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Abstract
Objective  In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant 
pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones 
are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules 
to enhance diagnostic accuracy.

Methods  Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People’s Hospital, etc.) were 
collected. Applying exclusion criteria, 370 nodules (78 benign, 292 malignant) with 3D CTR ≥ 50% were selected and 
randomly split 7:3 into training and validation cohorts. Using R programming, Lasso regression with 10-fold cross-
validation filtered features, followed by univariate and multivariate logistic regression to construct the model. Its 
efficacy was evaluated by ROC, DCA curves and calibration plots.

Results  Lasso regression picked 18 non-zero coefficients from 108 features. Three significant factors—patient age, 
solid component volume and mean CT value—were identified. The logistic regression equation was formulated. In 
the training set, the ROC AUC was 0.721 (95%CI: 0.642–0.801); in the validation set, AUC was 0.757 (95%CI: 0.632–
0.881), showing the model’s stability and predictive ability.

Conclusion  The model has moderate accuracy in differentiating benign from malignant 3D CTR ≥ 50% nodules, 
holding clinical potential. Future efforts could explore more to improve its precision and value.

Clinical trial number  Not applicable.
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Introduction
Pulmonary nodules are defined as focal, round opaci-
ties measuring less than or equal to 3  cm in diameter 
on chest imaging, with either clear or blurry edges, and 
can be a radiographic manifestation of a variety of dis-
eases. Ground-glass nodules (GGNs) are an important 
type, which can be further classified into pure ground-
glass nodules and mixed-density ground-glass nodules. 
Once a mixed-density ground-glass nodule is confirmed 
as malignant, its aggressiveness is often higher than that 
of pure ground-glass nodules. The more substantial the 
solid component, the faster the progression and the 
earlier the potential for metastasis, leading to a poorer 
prognosis [1, 2]. Differentiating the benignancy or malig-
nancy of mixed-density ground-glass nodules with a 
predominant solid component (CTR ≥ 50%) is a clini-
cal challenge(Fig.  1). Therefore, clarifying the nature of 
such nodules at the pulmonary nodule stage facilitates 
early treatment and is crucial for improving the progno-
sis of these patients. In clinical practice, a combination 
of methods is often employed to assess the nature of pul-
monary nodules. These include patient history such as 
smoking habits and family history of cancer, radiographic 
morphological characteristics, and blood-based biomark-
ers. In some cases, a strategy of empirical anti-infective 
treatment followed by a reassessment of the changes in 
the nodule is also adopted to evaluate the malignancy. 
However, malignant nodules at the nodule stage often 

lack specific clinical manifestations, and morphological 
features such as spiculated margins and pleural indenta-
tion are not typical. Additionally, there is considerable 
overlap in the morphological characteristics of benign 
and malignant nodules, making differential diagnosis 
challenging.

Traditional tumor markers, such as Carcinoembry-
onic Antigen (CEA), Squamous Cell Carcinoma Anti-
gen (SCC), Cytokeratin-19 Fragment Antigen 21 − 1 
(CYFRA 21 − 1), and Gastrin-releasing Peptide Precursor 
(ProGRP), have limited sensitivity and specificity in diag-
nosing small nodules due to their limited secretion capa-
bilities [3–5]. Hence, there is an urgent need for a novel 
diagnostic method to assist clinical decision-making. 
The traditional diagnostic model of pulmonary nodules 
relies on morphological features of pulmonary nodules. 
But these mainly depends on the subjective judgment 
and clinical experience of radiologists, with poor repeat-
ability. However, artificial intelligence radiomics is based 
on a commercial artificial intelligence software platform, 
which can quickly screen image data, reduce individual 
differences and biases, and has strong repeatability.

In this study, a threshold segmentation method (thresh-
old of -350 HU) was employed to consider pulmonary 
nodules with a solid component ratio of ≥ 50% as mixed-
density ground-glass nodules with a predominant solid 
component. The imaging features are quantified by the 
full-chest diagnostic module of the Shukun Technology 

Fig. 1  Two lung nodules (CTR > 50%) were detected in the right upper lobe. Surgical pathology verified one as benign and the other as malignant. (A) 
A 74-year-old male patient presented with a pulmonary nodule in the upper lobe of the right lung (indicated by the arrow in the imaging), which had a 
consolidation to tumor ratio of 85.5%. The nodule was surgically resected, and the postoperative pathological diagnosis revealed pulmonary tuberculosis. 
(B) A 59-year-old male patient presented with a pulmonary nodule in the upper lobe of the right lung (indicated by the arrow in the imaging), which had 
a consolidation to tumor ratio of 96.6%. The nodule was surgically resected, and the postoperative pathological diagnosis revealed pulmonary invasive 
adenocarcinoma
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Artificial Intelligence Workstation, and combined with 
general clinical characteristics to establish a predictive 
model for the benignancy or malignancy of such pulmo-
nary nodules. This model aims to increase the clinical 
basis for judging the nature of these nodules and has cer-
tain practical value in clinical practice.

