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Abstract 

Background Monitoring fibrosis in patients with chronic liver disease (CLD) is an important management strategy. 
We have already reported a novel stacked microvascular imaging (SMVI) technique and an examiner scoring evalu-
ation method to improve fibrosis assessment accuracy and demonstrate its high sensitivity. In the present study, we 
analyzed the effectiveness and objectivity of SMVI in diagnosing the liver fibrosis stage based on artificial intelligence 
(AI).

Methods This single-center, cross-sectional study included 517 patients with CLD who underwent ultrasonography 
and liver stiffness testing between August 2019 and October 2022. A convolutional neural network model was con-
structed to evaluate the degree of liver fibrosis from stacked microvascular images generated by accumulating 
high-sensitivity Doppler (i.e., high-definition color) images from these patients. In contrast, as a method of judgment 
by the human eye, we focused on three hallmarks of intrahepatic microvessel morphological changes in the stacked 
microvascular images: narrowing, caliber irregularity, and tortuosity. The degree of liver fibrosis was classified into five 
stages according to etiology based on liver stiffness measurement: F0–1Low (< 5.0 kPa), F0–1High (≥ 5.0 kPa), F2, F3, 
and F4.

Results The AI classification accuracy was 53.8% for a 5-class classification, 66.3% for a 3-class classification (F0–1Low 
vs. F0–1High vs. F2–4), and 83.8% for a 2-class classification (F0–1 vs. F2–4). The diagnostic accuracy for ≥ F2 was 81.6% 
in the examiner’s score assessment, compared with 83.8% in AI assessment, indicating that AI achieved higher diag-
nostic accuracy. Similarly, AI demonstrated higher sensitivity and specificity of 84.2% and 83.5%, respectively. Compar-
ing human judgement with AI judgement, the AI analysis was a superior model with a higher F1 score in the 2-class 
classification.

Conclusions In detecting significant fibrosis (≥ F2) using the SMVI method, AI-based assessments are more accurate 
than human judgement; moreover, AI-based SMVI analysis eliminating human subjectivity bias and determining 
patients with objective fibrosis development is considered an important improvement.
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Introduction
Chronic liver disease (CLDs) is a chronic inflammation 
of the liver caused by various factors, resulting in per-
sistent liver dysfunction [1]. In recent years, the increase 
in chronic hepatitis caused by lifestyle habits, such as 
excess alcohol consumption and metabolic syndrome, 
has become a worldwide problem [2]. Liver fibrosis asso-
ciated with chronic inflammation is considered a criti-
cal factor in predicting the development of liver-related 
complications, such as hepatic failure and carcinogenesis 
[3].

Although liver biopsy is crucial in assessing liver fibro-
sis, its invasiveness, low reproducibility, sampling bias, 
and inconsistent pathological results are disadvantages 
[4]. Ultrasound elastography has recently received atten-
tion as a non-invasive diagnostic test for fibrosis that is 
more suitable than liver biopsy for routine practice [5, 6]. 
Magnetic resonance elastography is considered to be the 
most accurate noninvasive method of detecting advanced 
fibrosis but is not recommended in clinical practice due 
to its high cost and limited use. Transient elastography, 
on the other hand, is a validated technique and the most 
widely available device that is easy to use in clinical prac-
tice. Transient elastography and ultrasound-based meas-
urements such as point-shear wave elastography (SWE) 
and 2D-SWE have an applicability of > 95% [7]. With this 
advancement, the European Association for the Study of 
the Liver (EASL) states in its latest 2021 guidelines that 
advanced liver fibrosis can be diagnosed without liver 
biopsy when liver stiffness measurement (LSM) with 
vibration-controlled transient elastography (VCTE), and 
a patented blood test [7]. However, LSM obtained by 
VCTE may overestimate the liver fibrosis stage due to 
acute inflammation, cholestasis, and congestion [8]. To 
overcome these challenges, a previous study developed 
stacked microvascular imaging (SMVI), a novel Doppler 
imaging technique that can depict details of intrahepatic 
vascular changes caused by fibrosis [9]. In addition, the 
study proposed a new liver fibrosis assessment method 
using an SMVI scoring system based on three vascular 
hallmarks (narrowing, caliber irregularity, and tortuos-
ity), which demonstrated good inter- and intra-examiner 
reliability with weighted kappa coefficients ranging from 
0.72 to 0.89 and high fibrosis staging ability [9]. On the 
other hand, the inter- and intra-examiner reliability for 
VCTE using intraclass correlation coefficients ranged 
from 0.79 to 0.84, while the inter- and intra-examiner 
reliability for 2D-SWE is reported to range from 0.71 to 
0.85 [10]. Hence, the reliability of SMVI is considered to 
be almost equivalent to that of elastography. In particular, 
SMVI yielded higher diagnostic accuracy than other eval-
uation methods, particularly in the early stage of fibrosis. 
However, it has the disadvantage of being dependent on 

subjective human judgment. Thus, a more objective eval-
uation method is required.

