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Abstract
Objectives  To develop ultrasound-based radiomics models and a clinical model associated with inflammatory 
markers for predicting intrahepatic cholangiocarcinoma (ICC) lymph node (LN) metastasis. Both are integrated for 
enhanced preoperative prediction.

Methods  This study retrospectively enrolled 156 surgically diagnosed ICC patients. A region of interest (ROI) was 
manually identified on the ultrasound image of the tumor to extract radiomics features. In the training cohort, we 
performed a Wilcoxon test to screen for differentially expressed features, and then we used 12 machine learning 
algorithms to develop 107 models within the cross-validation framework and determine the optimal radiomics model 
through receiver operating characteristic (ROC) curve analysis. Multivariable logistic regression analysis was used to 
identify independent risk factors to construct a clinical model. The combined model was established by combining 
ultrasound-based radiomics and clinical parameters. The Delong test and decision curve analysis (DCA) were used to 
compare the diagnostic efficacy and clinical utility of different models.

Results  A total of 1239 radiomics features were extracted from the ROIs of tumors. Among the 107 prediction 
models, the model (Stepglm + LASSO) utilizing 10 radiomics features ultimately yielded the highest average area 
under the receiver operating characteristic curve (AUC) of 0.872, with an AUC of 0.916 in the training cohort and 0.827 
in the validation cohort. The combined model, which incorporates the optimal radiomics score, clinical N stage, and 
platelet-to-lymphocyte ratio (PLR), achieved an AUC of 0.882 in the validation cohort, significantly outperforming 
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Introduction
Intrahepatic cholangiocarcinoma (ICC) is one of the 
most aggressive tumors and is the second most common 
primary liver malignancy (approximately 15%), with an 
increasing incidence in recent years [1]. Surgical resec-
tion remains the sole curative treatment for ICC patients, 
yet the high likelihood of postoperative recurrence and 
metastasis leads to generally low 5-year overall survival 
rates [2, 3]. Notably, lymph node (LN) metastasis is a 
crucial factor that influences prognosis posthepatectomy 
for ICC, with a significant decrease in the 5-year sur-
vival rate to less than 20% for patients with positive LN 
status [4–6]. Research has demonstrated that for these 
LN-positive ICC patients, postoperative adjuvant chemo-
radiotherapy may confer survival benefits [2, 7]. Hence, 
accurate assessment of LN metastasis holds paramount 
importance for prognostic evaluation and guiding treat-
ment selection in ICC patients.

Surgical pathology is the gold standard for diagnosing 
LN metastasis [8]. Imaging examinations play an impor-
tant role as noninvasive tools. However, traditional imag-
ing methods, such as ultrasound, CT, and MR, do not 
perform satisfactorily in diagnosing LN metastasis, and 
their sensitivity and specificity often fail to meet clinical 
satisfaction standards [9, 10]. Therefore, for ICC patients, 
accurately predicting LN metastasis prior to surgery is an 
important issue that is currently faced in clinical practice.

Radiomics, a pioneering image analysis technique, 
transforms medical images into quantitative features 
invisible to the naked eye, offering insights into the intri-
cate pathophysiological states of tumors. This approach 
shows great potential in characterizing tumor pheno-
types and improving cancer diagnosis, prognosis and 
treatment response [11, 12]. Recent studies have shown 
the capability of radiomics features in forecasting LN 
metastasis among biliary tract cancer patients, opening 
up novel research perspectives and possibilities in this 
domain [13]. Ultrasound examination is a prominent 
first-line examination method for assessing focal liver 
lesions, with several notable advantages. It is convenient 
and noninvasive, but it is often limited by the interference 
of gastrointestinal gas when assessing ICC LN metasta-
sis. However, ultrasound radiomics technology provides 
the possibility to overcome this technical limitation. Due 

to its powerful data processing ability, it is expected to 
overcome the limitations of traditional ultrasound and 
achieve more accurate and comprehensive assessment 
[14]. More notably, ultrasound radiomics has proven 
effective in predicting LN metastasis in several types of 
cancers, including pancreatic, ovarian, and cervical can-
cers [15–18]. However, to the best of our knowledge, 
no studies have been reported on the prediction of ICC 
LN metastasis via ultrasound imaging, and ultrasound 
radiomics prediction models have not been established.