Materials and methods
Materials
The study was conducted in accordance with the Dec-
laration of Helsinki, and approved by the Institutional 
Review Board (IRB) of The Fifth Clinical Medical College 
of Henan University of Chinese Medicine (Zhengzhou 
People’s Hospital) with a waiver for informed consent 
(No.2024011155). The study subjects were selected from 
five medical centers, including Zhengzhou People’s Hos-
pital, Cancer Hospital of the Chinese Academy of Medi-
cal Sciences, The First Affiliated Hospital of Zhengzhou 
University, Liangxiang Hospital in Beijing, and The Ninth 
People’s Hospital of Zhengzhou. Cases with a confirmed 
surgical resection and a clear pathological diagnosis of 
CTR (Cancer-to-Tumor Ratio) greater than 50% were 
included. These cases were randomly divided into a train-
ing set (259 cases) and a validation set (111 cases) in a 7:3 
ratio.

Inclusion criteria
The criteria for the inclusion of subjects in the study are 
as follows:

1) The maximum diameter of the nodule is ≤ 30 mm;
2) Utilizing the threshold segmentation method applied 

by Nuance Technology’s artificial intelligence, with a 
threshold value of -350HU, the 3D CTR is ≥ 50%;

3) Complete preoperative thin-slice chest CT scan data 
(≤ 1.5 mm) obtained within one month prior to surgery;

4) No evident signs of lung atelectasis, mediastinal 
lymph node enlargement, or pleural effusion;

5) No prior neoadjuvant therapy, including chemother-
apy, targeted therapy, immunotherapy, or radiotherapy;

6) Pathological diagnosis is clearly established postop-
eratively through routine pathological examination.

Exclusion criteria
The exclusion criteria for the study are delineated as 
follows:

1) Nodules with a maximum diameter >30 mm;
2) Cases with a 3D CTR <50%;
3) Non-thin-slice imaging (>1.5  mm) or imaging data 

obtained more than one month prior to surgery;
4) Subjects who have undergone any form of neoadju-

vant therapy;
5) Cases with incomplete medical records or where the 

pathology is in question.

Data collection
In total, 370 pulmonary nodules were included in the 
study, distributed across five medical centers as fol-
lows: 182 from Zhengzhou People’s Hospital, 86 from 
the Cancer Hospital of the Chinese Academy of Medical 
Sciences, 53 from The First Affiliated Hospital of Zheng-
zhou University, 38 from Liangxiang Hospital in Beijing, 
and 11 from The Ninth People’s Hospital of Zhengzhou. 
Among these, there were 78 benign nodules categorized 
as follows: 30 inflammatory nodules, 12 hamartomas, 11 
tuberculous granulomas, 9 fibrotic nodules, 6 sclerosing 
hemangiomas, 3 bronchial adenomas, 2 intrapulmonary 
lymph nodes, 2 cases of carbon deposition, 1 smooth 
muscle-like hyperplasia, and 1  min meningothelial-
like nodule. The malignant nodules numbered 292 and 
included: 216 invasive adenocarcinomas, 23 minimally 
invasive adenocarcinomas, 17 mucinous adenocarcino-
mas, 12 squamous cell carcinomas, 7 carcinomas in situ, 
4 small cell lung cancers, 4 metastatic tumors (2 from 
breast cancer, 1 from thyroid cancer, and 1 from colon 
cancer), 2 mixed adenocarcinomas, 2 adenosquamous 
carcinomas, 2 carcinoids, 1 sarcomatoid carcinoma, 1 
lymphoepithelioma-like carcinoma, and 1 mucoepider-
moid carcinoma.