In recent years, computer image analysis using arti-
ficial intelligence (AI), particularly deep learning, has 
increasingly and widely been applied in the field of medi-
cal imaging. Several studies of ultrasound image clas-
sification using convolutional neural networks (CNN) 
in thyroid [11, 12], breast [13], soft tissue [14], and liver 
tumors [15] have been published. Some studies that 
have attempted to classify liver fibrosis staging by deep 
learning image analysis and have reported accuracies of 
94%, 83–88%, and 88% for ultrasound [16], computed 
tomography [17], and magnetic resonance imaging [18], 
respectively. Deep learning with CNNs is based on a 
multi-step process in which the computer automatically 
learns higher-order image features, extracts those fea-
tures, and classifies them using fully connected layers in 
the network, without the need for a human to design the 
features.

Here, we trained a CNN model on 517 stacked micro-
vascular images to validate the accuracy of AI-based liver 
fibrosis stage classification and compared its accuracy 
with that of a human scoring method.

Materials and methods
Ethics consideration
This study was reviewed and approved by the Fukuoka 
Tokushukai Hospital Institutional Review Board 
(Approval Number, 220101), and informed consent was 
obtained from all patients included in the study.

Study sample
Stacked microvascular images were obtained from 564 
patients with suspected CLD who underwent VCTE 
(FibroScan) of the liver between August 2019 and Octo-
ber 2022 at Fukuoka Tokushukai Hospital (Fukuoka, 
Japan). Patients with the following conditions affecting 
LSM were excluded: (1) multiple or large hepatic masses, 
(2) acute liver injury, (3) heart failure, (4) severe fatty 
liver disease, and (5) inability to hold breath. FibroScan 
was not performed for cases with jaundice, perihepatic 
ascites, or pregnancy. Thirty-one healthy individuals 
without CLD were excluded, and 517 patients with CLD 
were enrolled (Fig. 1).

Reference standard
The EASL guidelines state that liver biopsy is not 
required for the diagnosis of liver fibrosis, with transient 
elastography and shear wave elastography being agreed 
upon as alternatives [7]. In fact, LSM-based fibrosis stag-
ing was adopted in this study because liver biopsy for 
fibrosis staging for CLD has been replaced with elastog-
raphy by FibroScan in general hospitals.
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The etiology-dependent staging of fibrosis was deter-
mined from the LSM values, as defined by ECHOSENS™ 
as follows: Chronic hepatitis C: F0-F1: ≤ 7.1  kPa; F2: 
7.2 − 9.4; F3: 9.5 − 12.4; F4: ≥ 12.5; Chronic hepatitis B: 
F0-F1: ≤ 7.1  kPa; F2: 7.2 − 9.3; F3: 9.4 − 12.1; F4: ≥ 12.2; 
Metabolic dysfunction associated steatotic liver disease: 
F0-F1: ≤ 6.9  kPa; F2: 7.0 − 8.6; F3: 8.7 − 10.2; F4: ≥ 10.3; 
Alcohol-associated liver disease: F0-F1: ≤ 8.9  kPa; F2: 
9.0 − 12.0; F3: 12.1 − 18.5; F4: ≥ 18.6; Primary biliary chol-
angitis: F0-F1: ≤ 8.7  kPa; F2: 8.8 − 10.6; F3: 10.7 − 16.7; 
F4: ≥ 16.8; and Autoimmune hepatitis: F0-F1: ≤ 5.8  kPa; 
F2: 5.9 − 10.5; F3: 10.6 − 16.0; F4 ≥ 16.1. Since FibroScan 

cannot clearly discriminate between the F0 and F1 stages, 
we used the upper limit of normal (5.0 kPa) as the cut-
off value and designated LSM values of < 5.0 as F0–1Low 
and ≥ 5.0 as F0–1High [19].