Furthermore, the main risk factors for ICC are hepa-
tolithiasis, viral hepatitis, and clonorchis sinensis infes-
tation, which often lead to chronic inflammation of the 
liver and bile ducts [19]. Chronic inflammation plays 
a pivotal role in the development and emergence of 
various cancers, including ICC [20, 21]. Inflammation-
related markers such as the prognostic nutritional index 
(PNI), lymphocyte-to-monocyte ratio (LMR), sys-
temic immune-inflammation index (SII), neutrophil-
to-lymphocyte ratio (NLR), and platelet-to-lymphocyte 
ratio (PLR) can be used to assess the inflammatory and 
immune status of patients with tumors and have been 
widely employed in evaluating the prognosis of patients 
with ICC [22–24]. However, few studies have investi-
gated the use of inflammation-related markers to predict 
ICC LN metastasis. Thus, exploring their potential in 
predicting ICC LN metastasis holds significant clinical 
importance.

Therefore, we sought to develop a predictive model that 
utilizes both ultrasound radiomics features and serum 
inflammatory markers, with the ultimate goal of precisely 
preoperatively identifying ICC LN metastasis.

Materials and methods
Research patients
This retrospective study was approved by the Ethics 
Committee of the First Affiliated Hospital of Guangxi 
Medical University. We reviewed a dataset spanning from 
January 2017 to June 2024 that included ICC patients 
who underwent hepatectomy at the First Affiliated Hos-
pital of Guangxi Medical University. It adhered to the 
reporting guidelines outlined by the CheckList for Evalu-
Ation Radiomics research (CLEAR) and METhodological 
RadiomICs Score (METRICS) (Supplementary Material 1 

the clinical model with an AUC of 0.687 (P = 0.009). According to the DCA analysis, the combined model also showed 
better clinical benefits.

Conclusions  The combined model incorporating ultrasound-based radiomics features and the PLR marker offers an 
effective, noninvasive intelligence-assisted tool for preoperative LN metastasis prediction in ICC patients.
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and 2) [25, 26]. Patients were included based on the fol-
lowing criteria: (i) histologically confirmed ICC. and(ii) 
ultrasound examination was performed within 2 weeks 
before surgery. The exclusion criteria were as follows: (i) 
the target lesion was not fully and clearly displayed on the 
ultrasound image; (ii) previous cancer treatment history; 
(iii) incomplete baseline data; and (iv) absence of patho-
logical information on the LNs. The detailed inclusion/
exclusion criteria and recruitment process, as well as the 
sample size, are shown in Fig. 1a. Patients were randomly 
distributed into training cohort and validation cohort at a 
7:3 ratio (Fig. 1b).

The following preoperative clinical parameters of ICC 
patients were collected and recorded: sex, age, tumor 
size, clinical N stage, hepatitis B virus (HBV) infection, 
clonorchis sinensis infection, hepatolithiasis, alpha feto-
protein (AFP), carcinoembryonic antigen (CEA), car-
bohydrate antigen 199 (CA199), NLR, PLR, SII, PNI, 
LMR, and LN metastasis. Clinical N stage was confirmed 
by abdominal ultrasound examination and enhanced 
abdominal magnetic resonance Imaging (MRI)/CT 
examination [27]. The absolute neutrophil count, abso-
lute lymphocyte count, absolute platelet count, and 
absolute monocyte count were used to calculate inflam-
mation-related markers in the peripheral blood. The for-
mula for SII and PNI is as follows: SII = platelet count* 
NLR; PNI= (albumin + 5) * lymphocyte count.

Ultrasound examination
The ultrasound examinations were conducted using 
the following equipment: Resona 7 (Mindray, Shen-
zhen, China) and Logiq E9 (GE, Wauwatosa, USA). An 
abdominal probe was used to clearly visualize the lesions. 
Subsequently, the ultrasound image depicting the larg-
est cross-section of the lesion was selected and saved in 
DICOM format.

Radiomics analysis
The radiomics research workflow encompasses steps 
like tumor lesion segmentation, feature extraction, fea-
ture selection and model development, and evaluation. 
(Fig. 2).

