwide [3]. Weakness, dizziness, 
spasticity, cognitive changes, difficulty walking, emo-
tional changes, vision problems, and fatigue are the Com-
mon symptoms of MS [4–6]. While scientists believe that 
a combination of genetic and environmental factors, such 
as vitamin D deficiency, obesity, geography, and smoking, 
plays crucial roles in the development of multiple sclero-
sis (MS), the exact causes of the disease remain unknown 
[7–11].

Magnetic resonance imaging (MRI) is the most impor-
tant and available paraclinical tool that serves as the best 
technique to support the diagnosis, differential detection, 
monitoring, and evaluation of treatment response in MS 
disease so that, this imaging technique has been consid-
ered the gold standard for the accurate detection of active 
and non-active MS lesions [12–14]. All MS lesions can be 
detected based on hyperintense areas in T2-weighted, 
fluid-attenuated inversion recovery (FLAIR), and proton 
density MR images. However, not all detected lesions 
based on these images are active [15]. Early prognosis 
and diagnosis of active MS lesions can improve the out-
come of MS disease treatment [16, 17]. Conventionally, 
T1-weighted gadolinium-based MR images are used to 
detect active MS lesions which is related to acute focal 
inflammation and blood-brain barrier (BBB) disruption 
[18]. However, intravenous administration of contrast 
agents may lead to side effects, including nephrogenic 
systemic fibrosis, deposition of gadolinium in various tis-
sues, dizziness, headache, and nausea [19–22]. Further-
more, the detection of MS lesions in various pre-contrast 
and post-contrast MR images is challenging and time-
consuming for physicians [2]. Due to the constraints 
in the identification of active MS lesions, alternative 
approaches, such as Artificial Intelligence (AI) models, 
can be leveraged to streamline the procedures and avoid 
the need for gadolinium administration in these patients 
[6, 23–26]. Machine learning (ML) and deep learning 

(DL), which are two branches of AI, have great potential 
in this area [27].

Potential applications of ML and DL models with 
supervised and unsupervised learning in MS disease 
have been investigated in some studies. The detection of 
MS using ML and DL models has been evaluated in T2 
weighted, FLAIR, diffusion-weighted, and functional MR 
images [28–31]. Some studies have reported the capabil-
ity of DL models to differentiate MS diseases from similar 
conditions observed in MRI images, such as neuromy-
elitis optica spectrum disorders, migraine, and CNS vas-
culitis [32–34]. The segmentation of MS lesion and the 
measurement of brain volumes that is necessary for MS 
detection have been performed by DL models based on 
3D MR images [7, 27, 35]. Another key area of focus in 
the application of ML and DL models for MS is the clas-
sification and differentiation of active (acute or contrast-
enhanced) and non-active (chronic or non-enhanced) 
MS lesions. While there are limited studies in this field, 
Narayana et al. evaluated the potential of a DL method 
using the VGG16 network to predict active lesions based 
on pre-contrast T1-weighted, T2-weighted, and FLAIR 
MRI data from 1,970 scans with 519 enhanced lesions. 
They reported a slice-wise prediction sensitivity and 
specificity of 78% and 73%, respectively [26].

Radiomics is high-throughput extraction of numer-
ous quantitative features from texture of medical images 
which is mineable for quantitative analysis alongside of 
ML algorithms [36, 37]. In recent years, radiomics has 
been increasingly applied to the study of pathological 
changes, diagnosis, differential diagnosis, and prognosis 
in MS [31, 38–40]. In the current study, we aim to investi-
gate the application of radiomics data in various AI mod-
els for predicting MS active lesions using T2-weighted 
MRI images.

Materials and methods
Study population or study participants
A dataset of T1-weighted, T2-weighted, post-contrast 
T1-weighted, and FLAIR MRI images was utilized in this 
study. Details of the imaging parameters are presented 
in Table 1. At the beginning of the study, during the data 
preparation phase, patients who did not have the speci-
fied four image categories were excluded from the anal-
ysis. Additionally, lesions in patients who suffered from 
ischemia were also excluded, as ischemic lesions can be 
identified in MRI images. In the lesion labeling phase, any 
lesions that were uncertain in terms of whether they were 
active or inactive were removed from the segmented 
areas to ensure accuracy in our evaluations.

All plaques, including 75 active lesions and 100 non-
active lesions from 134 patients, were labeled by two 
experienced radiologists, who worked collaboratively 
throughout the assessment process. Each radiologist 

Table 1 Imaging parameters of MR protocols
Protocol
Parameters

T1 T2 FLAIR T1-enhanced

TE (ms) 10 121 113 10
TR (ms) 485 5340 9000 491
Flip angle (°) 90 150 150 90
Slice thickness (mm) 4.5 4.5 4.5 4.5
Nex 2 2 1 2
Gap (mm) 0.45 0.45 0.45 0.45
Received band width (kHz) 150 160 190 150
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independently reviewed the post-contrast T1-weighted 
images alongside the other non-contrast MR images to 
identify and label the lesions.