Data preprocessing and designing a convolutional neural 
network model
The ultrasound equipment used to obtain stacked micro-
vascular images was a Logiq S8 FS with a 9-L probe (GE 
Healthcare, Chicago, IL, USA). The protocol for obtain-
ing stacked microvascular images was based on the pre-
viously developed method [9]. Specifically, the probe 

Fig. 1 Flowchart of the participants. ALD, alcohol-associated liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus; SLD, steatotic liver disease
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was positioned in the right intercostal space where the 
liver surface could be observed; the high-definition color 
was set to infinite accumulation; and a tilt scan was per-
formed once, while holding the breath for 3–5 s.

To visualize intrahepatic microvascular morpho-
logical changes in early fibrosis, stacked microvascular 
images were targeted to the liver surfaces. These images 
were cropped into rectangles (200 × 300 pixels) contain-
ing the liver surface nadir in the colored region of inter-
est by one investigator. This cropping ensured that color 
Doppler artifacts were eliminated. In general, deep 
learning models exhibit high predictive performance 
by inputting large amounts of training data and learn-
ing the features contained in the data. However, SMVI 
is a new technique not yet widely implemented, and 
it is difficult to obtain a large dataset; therefore, data 
augmentation was performed. We implemented data 
augmentation techniques, such as rotation range, ver-
tical flip, horizontal flip, zoom, width shift, and height 
shift, using the ImageDataGenerator implemented in 
TensorFlow developed by Google (Mountain View, CA, 
USA). The data preprocessing steps are illustrated in 
Fig. 2A. The CNN backbone model used in this study is 
ResNet50, introduced in 2015 by Kaming et al. [20]. The 
model achieves high accuracy by introducing a residual 
block that prevents gradient loss even when the layers 

are deepened. In the training, ResNet50, which has 
been widely used in the deep learning field, was used. 
This ResNet50 architecture, which is shown in Fig.  3, 
has the same architecture as the original ResNet paper 
[20], where 16 residual blocks (totally 49 layers) and 
one fully-connected layer are connected. The optimizer 
used is Adam, which combines momentum and further 
suppresses the oscillations by moving averages, and 
RMSProp, which suppresses the oscillations by adjust-
ing the learning rate. In addition, sparse categorical 
cross-entropy was used as the loss function because 
the labels were integers. As the number of participants 
in the dataset was disproportionate, the optimization 
was weighted by the inverse of the class number ratio. 
Specifically, the weights for each class were calculated 
as follows: class_weights = total_count / class_count. By 
adapting these weights to the loss function, the effect 
of class imbalance was reduced. All the 517 images 
were split into 10 subsets and 10-Fold Cross-Validation 
was implemented for performance evaluation. In the 
training, the number of epochs was set to 70, which 
was experimentally determined by considering suffi-
cient training of ResNet50. In the testing, the trained 
ResNet50 was applied to the test data for evaluating the 
accuracy, precision, recall, and F1 score. A conceptual 
diagram of these CNN designs is presented in Fig. 2B.

Fig. 2 Stacked microvascular imaging data preprocessing and designing a convolutional neural network model. A Stacked microvascular image 
generation. Stacked microvascular images generated by accumulating the high-sensitivity Doppler mode called high-definition color for a few 
seconds can depict many intrahepatic vessels without losing their continuity. To avoid artifacts, 200 × 300 pixels were cropped from the Doppler 
Region-of-Interest. B Convolutional neural network model construction. The cropped stacked microvascular images were learned by ResNet50
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Judgment by a sonographer using the SMVI scoring system
As a method of judgment by the human eye, we 
focused on three hallmarks of intrahepatic microves-
sel morphological changes in the stacked microvascular 
images: narrowing, caliber irregularity, and tortuosity. 
Each hallmark was scored from 0 to 2 based on sever-
ity: 0 = absent, 1 = mild, and 2 = present [9].