Lesion segmentation
For patients with multiple liver lesions, the largest lesion 
was evaluated. A 5-year experienced radiologist, profi-
cient in abdominal ultrasound diagnosis, manually delin-
eated the tumor’s region of interest (ROI) via the polygon 
mode in ITK-SNAP software (version 4.2.0), and the 
delineation was subsequently verified by another radiolo-
gist with 12 years of ultrasound examination expertise. 
Upon encountering disagreements, the images were re-
evaluated by a third expert radiologist with 15 years of 
experience in abdominal ultrasound diagnosis, to reach a 
final consensus. All radiologists were blinded to the path-
ological findings.

Fig. 1  Patient recruitment and grouping for the study. (a) According to the inclusion and exclusion criteria of the study, 82 patients with LN metastasis 
and 74 patients without LN metastasis were ultimately included. (b) Grouping of the patients
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Feature extraction
Radiomics features were extracted from the ROIs via 
the open-source software PyRadiomics (version 3.0.1), 
including shape features and first-order, second-order 
and higher-order features [28]. The second-order fea-
tures encompassed the following five categories: (1) 
gray-level co-occurrence matrix (GLCM), which cap-
tures spatial relationships between gray levels; (2) gray-
level run length matrix (GLRLM), which analyzes runs 
of pixels with the same gray level; (3) gray-level size zone 
matrix (GLSZM), which examines zones of similar gray 
levels and their sizes; (4) Neighboring gray tone differ-
ence matrix (NGTDM), which measures differences 
in gray tones between neighboring pixels; and (5) gray-
level dependence matrix (GLDM) features, which were 
employed to assess the dependency of gray levels within 
an image. Higher-order features refer to image feature 
variables extracted by adding filters, including wavelets, 
logarithms, squares, square roots and exponentials. A bin 
width of 25 was utilized as a fixed value for discretizing 
the image’s grey levels.

Feature selection and radiomics model development
After feature extraction, Z score normalization was per-
formed to transform the features into a more uniform 
measure for comparison. The Z score was calculated via 
the following formula: Z=(x-mean(x))/std(x). Mean(x) 
represents the mean value of the radiomics feature in 
all samples, and std(x) represents the standard devia-
tion of the feature in all samples. In the training cohort, 

we performed a Wilcoxon test to screen for differentially 
expressed features for subsequent analyses.

We subsequently used the following 12 machine learn-
ing algorithms to build radiomics models: plsRglm, least 
absolute shrinkage and selection operator (LASSO), ridge 
regression, gradient boosting machine (GBM), Stepglm, 
SVM, glmBoost, linear discriminant analysis (LDA), 
random forest, XGBoost, Enet, and naive Bayes. In the 
framework of cross-validation, one algorithm was used 
for variable selection, and another algorithm was used to 
construct classification prediction models.

This diverse array of algorithms allowed for an exhaus-
tive exploration of modeling strategies, which resulted in 
the formulation of 107 integrated prediction radiomics 
models. Ultimately, the combination of machine learn-
ing techniques that demonstrated the highest average 
area under the receiver operating characteristic curve 
(AUC) emerged as the best model, which we designated 
the radiomics score. To reduce the risk of overfitting, we 
used 10-fold cross-validation to train the model.

In addition, to assess the reproducibility and general-
ization of radiomics features, tumor ROI was mapped 
from ultrasound images of 30 randomly selected patients 
by two physicians (5-year and 12-year experienced radi-
ologists) to assess reproducibility between observers.

Development and evaluation of clinical and combined 
models
We developed models based on the training cohort. First, 
parameters with P < 0.1 from univariable logistic regres-
sion analysis were selected for subsequent analysis. The 

Fig. 2  Workflow of the radiomics analysis
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independent risk factors of ICC LN metastasis were 
determined by multivariable analysis (P < 0.05), which 
were used to construct a clinical model. The combined 
model was subsequently constructed via logistic regres-
sion between the radiomics score and the parameters 
of the clinical model. To enhance clinical applicability, a 
nomogram was designed, presenting a straightforward 
and intuitive visualization of the predictive prowess in 
the combined model.

To evaluate the performance of the different models, 
their AUC values were calculated separately, and pair-
wise comparisons were performed via the Delong test. 
Moreover, decision curve analysis (DCA) was employed 
to assess the clinical utility of the model by demonstrat-
ing its ability to enhance decision-making processes.

Statistical analysis
MedCalc (version 18.2.1) and R statistical software (ver-
sion 4.4.1) were used in our research.