Clinical data encompassed patient age, gender, lobar 
distribution of the lung, and postoperative pathology. 
Radiographic characteristics included the volume of solid 
components and the 3D CTR based on the threshold seg-
mentation method with a threshold of -350HU. Radiomic 
features, totaling 102, comprised general features, first-
order radiomic features, three-dimensional shape fea-
tures, and texture features (also known as second-order 
features, which reflect the periodic appearance of gray 
levels in the image and their spatial relationships, indicat-
ing the uniformity, fineness, and roughness of the image, 
with a total of 5 categories). These included GLCM fea-
tures, GLSZM features, GLRLM features, NGTDM fea-
tures, and GLDM features. The detailed content of these 
features is presented in the third section of this paper. 
A comprehensive compilation and organization of the 
aforementioned 108 feature items were conducted. The 
detailed flowchart is depicted in Fig. 2.

Statistical methods
The statistical analysis and visualization of the data were 
conducted using R (version 4.2.1). Initially, a 10-fold 
cross-validation least absolute shrinkage and selection 
operator (LASSO) regression method was employed to 
identify features with non-zero coefficients from both 
general characteristics and radiomic features. These fea-
tures were then subjected to univariate logistic regres-
sion analysis. Variables with a p-value less than 0.1 in the 
training set were selected for inclusion in the multivariate 
logistic regression analysis. Features with a p-value less 
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than 0.05 were incorporated into the benign and malig-
nant prediction model.

The performance of the predictive model was evaluated 
using the receiver operating characteristic (ROC) curve, 
decision curve analysis (DCA), and calibration curves. 
The predictive model was further validated by applying 
the validation set data to the model. A p-value less than 
0.05 was considered to indicate statistical significance.

Results
LASSO regression coefficient selection results
In the process of feature selection, 18 non-zero coef-
ficient features were identified from the 108 character-
istics using the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression method. These features 
include: age, lobe, Volume of solid components, Kurtosis, 
Maximum, Mean, Minimum, sphericity×10, GLCMImc2, 

GLCM Inverse Variance×10, GLSZM Gray Level Vari-
ance, GLSZM Small Area Emphasis×10, GLSZM Small 
Area Low Gray Level Emphasis×100, GLSZM Zone 
Entropy, GLRLM Run Variance, NGTGDM Strength, 
GLDM Large Dependence High Gray Level Empha-
sis/1000, GLDM Large Dependence Low Gray Level 
Emphasis. The process of selecting variables in Lasso 
regression is illustrated in Fig. 3A and B.

Construction of the clinical factor model
The 18 features identified through LASSO regression 
were subjected to univariate logistic regression analy-
sis. Factors with a p-value less than 0.1 were selected for 
inclusion in the multivariate logistic regression analysis. 
Subsequently, factors with a p-value less than 0.05 were 
incorporated into the final predictive model. The detailed 

Fig. 2  Schematic diagram of the mathematical model of benign and malignant prediction of pulmonary nodules with 3D CTR ≥ 50%
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results of the univariate and multivariate logistic regres-
sion analyses are presented in Table 1.

Ultimately, three factors were included in the model: 
patient age, volume of solid components, and mean CT 
value. The regression equation for the predictive model is 
as follows: P = ex/(1 + ex), x = 2.4182 − 0.0490×(age) − 0.000
4×(solid component volume) + 0.0061×(mean CT value).

Training set ROC curve analysis and validation
The training set comprised 259 nodules, with 206 benign 
and 53 malignant cases. The specific data are presented 
in Table 2. The predictive performance of the model was 
assessed using the ROC curve, which yielded an AUC of 
0.721, indicating moderate accuracy, with a 95%CI rang-
ing from 0.642 to 0.801 (as shown in Fig.  4A). At the 

Table 1  Univariate analysis and multivariate analysis
Characteristics Total(N) Univariate analysis Multivariate analysis

Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value
age 370 0.953 (0.929–0.977) < 0.001 0.960 (0.934–0.987) 0.004
lobe 370 0.870 (0.735–1.031) 0.108
Volume of solid components 370 1.000 (1.000–1.000) 0.004 1.000 (0.999–1.000) 0.015
Kurtosis 370 1.055 (0.989–1.125) 0.107
Maximum 370 1.000 (1.000–1.001) 0.374
Mean 370 1.004 (1.001–1.006) 0.003 1.005 (1.001–1.008) 0.024
Minimum 370 1.004 (1.002–1.005) < 0.001 1.001 (0.998–1.004) 0.438
sphericity×10 370 1.607 (1.003–2.574) 0.049 0.583 (0.321–1.061) 0.077
GLCM Imc2 370 0.182 (0.017–2.000) 0.164
GLCM Inverse Variance×10 370 1.349 (0.988–1.843) 0.060 1.873 (0.925–3.790) 0.081
GLSZM Gray Level Variance 370 0.989 (0.980–0.998) 0.017 1.005 (0.990–1.020) 0.517
GLSZM Small Area Emphasis×10 370 2.245 (1.406–3.587) < 0.001 2.066 (0.820–5.204) 0.124
GLSZM Small Area Low Gray Level Emphasis×100 370 1.562 (1.227–1.989) < 0.001 1.328 (0.858–2.055) 0.204
GLSZM Zone Entropy 370 0.229 (0.136–0.384) < 0.001 0.520 (0.129–2.101) 0.358
GLRLM Run Variance 370 0.998 (0.534–1.865) 0.996
NGTGDM Strength 370 1.042 (0.977–1.112) 0.210
GLDM Large Dependence High Gray Level Emphasis/1000 370 0.993 (0.985–1.002) 0.130
GLDM Large Dependence Low Gray Level Emphasis 370 1.359 (0.828–2.233) 0.225