“Narrowing” was determined based on the average 
diameter of the five largest vessels located 1  cm deep 
from the liver surface: 0 for ≥ 1.50  mm, 1 for 1.25–
1.49  mm, and 2 for ≤ 1.24  mm. “Caliber irregularity” 
was defined as minute variations in vessel diameter and 
was determined by identifying the regularity/irregu-
larity of vessel contours within 1.5 cm of the liver sur-
face. The frequency of caliber irregularity was scored 
as follows: 0, no irregularity in any vessel; 1, irregular-
ity in < 50% of the vessels; and 2, irregularity in ≥ 50% 
of the vessels. “Tortuosity” is defined by the straight-
ness/winding of the depicted vessel. The vessels within 
1.5  cm from the liver surface were carefully observed 
and scored: 0, no winding in any vessel; 1, winding 
in < 50% of the vessels; and 2, winding in ≥ 50% of the 
vessels. The sum of the three scores was defined as 
the SMVI score, ranging between 0 and 6. One sonog-
rapher acquired the stacked microvascular images, 
and another sonographer, who did not have access to 
all clinical information, independently performed the 
scoring judgment for all cases. The sonographer who 
acquired the SMVI images has 15  years’ experience, 
and the sonographer who made the judgement has 

10 years’ experience; both sonographers are certified by 
the Japan Society of Ultrasonics in Medicine.

A comparison of representative stacked microvascular 
images of deferent fibrosis stages is shown in Fig. 4.

Statistical analyses
The Shapiro–Wilk test was used to test the normality of 
the data, with a significance level of p < 0.05. Validation 
of AI image discriminability in different fibrosis stages 
was conducted in three conditions: 2-classes (F0–1 and 
F2–4), 3-classes (F0–1Low, F0–1High, and F2–4), and 
5-classes (F0–1Low, F0–1High, F2, F3, and F4). The 
diagnostic accuracy of the SMVI score to distinguish the 
significant fibrosis (≥ F2) from the other stages was eval-
uated as the area under the receiver operating character-
istic (ROC) curve (AUC), and cutoffs were determined 
based on the Youden index. All statistical analyses were 
performed using EZR [21] (Saitama Medical Center, Jichi 
Medical University, Saitama, Japan).

Results
Patient population
In this retrospective, cross-sectional study, we enrolled 
517 consecutive patients (mean age, 63.9 ± 12.9  years; 
254 [49.1%] males, 263 [50.9%] females) with mixed CLD. 
The demographic information of these patients is sum-
marized in Table  1. In 56.7% of patients with CLD, the 
etiology involved viral liver disease caused by hepatitis 
B virus and hepatitis C virus, and in 34.6%, the etiology 
was steatotic liver disease. Significant fibrosis (≥ F2) was 

Fig. 3 Architectures for ImageNet. ResNet50 contains 16 residual blocks (49 layers in total), with one fully connected layer
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present in 31.9% of patients. Detailed demographic infor-
mation on the different stages of fibrosis is presented in 
Additional file 1.

Differences in accuracy by number of classifications 
in AI‑judged stacked microvascular images
The patients with CLD were divided into five groups 
by the fibrosis stage: F0-1Low (< 5.0  kPa), F0–1High 
(≥ 5.0  kPa), F2, F3, and F4. The diagnostic accuracy 
of each classification model was compared when the 
five different fibrosis stages were classified into five 
(F0–1Low, F0–1High, F2, F3, and F4), three (F0–1Low, 
F0–1High, and F2–4), and two (F0–1 and F2–4) classes. 
Accuracy was 53.8% for the 5-class classification, 66.3% 
for the 3-class classification, and 83.8% for the 2-class 
classification, with accuracy increasing as the number of 
classifications decreased (Table  2). Similar trends were 
observed for precision, recall, and F1 scores. Compar-
ing human judgement with AI judgement, the AI analy-
sis was a superior model with a higher F1 score in the 
2-class classification. In the 3- and 5-class classifications, 
the performance of both AI and human judgments was 
almost equal. The confusion matrix for each classification 
model is shown in Fig. 5.

Determination of optimal cut‑off value in a human‑judged 
SMVI scoring system
The SMVI scoring system is an assessment method in 
which the examiner makes a subjective judgment based 
on three vascular morphological hallmarks (narrowing, 

caliber irregularity, and tortuosity). ROC analysis was 
performed to determine the SMVI score that could dis-
tinguish significant fibrosis (≥ F2). The optimal cut-off 
value was 3 points, yielding a sensitivity of 82.4% and 
specificity of 90.3% (AUC = 0.93, 95% confidence interval: 
0.91–0.95).

Mild fibrosis versus significant fibrosis classifier 
performance metrics
The diagnostic accuracy of AI-judged and human-judged 
classifications was compared. AI showed superior accu-
racy in diagnosing fibrosis stages ≥ F2, with an accuracy 
rate of 83.8% for the AI versus 81.6% for visual evaluation 
by a human examiner (t-test, p < 0.05). Similarly, AI dem-
onstrated higher sensitivity and specificity of 84.2% and 
83.5%, respectively. The details of the classification per-
formance are listed in Table 3.