To analyze and compare differences among categori-
cal variables across different groups, a chi-square test of 
independence was employed. Continuous parameters 
were analyzed via t-tests or Mann‒Whitney U tests. 
The maximum Youden index, representing the point 
nearest to the top left of the ROC curve, was utilized 
to ascertain the sensitivity, specificity, and other diag-
nostic performance indicators of various models, along 
with the optimal cutoff thresholds for inflammation-
related biomarkers. For all tests, a P value less than 0.05 
was considered statistically significant. The sample size 
was estimated using the PASS software (version 15), as 
detailed in Supplementary Material 3.

Results
Patient characteristics
A total of 156 ICC patients (88 males and 68 females), 
ranging in age from 26 to 68 years (mean 56.2 ± 11.2 
years), were recruited for our study. Among these 
patients, 52 with LN metastasis and 57 without LN 
metastasis were allocated to the training cohort (n = 109), 
whereas 30 with LN metastasis and 17 without LN 
metastasis were assigned to the validation cohort (n = 47). 
All of the ICC lesions included in the study were larger 
than 1  cm in diameter. The clinical parameters of the 
training and validation cohorts are summarized in 
Table  1. Among all the clinical parameters, HBV infec-
tion and the PNI were significantly different between 
groups (P < 0.05).

Preoperative clinical N stage was not correctly deter-
mined in 41 patients (26.3%), of whom 24 patients with-
out LN metastasis were judged as cN1 stage and 17 
patients with LN metastasis were judged as cN0 stage.

Radiomics model construction
A total of 1239 radiomics features were extracted from 
each patient’s ultrasound image. In the training cohort, 
a Spearman correlation analysis revealed that the 
radiomics features exhibited internal correlations and 
heterogeneity, as illustrated by the heatmap of radiomics 
features clustering (Fig.  3). Based on the radiomic fea-
tures of patients in the training cohort, the Wilcoxon test 
identified 31 differentially expressed radiomics features 
for inclusion in subsequent machine learning analyses. 
We developed a total of 107 radiomics models by inte-
grating 12 algorithms with either variable screening or 
model building techniques. The AUC values of each 
model were calculated and then ranked in descending 
order based on the average AUC (Fig. 4).

The top 10 models had AUC values of at least 0.80 for 
both the training and validation cohorts, and the diag-
nostic efficiency of these radiomics models was pre-
sented in Supplementary Material 3: Table S1. The best 
model was the combination of Stepglm (direction = back-
ward) and LASSO, which had the highest average AUC 
(0.872), with AUCs of 0.916 (training) and 0.827 (valida-
tion), respectively.

We also counted the radiomics features used by the 
107 models and summarized the frequency of these fea-
tures to identify the important radiomics features for LN 
metastasis (Fig.  5a). The radiomics features and num-
bers included in the top 10 models are shown in Fig. 5b. 
Among them, the optimal model is constructed with 10 
high-order features. The intra-class correlation coeffi-
cient of these 10 radiomic features was greater than 0.80, 
indicating satisfactory reproducibility between observers 
(Supplementary Material 3: Table S2).

Clinical and combined model construction
Univariable analysis revealed several risk factors, includ-
ing clinical N stage; CA199, CEA, NLR, PLR, SII, PNI, 
and LMR, with p values less than 0.1. Multivariable 
analysis revealed that clinical N stage (OR = 11.565, 95% 
CI 3.844–34.788) and PLR (OR = 5.140, 95% CI 1.214–
21.761) were independent clinical risk factors for LN 
metastasis in ICC patients (Table  2, both P < 0.05), and 
these parameters were used to construct the clinical 
model.

The clinical model parameters (clinical N stage and 
PLR) were subsequently combined with the radiomics 
score via logistic regression to develop a combined 
model. Furthermore, the combined model was presented 
as a nomogram, providing a user-friendly and visually 
intuitive aid for clinical application (Fig. 6).