Features extraction
The feature extraction stage is a crucial phase in ML 
and DL studies, as the quality of the optimized mod-
els is heavily dependent on the quality of the input data 
(extracted features). In this study, T2-weighted MRI 
images were selected for feature extraction due to their 
superior quality, characterized by lower noise and a 
higher signal-to-noise ratio compared to the other avail-
able sequences. The T2-weighted MRI volumes were 
normalized and resampled to a standardized axial ori-
entation using linear interpolation for feature extraction. 
Quantitative radiomics features were extracted from the 
active and non-active lesions using the 3D Slicer software 
(version 4.13). The radiologists identified active and non-
active MS lesions based on post-contrast T1-weighted 
and other non-contrast MR images. The labeled regions 
were segmented using the SegmentEditor module of the 
3D Slicer software on the T2-weighted MR images (As 
illustrated in Fig. 1). Subsequently, the segmented region 
of each lesion was converted to a binary label map. The 
Radiomics module of the 3D Slicer software was then 
used to extract 107 features using solely the T2-weighted 
MR images and the corresponding binary label maps. 
The results of the extracted features for each lesion were 

saved in separate tables. By combining all the extracted 
tables, the raw data for training the models was provided. 
The types of extracted features are reported in Table 2.

Machine learning models
Raw data was checked for null features. Statistical analy-
sis and correlations of various features were evaluated. 
Finally, all quantitative features scaled for training of ML 
models.

In this study, the performance of 16 various ML 
models of LogisticRegression (LR), SGDclassifier 
(SGD), PassiveAggressiveClassifier (PAC), Support-
vectorclassifier (SVC), KNeighborsClassifier (KNN), 
DecisionTreeClassifier (DTC), RandomForestClas-
sifier (RFC), GradientBoostingClassifier (GBC), 

Table 2 Extracted features of Radiomics Module of 3D slicer 
software
PyRadiomics features Number of 

extracted 
features

First Order Statistics 18
Shape-based 14
Gray Level Co-occurence Matrix 24
Gray Level Run Length Matrix 19
Gray Level Size Zone Matrix 13
Neighbouring Gray Tone Difference Matrix 5
Gray Level Dependence Matrix 14
Total 107

Fig. 1 The segmented active (Yellow) and non-active (Blue) plaques on T2-weighted MRI images using Slicer
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HistGradientBoostingClassifier (HGBC), AdaBoostClas-
sifier (ABC), BaggingClassifier (BC), ExtraTreesClassifier 
(ETC), GaussianNB (GNB), and LinearDiscriminantAnal-
ysis (LDA), QuadraticDiscriminantAnalysis (QAD) and 
MLPClassifier (MLPC) were investigated in the predic-
tion of active and non-active MS lesions. Models were 
developed on randomly drawn 75% of the training-vali-
dation data set and its performance was evaluated on the 
25% of test data set. First, models have been made using 
5-fold cross-validation method to control the learning 
process of models and optimized their parameters based 
on the highest accuracy on training data set via Grid-
SearchCV technique. In the second step, each model 
was trained with its special optimized parameters using 
training-validation data set. After evaluating the ML per-
formance on the validation dataset the final results were 
reported based on the testing dataset.

Deep learning model (sequential model with dense layers)
Deep learning studies can be conducted in two primary 
ways. In traditional neural network approaches, extracted 
features are input into the model, which is then opti-
mized based on the architecture defined by the number 
of layers and neurons. Conversely, in image-based deep 
learning models, feature extraction occurs automati-
cally within the model, without human intervention. In 
this study, we employed a model utilizing dense layers 
for the deep learning component, ensuring that the fea-
tures extracted are of comparable quality to those used 
in the ML models. In the DL model, the sequential model 
with 5 dense layers was trained. Based on the numbers of 
extracted features, 107 neurons were set for the first layer 
as the dimensional of input data. Details of optimized 
sequential model are reported in Table 3.

Evaluation of ML and DL models
Designed models were evaluated using independent 
test data set. Confusion matrix was calculated for each 
model and metric parameters of accuracy, precision, 
sensitivity, specificity, AUC, and F1 score were reported. 
Feature importance for all models was investigated by 
three methods of coef_, feature_importances_, and 
permutation_importance.