Representative image of SMVI determined by AI
Examples of images correctly classified into fibrosis stages 
using the CNN model are shown in Fig. 5. In F0–1 cases, 
many images showed thick vessels, smooth contours, and 
linear runs, whereas in F2–4 cases, the vessels were thin, 
contours were irregular, and runs were nonlinear. An 
example of an incorrectly classified stacked microvascu-
lar image is shown in Fig. 6. Although it was not possible 
to identify classification regularities common to all cases, 
images of vessels with thick, well-defined contours were 
classified as F0–1, whereas those with narrow, complex 
running vessels were classified as F2–4.

Fig. 4 Comparison of the representative stacked microvascular images in different fibrosis stages. With the development of fibrosis, complex 
modifications of the vessels occur such as narrowing, caliber irregularities, and tortuosity. The scores for each fibrosis stage are as follows in order 
of narrowing, irregular caliber, and tortuosity: a F0-1Low. 0, 0, and 0 points, b H0-1High. 2, 0, and 0 points, c F2. 2, 1, and 0 points, d F3. 2, 1, and 1 
points, e F4. 2, 2, and 2 points, respectively
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Discussion
Our study revealed the usefulness of deep learning as 
an analytical method for stacked microvascular images. 
In particular, we showed that AI-based SMVI analysis is 
useful for detecting significant fibrosis (≥ F2) in patients 
with CLD.

CLD, characterized by inflammation and progressive 
fibrosis, has been shown to undergo hepatic angiogen-
esis regardless of etiology [22]. In cirrhosis, the enlarged 
pseudolobular nodules compress the portal and hepatic 
venous branches, resulting in narrowing and tortuosity 
of the intrahepatic vessels [23–26]. In recent years, such 
modifications of vessel architecture have been analyzed 
using high-sensitivity Doppler methods, such as Superb 
microvascular imaging and microvascular imaging. How-
ever, because these modalities yield images as a single 
two-dimensional section, the vessels depicted are often 
fragmented, and the results are difficult to interpret [27, 
28]. As a solution to these problems, an ultrasound Dop-
pler technique called SMVI, which provides enhanced 
images by image accumulation, was developed, which 
allowed detailed visualization of intrahepatic blood ves-
sels [9]. Furthermore, a scoring method based on three 
hallmarks was devised to analyze stacked microvascular 
images, but the possibility of potential subjective bias 
could not be ruled out because the system was dependent 
on human judgment. Therefore, we attempted to judge 
the stacked microvascular images here using AI, without 
depending on the human eye.

By introducing a residual learning approach, 
ResNet50 revolutionized the way deep networks are 
trained, enabling the development of deeper networks 
without sacrificing performance or stability. The abil-
ity to efficiently learn very deep architectures and 
achieve high accuracy in tasks such as image classifi-
cation has made ResNet50 one of the most influential 

Table 1 Demographic information for all participants

Values are presented as mean ± standard deviation or number (%). All 
participants are Japanese patients

HCV Hepatic C virus, HBV Hepatic B virus, MASLD Metabolic dysfunction 
associated with steatotic liver disease, ALD Alcohol-associated liver disease, AIH 
Autoimmune hepatitis, LSM Liver stiffness measurement, PBC Primary biliary 
cholangitis

Parameter Participants (n = 517)

Age (years) 63.6 ± 12.9

Sex (male/female) 254/263

Etiology, n (%)

 HCV 167 (32.3)

 HBV 126 (24.3)

 MASLD 90 (17.4)

 MetALD 7 (1.4)

 Cryptogenic SLD 4 (0.8)

 ALD 78 (15.1)

 AIH 14 (2.7)

 PBC 12 (2.3)

 Drug 5 (1.0)

 Unknown 14 (2.7)

LSM-based fibrosis stage, n (%)

 F0–1Low 243 (47.0)

 F0–1High 109 (21.1)

 F2 43 (8.3)

 F3 49 (9.5)

 F4 73 (14.1)

SMVI score, n (%)

 0 140 (27.1)

 1 99 (19.1)

 2 108 (20.9)

 3 64 (12.4)

 4 56 (10.8)

 5 28 (5.4)

 6 22 (4.3)