Assessment and comparison of model diagnostic efficacy
This study developed three approaches: a clinical one, 
a radiomics-based, and a combined approach. The 
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Table 1  Clinical parameters of the ICC patients
Parameters Training cohort 

(n = 109)
Validation cohort
(n = 47)

P-value

Sex 0.856
Male 62(56.88) 26(55.32)
Female 47(43.12) 21(44.68)
Age 0.526
≤ 60 73(66.97) 29(61.70)
> 60 36(33.03) 18(38.30)
Tumor size (cm) 0.662
≤ 5 31(28.44) 15(31.91)
> 5 78(71.56) 32(68.09)
Clinical N stage 0.140
N0 51(46.79) 16(34.04)
N1 58(53.21) 31(65.96)
HBV infection 0.042
Negative 65(59.63) 36(76.60)
Positive 44(40.37) 11(23.40)
Clonorchis sinensis infestation 0.413
Negative 79(72.48) 31(65.96)
Positive 30(27.52) 16(34.04)
Hepatolithiasis 0.389
Negative 98(89.91) 40(85.11)
Positive 11(10.09) 7(14.89)
AFP (ng/ml) 0.802
≤ 20 101(92.66) 43(91.49)
> 20 8(7.34) 4(8.51)
CA199 (U/ml) 0.133
≤ 37 56(51.38) 18(38.30)
> 37 53(48.62) 29(61.70)
CEA (ng/ml) 0.195
≤ 5 70(64.22) 25(53.19)
> 5 39(35.78) 22(46.81)
LN metastasis 0.064
No 57(52.29) 17(36.17)
Yes 52(47.71) 30(63.83)
NLR 0.067
≤ 2.35 42(38.53) 11(23.40)
> 2.35 67(61.47) 36(76.60)
PLR 0.528
≤ 214.59 84(77.06) 34(72.34)
> 214.59 25(22.94) 13(27.66)
SII 0.089
≤ 490.34 30(27.52) 7(14.89)
> 490.34 79(72.48) 40(85.11)
PNI 0.044
≤ 95.69 85(77.98) 43(91.49)
> 95.69 24(22.02) 4(8.51)
LMR 0.137
≤ 2.24 33(30.28) 20(42.55)
> 2.24 76(69.72) 27(57.45)
Values were shown as the number of patients (percentage). HBV, hepatitis B virus; AFP, alpha fetoprotein; CA199, carbohydrate antigen 199; CEA, carcinoembryonic 
antigen; LN, lymph node; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; PNI, prognostic 
nutritional index; LMR, lymphocyte-to-monocyte ratio
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sensitivity and specificity were 78.8% (95%CI 0.653–
0.889) and 70.2% (95%CI 0.566 0.816) for the clinical 
model, 94.2% (95%CI 0.841–0.988) and 73.7% (95%CI 
0.603–0.845) for the radiomics model, and 98.1% (95%CI 
0.897-1.000) and 86.0% (95%CI 0.742–0.937) for the 
combined model in the training cohort. In the valida-
tion cohort, the sensitivity and specificity were 80.0% 
(95%CI 0.614–0.923) and 58.8% (95%CI 0.329–0.816) for 
the clinical model, 80.0% (95%CI 0.614–0.923) and 76.5% 
(95%CI 0.501–0.932) for the radiomics model, and 83.3% 
(95%CI 0.653–0.944) and 82.4% (95%CI 0.566–0.962) for 
the combined model (Table 3).

In evaluating the predictive power of our models, the 
AUC values of different models in the training and vali-
dation cohort showed differences (Fig. 7a-b). The DeLong 
test revealed that the AUC value of the combined model 
was greater than that of the clinical model in both the 
training cohort (0.969 vs. 0.803, P < 0.001) and the vali-
dation cohort (0.882 vs. 0.687, P = 0.009) (Table  4). In 
the training cohort, the AUC of the combined model 
was greater than that of the radiomics model (0.969 vs. 
0.916, P = 0.015), and the AUC of the radiomics model 
was greater than that of the clinical model (0.916 vs. 

0.803, P = 0.022). In the validation cohort, none of the dif-
ferences were statistically significant (radiomics vs. com-
bined, clinical vs. radiomics, both P > 0.05). Compared 
with the clinical model, the DCA demonstrated that both 
the radiomics model and the combined model had supe-
rior clinical utility in the preoperative prediction of ICC 
LN metastasis (Fig. 7c-d). The confusion matrix of differ-
ent models is shown in Fig. 8.

Discussion
Accurate preoperative diagnosis of LN metastasis is cru-
cial in refining the precise staging, prognostic evaluation, 
and guiding adjuvant therapy strategies for ICC patients 
[29]. This study introduced a novel model integrating 
ultrasound radiomics with serological inflammation-
related markers, demonstrating moderate diagnostic 
effectiveness. This suggests its potential as a noninvasive 
preoperative tool for predicting LN metastasis in ICC.