Results
Descriptive analysis of extracted features
In our analysis, we evaluated a total of 107 radiomic fea-
tures across two classes. The summary statistics for these 
features, including minimum, maximum, mean, standard 
deviation, and correlation with the target variable, are 
provided in Appendix A. Additionally, Fig. 2 presents the 
correlated heatmaps for these features, highlighting sig-
nificant relationships and patterns that may inform fur-
ther analysis.

Based on the evaluation of the correlation of various 
features with the target variable, the features exhibiting 
the highest correlations are summarized in Table 4. Nota-
bly, the feature ‘Median’ from the first-order statistics 
category demonstrated the maximum correlation of 0.42. 
According to the guidelines for selecting and reporting 
intraclass correlation coefficients, correlations below 0.5 
are considered poor [41]. Consequently, all evaluated fea-
tures in this study fall into the poor correlation category 
with respect to the target variable.

Evaluation of ML and DL models
The performance of ML and DL models was assessed 
using a variety of evaluation metrics, including accu-
racy, precision, sensitivity, specificity, AUC, and F1 score. 
Both the test and cross-validation evaluation scores are 
summarized in Table 5, providing a comprehensive com-
parison of model effectiveness. The reported evaluation 
metrics highlights the strengths and weaknesses of each 
approach, allowing for a comprehensive understanding 
of their performance in the context of the specific tasks 
addressed in this study. The results indicate that while DL 
models generally demonstrate superior performance in 
handling complex data patterns, certain ML models also 
achieve competitive results, particularly in scenarios with 
limited data.

Evaluation of feature importance in the best ML models
In this analysis, we evaluated the significance of various 
features in predicting outcomes across six ML models 
that achieved an AUC greater than 90% using test data. 
Figure 3 shows the AUC curves of these models and the 
ten most important features for each model are presented 
in Table 6.

The table highlights the relative importance scores 
assigned to each feature, indicating their contribution to 

Table 3 Parameters of optimized sequential model
Number of layers Type of layer Neurons Trainable parameters Activation function
1 Dense input layer 107 11,556 selu
2 Dense internal layer 150 16,200 selus
3 Dense internal layer 100 15,100 selu
4 Dense internal layer 50 5050 selu
5 Dense output layer 1 51 sigmoid
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Fig. 2 The correlation heatmaps for each group of features with the target
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the model’s predictive performance. For instance, in the 
LR model, the feature “Surface Volume Ratio” emerged 
as the most influential, with a score of 13.86, followed 
closely by “Size Zone Non-Uniformity” and “Sphericity.” 
Similarly, the PAC model identified “Elongation” as its 
top feature, with an importance score of 1.98.

Other models, such as the SGD and SVM models, also 
exhibited distinct feature priorities. The SGD model 
ranked “Elongation” and “Sphericity” as the most critical 
features, while the SVM model highlighted “Dependence 
Non-Uniformity Normalized” and “Surface Volume 
Ratio” as key predictors.

This comprehensive evaluation not only underscores 
the variability in feature importance across different 
models but also emphasizes the need for tailored fea-
ture selection strategies in ML applications. By identify-
ing and leveraging the most impactful features, we can 
enhance the predictive accuracy and interpretability of 
these models, ultimately leading to more informed deci-
sion-making in the respective domain.

Discussion
Early diagnosis of MS lesions can significantly enhance 
treatment procedures. Traditionally, gadolinium-based 
T1-weighted MR images have been utilized for detect-
ing active MS lesions; however, the use of contrast agents 
presents several limitations and potential side effects in 
certain cases. Therefore, detection using non-contrast 
images can improve patient safety and reduce clinical 
costs. ML and DL algorithms have been widely applied 
in the early detection of various diseases. In this study, 
we explored the potential of utilizing radiomics-based 
AI models to evaluate the classification of MS lesions on 
T2-wighted MRI images. We developed and assessed 16 
ML models and one sequential DL model.

Texture analysis plays a crucial role in the field of 
radiomics, which focuses on extracting a large number 
of quantitative features from medical images. Texture 
describes the spatial arrangement of basic attributes on a 
surface, such as the structure of a brick wall or the grains 
within a brick. In medical imaging, these attributes are 
represented by image pixels, where texture reflects the 

visual characteristics of the image, which can range from 
coarse to fine and uniform to irregular.