Table 2 Differences in the performance by the number of classifications

Arrows in the column headers indicate that higher values are superior

a) artificial intelligence-based judgments

b) human examiner-based judgments

a)

Classification Accuracy↑ Precision↑ Recall↑ F1 score↑
2 class (F0–1, F2–4) 0.838 0.812 0.839 0.821

3 class (F0–1Low, F0–1High, F2–4) 0.663 0.590 0.592 0.585

5 class (F0–1Low, F0–1High, F2, F3, F4) 0.538 0.368 0.395 0.372

b)

Classification Accuracy↑ Precision↑ Recall↑ F1 score↑
2 class (F0–1, F2–4) 0.816 0.636 0.775 0.698

3 class (F0–1Low, F0–1High, F2–4) 0.655 0.580 0.586 0.583

5 class (F0–1Low, F0–1High, F2, F3, F4) 0.557 0.375 0.396 0.385
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architectures in deep learning. Therefore, ResNet50 
is a more advanced deep learning model that adds a 
new approach to the traditional CNN architecture, 
but recent AI models have evolved significantly. Zhang 
et  al. reported that region-based integration-and-
recalibration networks [29], regional context-based 
recalibration network [30], and pyramid pixel context 
adaption modules [31] help to improve medical image 
classification performance, demonstrating their superi-
ority over recent deep neural networks. In this study, 
we used a basic ResNet50 architecture as an initial step 
of building an AI model for monitoring fibrosis, but 
by incorporating the recent architectures listed above, 
our method can enhance the feature extraction abil-
ity from medical images and improve its performance. 

Vision Transformer (ViT) is a type of deep learning 
model that uses transformer architecture for image 
recognition tasks. Specifically, it uses an approach that 
is different from traditional CNNs by utilizing a trans-
former architecture. Transformers are originally mod-
els often used in natural language processing, mainly 
because of their ability to focus on important parts of 
the data by leveraging self-attention mechanisms. In 
the field of deep learning, CNNs have been the domi-
nant method for tasks such as image recognition and 
object detection, but ViT has been touted as an alter-
native. While they perform strongly, especially on large 
datasets, their effectiveness may be limited on small 
datasets or with constrained computational resources. 
In contrast, CNNs are good at capturing local features 
of images, process images using convolutional layers, 
and generally have the advantage of capturing fine fea-
tures of images (edges, textures, etc.). In addition to 
the ResNet50 we used in this study, leveraging newer 
computer vision classification models such as ViT [32], 
Swin Transformer [33], RepViT [34], and SLaK [35] in 
the future may be useful.

The AI judgments showed a decrease in accuracy when 
the number of classes increased: accuracy was 83.8% 
when using two classes, 66.3% when using three classes, 
and 53.8% when using five classes for classification. This 
may be due to the imbalance in sample size between each 
fibrosis stage and the small total sample size. At present, 
the diagnostic performance of the 3- and 5-class classi-
fications is not good but may improve with larger sam-
ple sizes. On the other hand, the 2-class classification has 
excellent diagnostic performance, and the AI analysis of 
SMVI has a significant role as a screening tool to effec-
tively detect significant fibrosis. Furthermore, especially 
in the 2-class classification, the F1 score was 0.821 for the 

Fig. 5 Confusion matrix showing performance by number of classifications. Confusion matrix of true (row) vs. model-generated predicted (column) 
classes for fibrosis stage in stacked microvascular image analysis. Values are shown as numbers with shaded colors

Table 3 Comparison of diagnostic performance between 
human and artificial intelligence-based judgments in 2-class 
comparisons

Values in Table 3 are expressed as point estimates and 95% CI. The up arrow in 
the first column indicates that a higher value is superior, and the down arrow 
indicates that a lower value is superior

Abbreviations: AI Artificial intelligence, CI Confidence interval, PPV Positive-
predictive value, NPV Negative-predictive value, LR + Positive-likelihood ratio, 
LR- Negative-likelihood ratio

Judge

AI (95% CI) Sonographer (95% CI)

Sensitivity ↑ 0.842 (0.778–0.894) 0.775 (0.697–0.840)

Specificity ↑ 0.835 (0.792–0.872) 0.832 (0.790–0.868)

PPV ↑ 0.706 (0.637–0.768) 0.636 (0.559–0.708)

NPV ↑ 0.919 (0.883–0.946) 0.907 (0.871–0.936)

Accuracy ↑ 0.838 (0.803–0.868) 0.816 (0.780–0.849)

LR + ↑ 5.113 (4.005–6.527) 4.611 (3.620–5.874)

LR- ↓ 0.189 (0.132–0.269) 0.271 (0.199–0.369)
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AI analysis, which is higher than that for the human judg-
ment, indicating that the AI analysis is better at fitting 
the model.