The PLR, defined as the quotient of the absolute plate-
let count divided by the absolute lymphocyte count, is a 
crucial serological inflammatory marker. The nonspecific 
inflammatory response induced by malignancy often 
manifests as an elevation in platelet levels and a decrease 

Fig. 3  Cluster heatmap of radiomics features based on ultrasound medicine images Z-score normalization was applied to scale the quantitative expres-
sion values of 1239 extracted radiomics characteristics, and heatmap visualization was utilized to demonstrate the clustering patterns among these 
radiomics characteristics
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in lymphocytes. Platelets promote tumor progression by 
secreting tumor necrosis factor (TNF), vascular endo-
thelial growth factor (VEGF) and platelet-derived factors 
[30]. Lymphocytes inhibit tumor growth, proliferation, 
and metastasis by mediating cytotoxic responses and 
releasing cytokines [31]. Previous studies have dem-
onstrated that preoperative serological inflammatory 
markers are valuable for evaluating ICC patient progno-
sis as they indicate the balance between tumor-induced 

inflammation and the immune system’s anti-tumor 
response [32, 33]. Moreover, Yu et al. developed nomo-
grams based on the inflammation-related markers NLR 
and SII, which exhibited certain value in predicting ICC 
LN metastasis (C-index: 0.737 for internal validation and 
0.674 for external validation) [34]. Our study created a 
clinical model based on the PLR and the clinical N stage, 
achieving AUC values of 0.803 and 0.687 in the train-
ing and validation cohorts, respectively. This diagnostic 

Fig. 4  Predictive models were developed and validated by screening radiomics features with machine learning algorithms. A total of 107 predictive mod-
els were constructed, and the AUC values of each model in the training and validation cohorts and their average AUC values were calculated and ranked 
in descending order of average AUC values. The performance of each model is presented through three key indicators: Training cohort AUC, Validation 
cohort AUC, and their average. Average AUC= (training cohort AUC + validation cohort AUC) /2
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Fig. 5  The use of radiomics features in predictive models. (a) Statistics of the number of times radiomics features used in the 107 predictive models, 
identifying the important features for this study. (b) Radiomics features of the top 10 models. The vertical coordinate values represent the total number 
of features used to construct the model, the horizontal coordinates represent the model’s name, and the bar graph colors represent the features used to 
construct the model

 



Page 10 of 16Peng et al. BMC Medical Imaging            (2025) 25:4 

Table 2  Results of logistic regression analysis of ICC LN metastasis
Parameters Univariable analysis

OR (95%CI)
P-value Multivariable analysis

OR (95%CI)
P-value

Sex
Male Reference
Female 0.694(0.324–1.490) 0.349
Age
≤ 60 Reference
> 60 0.822(0.369–1.833) 0.632
Tumor size (cm)
≤ 5 Reference
> 5 2.015(0.853–4.759) 0.110
Clinical N stage
N0 Reference Reference
N1 8.770(3.657–21.030) <0.001 11.565(3.844–34.788) <0.001
HBV infection
Negative Reference
Positive 0.540(0.248–1.176) 0.120
Clonorchis sinensis infestation
Negative Reference
Positive 0.944(0.407–2.192) 0.893
Hepatolithiasis
Negative Reference
Positive 2.061(0.567–7.496) 0.272
AFP (ng/ml)
≤ 20 Reference
> 20 1.104(0.262–4.660) 0.893
CA199(U/ml)
≤ 37 Reference Reference
> 37 2.016(0.940–4.325) 0.072 1.446(0.525–3.989) 0.476
CEA (ng/ml)
≤ 5 Reference Reference
> 5 2.844(1.262–6.407) 0.012 2.519(0.886–7.163) 0.083
NLR
≤ 2.35 Reference Reference
> 2.35 4.444(1.908–10.349) 0.001 0.960(0.224–4.112) 0.960
PLR
≤ 214.59 Reference Reference
> 214.59 3.782(1.425–10.033) 0.008 5.140(1.214–21.761) 0.026
SII
≤ 490.34 Reference Reference
> 490.34 5.576(2.051–15.158) 0.001 2.732(0.607–12.304) 0.191
PNI
≤ 95.69 Reference Reference
> 95.69 0.213(0.073–0.623) 0.005 0.301(0.074–1.217) 0.092
LMR
≤ 2.24 Reference Reference
> 2.24 0.326(0.138–0.769) 0.010 1.272(0.362–4.470) 0.708
OR: odds ratio; 95% CI: 95% confidence intervals; HBV, hepatitis B virus; AFP, alpha fetoprotein; CA199, carbohydrate antigen 199; CEA, carcinoembryonic antigen; NLR, 
neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; PNI, prognostic nutritional index; LMR, lymphocyte-
to-monocyte ratio
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performance is comparable to the results reported by Yu 
et al., suggesting that PLR has the potential to predict LN 
metastasis in ICC patients preoperatively.