Table 2  Details the characteristics of the factors included in the predictive model from the training dataset
Variables Total (n = 259) Non-invasive group (n = 206) Invasive group (n = 53) Statistic P
Age 59.60 ± 10.00 60.42 ± 9.63 56.42 ± 10.87 t = 2.63 0.009
Volume of solid components 1856.05 ± 2083.73 2034.12 ± 2224.55 1163.92 ± 1191.51 t = 3.86 < 0.001
Mean CT value -61.43 ± 121.62 -69.40 ± 124.55 -30.47 ± 104.87 t=-2.31 0.023
t: t-test

SD: standard deviation

Fig. 3  The process of selecting variables in Lasso regression
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cutoff point of -2.7206, the Youden’s index was maxi-
mized (0.3541). At this point, the model’s sensitivity was 
0.50943, specificity was 0.8447, the positive predictive 
value was 0.4576, and the negative predictive value was 
0.8700.

Calibration curves were used to evaluate the model’s 
ability to accurately estimate the malignant risk of pul-
monary nodules with a CTR greater than 50% within 
the training set (as shown in Fig. 4B). The analysis indi-
cated that the calibration curve of the training set had 
a high degree of overlap with the ideal curve, and the 
discrimination indicated that the model had moderate 
accuracy (C-index: 0.721 (0.641–0.802)). The calibration 
curve suggested that there was no significant difference 
between the predicted and observed values, indicating a 
good fit of the model (P = 0.4669).

Additionally, DCA was employed to evaluate the model 
(as depicted in Fig. 4C). It indicated that when the thresh-
old probability for intervention ranged from 0.05 to 0.58, 
the net benefit of the DCA curve was higher than that of 
the “no intervention” and “full intervention” strategies, 
suggesting that the model has good clinical utility.

Nomogram model construction
Based on the results of the multivariate logistic regres-
sion analysis, which identified three predictive factors 
incorporated into the model, a nomogram was con-
structed for visual representation and ease of use (Fig. 5). 
The nomogram is a graphical tool that integrates the pre-
dictive factors and allows for the estimation of the prob-
ability of a malignant nodule.

Fig. 4  The ability of the model to discriminate benign and malignant sub-solid pulmonary nodules with a 3D CTR ≥ 50% was validated using ROC, calibra-
tion, and DCA curves. ROC curves (A), calibration curves (B), and DCA curves (C) of the training cohort
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Validation set ROC curve analysis and validation
The validation set, consisting of 111 nodules (86 benign 
and 25 malignant), was used to assess the predictive per-
formance of the model. The comparison between the 
training and validation sets is detailed in Table 3, where 
no significant statistical differences were observed for 
the three factors included in the model (P < 0.05). The 
validation process involved the construction and analysis 
of the ROC curve, calibration curve, and DCA curve (as 
depicted in Fig. 6A, B, and C).

The ROC curve for the validation set demonstrated a 
high predictive performance with an AUC of 0.757 and 
a 95%CI ranging from 0.632 to 0.881. The sensitivity and 
specificity of the model in the validation set were 0.8200 
and 0.8256, respectively, with an overall accuracy of 
0.8018. The calibration curve indicated a C-index of 0.757 
(0.632–0.881), suggesting moderate calibration. However, 
the p-value of 0.0159 indicates a statistically significant 
difference between the predicted and observed values, 
suggesting that the model’s calibration may require fur-
ther refinement.

The DCA curve analysis showed that when the prob-
ability threshold for malignancy of pulmonary nodules 
was between 0.18 and 0.78, the model provided a higher 

net benefit, indicating its clinical utility within this range 
of risk probabilities.