In practice, texture analysis produces a set of param-
eters that encapsulate the image’s content, aiding in 
detection and classification, which can be performed on 
radiomics data analysis using ML and DL algorithms. In 
MRI of MS lesions, it is believed that the gray level dis-
tribution within lesions reflects the ultra-structural prop-
erties of affected tissues, influenced by disease processes 
and treatments. This concept has been supported by 
recent histopathological studies of hyper-intense white 
matter lesions on T2-weighted MR images [42–45]. In 
this way, Nicolas Michoux et al. evaluated texture analy-
sis of T2-weighted MR images as an alternative method 
for assessing acute inflammation in MS lesions. The 
study involved 21 MS patients who underwent various 
MR imaging sequences. Significant differences in texture 
parameters were found between MS lesions and nor-
mal appearing white matter, indicating texture analysis’s 
effectiveness in differentiation. Multi-parametric mod-
els using classifiers like LR achieved a sensitivity of 86% 
and specificity of 84% in identifying contrast-enhanced 
lesions. Their findings suggest that T2-weighted texture 
parameters can accurately assess brain inflammatory 
activity, offering a promising alternative to traditional 
contrast-enhanced imaging methods [42].

Peng Yuling et al. investigated the use of radiomics-
based ML models to predict the evolution of unenhanced 
lesions in MS using follow-up MRI scans. The research 
involved 36 MS patients and analyzed 45 pairs of base-
line and follow-up MR images, extracting 972 radiomic 
features from FLAIR images. The lesions were cat-
egorized based on volume changes into “interval activ-
ity” (enlarged lesions) and “interval inactivity” (shrunk 
lesions). Various ML classifiers, including LR, random 
forest, and SVM, were employed, with feature selection 
methods like ReliefF, LASSO, and recursive feature elimi-
nation (RFE). In their study, the SVM classifier with the 
ReliefF algorithm demonstrated the best predictive per-
formance, achieving an accuracy of 82.7% and an AUC of 
86%. Their findings suggest that radiomics can effectively 
assess lesion activity in MS, providing valuable insights 

Table 4 Features with maximum absolute value of correlation with target
Kind of feature Name of feature Correlation with target
Shape based SurfaceArea -0.39
Gray Level Dependence Matrix SmallDependenceEmphasis 0.37
Gray Level Co-occurence Matrix DifferenceAverage 0.33
First order statistics Median 0.42
Gray Level Run Length Matrix RunPercentage

RunVariance
0.31

-0.31
Gray Level Size Zone Matrix Zone% 0.39
Neighbouring Gray Tone Difference Matrix contrast 0.33
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for monitoring disease progression and guiding clinical 
treatment [46].

In our study, we analyzed approximately 175 MS 
plaques, extracting 107 radiomic features to evalu-
ate their predictive capabilities. According to the met-
rics presented in Table 5 by using test data, the highest 
accuracy of 92.94% was achieved with the HGBC ML 
model. For precision, the LR and DL models attained a 
maximum value of 94.44%. Sensitivity was maximized at 
85.35% in the LR, SGD ML, and DL models. Notably, the 
HGBC model demonstrated an impressive specificity of 
99.35%. The DL model excelled with a maximum AUC of 
95.60% and an F1 score of 89.47%.

Our findings indicate that the sequential DL model 
outperformed others in predicting active and non-active 
MS lesions based on the 107 extracted features, show-
casing superior accuracy, precision, specificity, and AUC 
values [47]. The sensitivity and F1 score for the DL model 
were also robust, falling within the range of 80–90%, 
which reflects its reliability in clinical applications.

When comparing our results to previous studies, 
such as those utilizing texture analysis as a quantita-
tive approach, our findings align with the notion that 
advanced ML techniques can enhance diagnostic accu-
racy [42, 46]. Similar to the literature, which highlights 
the significance of texture features in differentiating MS 
lesions from other conditions, our study reinforces the 
idea that a comprehensive analysis of radiomic features 
can lead to improved detection and characterization of 
MS lesions. The DL model’s performance further sup-
ports the growing body of evidence advocating for the 
integration of radiomics and AI in the clinical assessment 
of MS.

One notable study by Narayana et al. explored the effi-
cacy of a DL method using the VGG16 network to pre-
dict active lesions based on pre-contrast T1-weighted, 
T2-weighted, and FLAIR MRI images. They reported a 
sensitivity of 78% and a specificity of 73% using a slice-
wise prediction approach [26]. In contrast, our study 
achieved superior accuracy across all evaluation metrics, 
with results exceeding 85%.

Fig. 3 AUC curve for the six models which was greater than 90%
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Table 6 highlights the ten most important features 
identified across six ML models, all of which achieved 
an AUC greater than 90%. Notably, features such as 
Maximum, Elongation, Sphericity, Surface-to-Volume 
Ratio, and Median consistently appeared among the 
key features across different models. This consistency 
underscores the relevance of these features in effectively 
characterizing MS lesions and enhances the robustness 
of our findings.