Radiomics has been shown to be helpful for the non-
invasive and individualized prediction of LN metastasis 
in ICC patients. Primary radiomics-related research on 
ICC LN metastasis currently focuses on utilizing CT and 
MR imaging, typically employing 1–3 machine learning 
techniques, and has shown promising initial outcomes. Ji 
et al. developed an LASSO-based radiomics model using 
enhanced CT images of 103 ICC patients, effectively pre-
dicting LN metastasis with AUC values of 0.823 (train-
ing) and 0.871 (validation) [35]. Qian et al. developed a 
model for predicting ICC LN metastasis using T2WI 
and delayed-phase T1WI images from 197 patients, 
incorporating mRMR and LASSO for radiomics feature 

selection. The model exhibited moderate performance, 
with an AUC of 0.701 [36]. Using a limited number of 
algorithms often poses challenges in comprehensively 
capturing the complex information within imaging data. 
Different from previous studies, our research incorpo-
rated a wider variety of machine learning algorithms (12 
algorithms) and constructed multiple radiomics models 
(107 models) for comparison and selection to identify the 
optimal radiomics model. This strategy not only bolsters 
the model’s adaptability to complex image information 
but also allows for deeper analysis and more extensive 
utilization of image data.

Ultrasound imaging boasts accessibility, simplicity, 
economy, and noninvasiveness, making it a frequently 
used first-choice medical imaging technique for examin-
ing liver conditions. Prior investigations have illustrated 

Table 3  Performance of different models for predicting LN metastasis in the training and validation cohorts
Cohort Model AUC (95% CI) SEN (%) SPE (%) PPV (%) NPV (%) ACC (%)
Training Clinical model 0.803 (0.721–0.886) 78.8 70.2 70.7 78.4 74.3

Radiomics model 0.916 (0.865–0.966) 94.2 73.7 76.6 93.3 83.5
Combined model 0.969 (0.943–0.995) 98.1 86.0 86.4 98.0 91.7

Validation Clinical model 0.687 (0.523–0.851) 80.0 58.8 77.4 62.5 72.3
Radiomics model 0.827 (0.709–0.946) 80.0 76.5 85.7 68.4 78.7
Combined model 0.882 (0.786–0.979) 83.3 82.4 89.3 73.7 83.0

AUC, area under curve; 95% CI, 95% confidence intervals; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV negative predictive value; ACC, accuracy

Fig. 6  Nomogram of the combined model for predicting LN metastasis in ICC
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the utility of ultrasound-based radiomics in predicting 
pathological characteristics [37, 38]. However, research 
that explores the potential of ultrasound radiomics 
in predicting ICC LN metastasis is currently insuffi-
cient. In our research, through numerous attempts and 

comparisons of various algorithms, we explored suitable 
algorithm combinations for ultrasound image analysis. 
Ultimately, we found that the combination of Stepglm 
(direction = backward) and LASSO performed opti-
mally, with the highest average AUC values (0.872) in 

Table 4  DeLong testing between different models
Model Training cohort Validation cohort

AUC (95% CI) P-value AUC (95% CI) P-value
Clinical model 0.803 (0.721–0.886) 0.687 (0.523–0.851)
Radiomics model 0.916 (0.865–0.966) 0.827 (0.709–0.946)
Combined model 0.969 (0.943–0.995) 0.882 (0.786–0.979)
Clinical model VS Radiomics model 0.022 0.197
Radiomics model VS Combined model 0.015 0.219
Clinical model VS Combined model <0.001 0.009
AUC, area under curve; 95% CI, 95% confidence intervals