Since significant fibrosis (≥ F2) is a risk factor for cir-
rhosis and overall mortality [36], this study focused on a 
2-class classification for the detection of significant fibro-
sis (≥ F2). The accuracy of diagnosis in the significant 
fibrosis group was 83.8% for AI and 81.6% for human 
judgment. The sensitivity was 84.2% for AI and 77.5% 
for human judgment, and the specificity was 83.5% for 
AI and 83.2% for human judgement, with the AI analy-
sis performing slightly better in both (Table 3). Therefore, 
when determining significant fibrosis progression, the 
diagnostic accuracy being higher with AI analysis than 
with conventional SMVI scoring methods is a consid-
erable improvement. Importantly, the use of AI allows 
objective decisions to be made without the possibility of 
subjective bias being introduced by human examiners. 
Improved objectivity in ultrasonography will lead to a 
reduction in the interrater differences attributed to differ-
ences in experience and technical skills. The development 
of AI in the medical field is accelerating. Expectations are 
particularly high for “AI-computer-aided detection” (AI-
CAD),” which combines computer-aided diagnosis and 
AI [37].

The SMVI scoring system is particularly sensitive 
to early fibrosis, as compared to conventional fibrosis 
assessment methods, because the SMVI scoring system 
is more likely to detect vascular narrowing, which is an 

early change in liver fibrosis [9]. On the other hand, AI 
analysis of SMVI was effective in identifying fibrosis pro-
gression groups. This may be because the scoring system 
is a systematic assessment based on the individual ves-
sel characteristics of narrowing, caliber irregularity, and 
tortuosity, whereas AI analysis identifies image patterns 
non-systematically. In future, SMVI may be widely imple-
mented in daily clinical practice as a liver fibrosis evalu-
ation method if general-purpose ultrasound systems are 
equipped with SMVI as an AI-CAD.

The SMVI technique is considered less susceptible to 
the effects of hepatic congestion and acute inflamma-
tion than elastography because the analysis is based on 
the morphological running of the blood vessels. There-
fore, elastography and SMVI have complementary roles, 
and their combination may improve the diagnostic per-
formance of the liver fibrosis stage. By determining 
early fibrosis with conventional SMVI scoring meth-
ods and objectively containing the fibrosis progression 
group with this AI analysis, SMVI can be considered a 
validated technique to compensate for the weakness of 
elastography.

Although AI judgments slightly outperformed human 
judgments in the 2-class classification in this study, it 
is still difficult to conclude that the current model ade-
quately meets the needs of clinical diagnostic support. At 
present, we believe that the best clinical diagnosis sup-
port model would be to use AI to identify F2–4 and to 
automatically measure mean vessel diameter (narrowing) 

Fig. 6 Representative images of stacked microvascular imaging by convolutional neural network models for fibrosis stage prediction. The size 
of the cropped image is 200 × 300 pixels (22 × 14 mm)
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for F0–1. Recent progress in AI models has been remark-
able, and the latest deep learning model can possibly be 
used to improve the 5-class diagnostic performance of 
the AI-only model.

This study has some limitations. First, the fibrosis stage 
used in this study was based on elastography, rather than 
on liver biopsy. However, it has been reported that the 
need for liver biopsy is only 3% when the EASL algorithm 
is applied in a primary care/diabetes clinic cohort [38]. 
Moreover, in clinical practice, non-invasive tests using 
LSM values are widely used to diagnose liver fibrosis 
stages, limiting the need for highly invasive liver biop-
sies. Second, this study involved a small sample size (517 
cases) for a deep learning study. Thus, for future research, 
we aim to conduct a multicenter, prospective study to 
evaluate the fibrosis diagnostic performance analysis 
based on AI analysis using the SMVI method.

Conclusion
In conclusion, the SMVI method, known for its high 
sensitivity Doppler accumulation, has demonstrated 
enhanced objectivity with the integration of AI technol-
ogy. It has proven to be particularly effective in assessing 
fibrosis progression beyond the F2 stage in patients with 
CLD.
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