Discussion
The early detection and accurate differentiation of pul-
monary nodules into benign or malignant categories 
are crucial for the early diagnosis and treatment of lung 
cancer. The consolidation tumor ratio (CTR), which is 
the ratio of solid components to the total nodule volume 
in pulmonary nodule imaging, is a significant indicator. 
An increase in solid components within malignant pul-
monary nodules typically signifies a higher degree of 
invasiveness [6, 7]. However, solid pulmonary nodules 
paradoxically have the lowest probability of malignancy 
among all types of pulmonary nodules, while mixed-
density ground-glass nodules have the highest probability 
[8–10].

Current clinical research primarily focuses on solid 
nodules and ground-glass nodules without further strati-
fication based on their solid components. Threshold 
segmentation is a widely used image segmentation tech-
nique in medical imaging that involves selecting one or 
more gray-scale thresholds to categorize pixels into dif-
ferent classes, typically separating the object of interest 
from the background. The choice of threshold directly 

Table 3  Compares the two groups in the training and validation datasets
Variables Total (n = 370) test (n = 111) train (n = 259) Statistic P
Age 59.65 ± 10.09 59.75 ± 10.32 59.60 ± 10.00 t = 0.13 0.899
Volume of solid components 1804.36 ± 2011.32 1683.75 ± 1834.60 1856.05 ± 2083.73 t=-0.75 0.451
Mean -59.00 ± 123.08 -53.32 ± 126.80 -61.43 ± 121.62 t = 0.58 0.562
t: t-test

SD: standard deviation

Fig. 5  Nomogram model for predicting benign and malignant sub-solid pulmonary nodules with a 3D CTR ≥ 50%
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affects the determination of the CTR. When the CTR 
exceeds 50%, clinical differentiation between benign and 
malignant nodules becomes particularly challenging. This 
study aims to establish a nomogram model that combines 
radiomic features quantified using commercially avail-
able artificial intelligence software at our institution with 
general clinical characteristics. The purpose of this model 
is to provide additional clinical evidence for the differen-
tiation of benign and malignant pulmonary nodules with 
a CTR greater than 50%.

During the nodule stage, malignant morphological 
signs such as spiculated margins and pleural indentation 
are often not typical, making the differentiation between 
benign and malignant nodules a clinical challenge that 
requires attention and improved diagnostic capabilities 

from researchers and clinicians. Currently, clinical prac-
tice primarily relies on traditional imaging examinations, 
such as CT, to assess the size of the nodule, the pres-
ence of spiculated margins, pleural indentation, lobula-
tion, cavitation, air bronchogram, satellite nodules, halo 
sign, and bronchial cutoff, among other morphological 
characteristics for preliminary judgment [11–15]. When 
necessary, contrast-enhanced CT may be used to fur-
ther assess the enhancement pattern of the nodule [16, 
17]. Additionally, blood tumor markers such as Carcino-
embryonic Antigen (CEA), Squamous Cell Carcinoma 
Antigen (SCC), Cytokeratin-19 Fragment Antigen 21 − 1 
(CYFRA 21 − 1), and Gastrin-releasing Peptide Precur-
sor (ProGRP) [18], as well as novel liquid biopsy markers 
like single-cell sequencing [19], seven-antibody detection 

Fig. 6  ROC curves (A), calibration curves (B), and DCA curves (C) of the validation cohort
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for lung cancer [20], DNA methylation levels [21], and 
circulating tumor cells [22], are integrated into clini-
cal diagnostic protocols. PET-CT scans are also utilized 
for assessment, with a maximum standard uptake value 
(SUVmax) exceeding 2.5 indicating a potential malig-
nancy. It is important to note that some benign condi-
tions like tuberculosis and inflammatory granulomas can 
also lead to elevated SUVmax, resulting in false positives 
[23, 24]. Nevertheless, PET-CT remains a widely used 
diagnostic tool with relatively high accuracy in non-inva-
sive examinations [25, 26]. Lung MRI has been explored 
as a radiation-free alternative in recent years, though 
its clinical application is less common [27, 28], and our 
experience in this area is limited.