Fig. 7  Evaluation of the diagnostic performance of different models ROC curves for predicting LN metastasis were compared among the clinical, ra-
diomics, and combined models in the training (a) and validation (b) cohorts. The DCA results for the three models are shown for the training (c) and 
validation (d) cohorts
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the training cohort (0.916) and validation cohort (0.872). 
This discovery indicates that ultrasound radiomics has 
significant potential and value in predicting LN metas-
tasis in ICC. The optimal model consisted of 10 high-
order radiomic features, nine of which were obtained 
through wavelet transformation, while one feature was 
derived from logarithm transformation. Wavelet trans-
formation, which can reveal intricate layers of detail and 
information content within images, is widely employed in 

radiomics research [39–41]. Logarithm transformation 
enhances contrast by expanding lower grey levels and 
compressing higher ones, enabling clearer detail visual-
ization in darker image regions [42]. The features “wave-
let.LHH_gldm_DependenceNonUniformityNormalized” 
and “wavelet.LLH_glrlm_RunEntropy” were the most 
frequently utilized in our modeling process. In Granata 
et al.‘s study, the DependenceNonUniformityNormalized 
feature, categorized under gldm, was found to be helpful 

Fig. 8  Confusion matrices for different models. Clinical model training cohort (a) and validation cohort (b). Radiomics model training cohort (c) and 
validation cohort (d). Combined model training cohort (e) and validation cohort (f). The horizontal coordinate represents the predicted label, and the 
vertical coordinate represents the real label. label 0: no lymph node metastasis, label 1: lymph node metastasis
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in distinguishing between the expansive and infiltrative 
fronts of tumour growth [43]. The RunEntropy quanti-
fies uncertainty in run lengths and gray levels, indicating 
pixel arrangement unpredictability and offering insights 
into image texture and complexity [44]. However, the 
clinical or biological significance of these features still 
needs to be further studied and validated.

The combined model incorporating ultrasound 
radiomics features and serum inflammation-related 
indicators in our study possesses wider applicability and 
clinical value than a standalone model intended for pre-
operative, non-invasive evaluation of LN metastasis. 
However, upon applying the DeLong test for analysis, a 
noteworthy observation emerged. The AUC values did 
not significantly differ between the radiomics model and 
the clinical model in the validation cohort. Similarly, the 
comparison between the combined and radiomics mod-
els yielded comparable results. We speculate that this 
finding could stem from the somewhat limited sample 
size within the validation cohort, underscoring the need 
for future studies to expand the sample size to validate 
this finding.

This work has several limitations. First, manually seg-
menting the ROI of the tumor is very time consuming, 
and automatic segmentation methods need to be applied 
in the future. Second, the prevalent presentation of ICC 
patients at advanced stages of the disease often restricts 
the pool of candidates eligible for surgical intervention, 
resulting in a comparatively modest number of ICC 
patients being recruited for our research. Additionally, 
being a single-center study further restricts the generaliz-
ability of our findings. Third, selection bias is inevitable 
in retrospective studies. Moreover, despite our efforts to 
ensure the accuracy of lymph node metastasis diagnosis 
by including only pathologically confirmed ICC cases, 
this approach introduced a potential verification bias. 
Prospective, multi-institutional studies that incorporate 
a more substantial patient cohort should be conducted 
in the future, thereby enabling a more rigorous valida-
tion of the robustness and reproducibility of our models. 
Fourth, reliance on traditional 2D ultrasound images for 
radiomics feature extraction may overlook crucial spa-
tial and volumetric tumor information. Incorporating 
3D ultrasound in future research is necessary to obtain 
more comprehensive imaging. Fifth, although this study 
selected representative inflammatory biomarkers to 
assess their roles in ICC LN metastasis, it did not encom-
pass all possible indicators, resulting in an incomplete 
assessment. Future research will explore more biomark-
ers to enhance the precision of diagnostic and therapeu-
tic recommendations.

Conclusion
In conclusion, we developed a combined model of ultra-
sound-based radiomics combined with the inflamma-
tion-related marker PLR. It is expected to be an effective 
tool for the preoperative nonintrusive evaluation of LN 
metastasis in ICC patients, contributing to precision 
medicine and personalized medicine.
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