In our analysis, we observed that all 107 evaluated fea-
tures exhibited correlation coefficients below 0.5 with 
the target variable, suggesting limited predictive abil-
ity. However, it is crucial to understand that ML and DL 
models do not solely rely on correlation coefficients to 
establish feature relationships. These models can lever-
age combinations of features to enhance predictive per-
formance, as demonstrated by the results presented in 
this study. While Table  4 outlines the correlation coef-
ficients, Table  6 highlights the importance of features 
from the ML perspective, revealing that high correlation 

does not necessarily imply greater significance in model 
performance.

There are limitations in the current study. The rela-
tively small number of MRI images and primary data may 
impact the generalizability of our findings. Our analysis 
was conducted using images from a single MRI center, 
which employed specific imaging protocols. While this 
approach ensures consistency, it may limit the applicabil-
ity of our results to broader clinical settings. To address 
concerns regarding overfitting associated with using data 
from a single center, we implemented rigorous cross-
validation techniques throughout our analysis. However, 
increasing the dataset size and utilizing multicenter data 
could further enhance the performance of our models 
in predicting active and non-active MS lesions. Further-
more, the use of 2D images for analysis instead of 3D 
images can affect the results and is also considered as a 
limitation in our study. The labeling and feature extrac-
tion were conducted on 2D slices, which may restrict 
the contextual information available for accurate lesion 

Table 6 Feature importance of ML models
LR model PAC model
SurfaceVolumeRatio 13.86 Elongation 1.98
SizeZoneNonUniformity 9.40 SurfaceVolumeRatio 1.74
Sphericity 8.91 Skewness 1.48
SmallAreaLowGrayLevelEmphasis 7.21 Sphericity 1.42
Median 7.17 SizeZoneNonUniformity 1.40
Range 7.08 Maximum 1.25
GrayLevelVariance 6.32 SmallAreaLowGrayLevelEmphasis 1.22
SmallAreaHighGrayLevelEmphasis 5.35 10Percentile 1.11
GrayLevelNonUniformity 5.29 SmallDependenceLowGrayLevelEmphasis 1.06
Maximum 5.00 SmallAreaHighGrayLevelEmphasis 1.00
SGD model SVM model
Elongation 43.47 DependenceNonUniformityNormalized 0.016
Sphericity 40.30 SurfaceVolumeRatio 0.012
10Percentile 26.93 ShortRunEmphasis 0.010
Median 26.90 RunLengthNonUniformityNormalized 0.010
Mean 25.08 Maximum3DDiameter 0.007
Minimum 24.81 Elongation 0.007
RootMeanSquared 24.05 RunEntropy 0.007
Zone% 23.15 Sphericity 0.006
SurfaceVolumeRatio 20.60 Maximum2DDiameterSlice 0.006
LargeDependenceEmphasis 19.62 SurfaceArea 0.004
MPLC model DA model
SmallAreaLowGrayLevelEmphasis 0.024 TotalEnergy 0.02290
Elongation 0.021 10Percentile 0.02290
Coarseness 0.019 LongRunHighGrayLevelEmphasis 0.02137
SurfaceVolumeRatio 0.018 SumAverage 0.01985
SmallDependenceLowGrayLevelEmphasis 0.016 LargeDependenceEmphasis 0.01527
Median 0.015 SurfaceArea 0.01374
Maximum 0.015 Minimum 0.00916
DependenceNonUniformityNormalized 0.013 SizeZoneNonUniformity 0.00916
Correlation 0.013 Maximum 0.00763
10Percentile 0.013 Maximum3DDiameter 0.00611
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characterization. Employing advanced MRI sequences 
and 3D imaging protocols could significantly improve 
the detection capabilities for active MS lesions. Future 
research should focus on expanding the dataset and 
incorporating multicenter data to validate our findings 
and enhance their generalizability.

Conclusion
In conclusion, our study demonstrates the promising 
potential of radiomics and AI models in classifying of 
active and non-active MS lesions using T2-weighted 
MRI images. By extracting 107 quantitative features from 
a dataset of 175 MS plaques, we achieved significant 
accuracy and robustness in our predictions, with the DL 
model outperforming traditional methods. The findings 
highlight the importance of texture analysis and the role 
of specific features, such as Maximum, Elongation, and 
Sphericity, in effectively distinguishing between lesion 
types.

The results underscore the feasibility of utilizing non-
contrast imaging techniques, which can enhance patient 
safety and reduce reliance on gadolinium-based contrast 
agents. Ultimately, the integration of AI in the assess-
ment of MS lesions holds significant promise for improv-
ing diagnostic accuracy, informing treatment decisions, 
and enhancing patient outcomes in the management of 
MS.
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