There are studies that focus on the differentiation 
of solid pulmonary nodules. For instance, Xiaodong 
Xie [29]conducted a retrospective study involving 132 
patients with pathologically confirmed solitary pulmo-
nary nodules (SPNs), analyzing their basic information 
and spectral CT images. The study demonstrated that 
spectral CT quantitative parameters and their derived 
parameters are helpful in the differential diagnosis of 
benign and malignant solid pulmonary nodules. Simi-
larly, Xiao-Qun He [30] retrospectively analyzed CT data 
from 794 patients with small solid solitary pulmonary 
nodules (SSPNs) ≤ 15 millimeters in diameter. The nod-
ules were categorized into benign and malignant groups, 
with each group further divided into three cohorts based 
on size: Cohort I (diameter ≤ 6 millimeters), Cohort II (6 
millimeters < diameter ≤ 8 millimeters), and Cohort III (8 
millimeters < diameter ≤ 15 millimeters). Significant dif-
ferences were observed in the inter-group comparison of 
polygonal shape and upper lobe distribution in Cohort I, 
while in Cohort II, polygonal shape, lobulation, pleural 
indentation, and air bronchogram showed significant dif-
ferences. In Cohort III, 12 CT features (polygonal shape, 
calcification, halo sign, satellite nodules, lobulation, air 
cavity, pleural indentation, bronchial cutoff, and air bron-
chogram) exhibited significant inter-group differences. 
Gao Liang [31] developed a radiomics model based on 
monochromatic dual-energy CT(DECT) images to iden-
tify solitary pulmonary nodules with a AUC of 0.8772 
(95% CI 0.780–0.974). These findings highlight that CT 
features may vary among solid pulmonary nodules of dif-
ferent sizes, and recognizing size-specific CT character-
istics can aid in minimizing ambiguity and distinguishing 
benign solid pulmonary nodules from malignant ones. 
More nuanced differentiation of solid pulmonary nodules 
has clinical value. However, as of now, pathological diag-
nosis obtained through CT-guided biopsy or bronchos-
copy with navigational bronchoscopic biopsy remains the 
gold standard for diagnosis.

Lung cancer risk prediction models have seen some 
clinical application in recent years, primarily based on 

traditional diagnostic factors such as CT morphologi-
cal features, tumor markers, smoking history, and family 
history of cancer. However, the reproducibility of these 
models is poor, and the varying diagnostic skills of dif-
ferent clinicians can affect the accuracy of clinical appli-
cations. Imaging omics features are highly valued for 
their stability; however, traditional extraction relies on 
manual delineation of regions of interest, a process that 
is time-consuming and susceptible to subjective bias. 
With the application of artificial intelligence in the field 
of imaging omics, the extraction of some common imag-
ing omics features has become more automated and effi-
cient, thereby enhancing the convenience and accuracy 
for clinical applications. AI has been increasingly applied 
in the field of pulmonary nodule diagnosis and treatment 
in recent years, reducing the workload of radiologists and 
decreasing misdiagnosis rates. It has also been explored 
for the detection, diagnosis, and prognosis prediction of 
solid pulmonary nodules [32–35].

This article introduces a study on solid pulmonary 
nodules with a solid component ratio greater than 50%, 
determined by an AI-based threshold segmentation 
method (threshold − 350HU). The study involved 108 
general clinical features and basic radiomic features, 
which were analyzed using Lasso regression and univari-
ate and multivariate logistic regression. The findings sug-
gest that the volume of solid components and the mean 
CT value, in combination with patient age, have signifi-
cant diagnostic value for such nodules. The AUC was 
0.721, indicating moderate accuracy, with a 95%CI of 
0.642–0.801. The validation set showed an AUC of 0.757 
(95% CI: 0.632–0.881). Additionally, a nomogram was 
constructed based on the three predictive factors, which 
may have clinical utility.

However, this study has certain limitations. For 
instance, it did not include detailed clinical risk factors, 
PET-CT, and morphological features, which could fur-
ther enhance the precision of the model. Although this 
study utilized data from multiple centers, the heteroge-
neity in image acquisition across different centers may 
limit the model’s generalizability. Furthermore, the data-
set is confined to a specific patient population, which 
may affect the model’s applicability to a broader range of 
individuals. Future research should consider incorporat-
ing a more diverse patient population and varying image 
acquisition conditions to enhance the model’s ability 
to generalize. These limitations should be addressed in 
future research.

Conclusion
In summary, the diagnosis of predominantly solid pul-
monary nodules (CTR>50%) is a clinical challenge. As 
the detection rate of pulmonary nodules increases, these 
nodules require more attention from clinicians. Clinical 
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diagnosis based solely on morphological features is often 
difficult. We have established the nomogram model by 
defining subsolid nodules using a novel approach based 
on threshold segmentation with a 3D CTR of at least 
50%. The clinical prediction model established in this 
study may have some clinical application value.
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