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Abstract 

Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients 
before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early 
prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients. In this study, a novel 
convolutional neural network model with bimodal layer-wise feature fusion module (BLFFM) and temporal hybrid 
attention module (THAM) is proposed, which uses multistage bimodal ultrasound images as input for early prediction 
of the efficacy of neoadjuvant chemotherapy in locally advanced breast cancer (LABC) patients. The BLFFM can effec-
tively mine the highly complex correlation and complementary feature information between gray-scale ultrasound 
(GUS) and color Doppler blood flow imaging (CDFI). The THAM is able to focus on key features of lesion progression 
before and after one cycle of NAC. The GUS and CDFI videos of 101 patients collected from cooperative medical 
institutions were preprocessed to obtain 3000 sets of multistage bimodal ultrasound image combinations for experi-
ments. The experimental results show that the proposed model is effective and outperforms the compared models. 
The code will be published on the https:// github. com/ jinzh uwei/ BLTA- CNN.
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Introduction
Breast cancer is the most common cancer in women, 
seriously threatening women’s physical and mental health 
worldwide [1, 2]. Neoadjuvant chemotherapy (NAC) is 
the standard treatment for breast cancer patients [3]. It 
not only suitable for locally advanced breast cancer and 
high-risk operable patients at risk of breast cancer recur-
rence or metastasis but also for understanding tumor 
sensitivity to chemotherapeutic agents and developing 
more rational chemotherapy regimens [4–6]. However, 
not all patients have a good outcome after NAC, with 
approximately 10–35% of patients not responding sig-
nificantly after NAC [7, 8]. Patients who fail to achieve 
results after several courses of NAC not only suffer irre-
versible physical and psychological damage but also 
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miss out on the best opportunity for surgical treatment. 
Accurate evaluation of chemotherapy response in the 
early stage of NAC treatment will help doctors to adjust 
the treatment plan in time and significantly improve the 
possibility of pathologic complete response (pCR) [9]. 
Therefore, it is essential to develop a method that can 
accurately predict the efficacy of NAC for breast cancer 
at an early stage.

At present, the pathological examination is the gold 
standard for evaluating the efficacy of NAC for breast 
cancer, however, its invasive and late nature limits its use 
in the early assessment of NAC efficacy. As the devel-
opment of imaging continues, imaging modalities such 
as ultrasound and magnetic resonance of the breast are 
often performed in parallel with NAC, allowing assess-
ment of the biological properties of the oncology and pre-
dicting the response to NAC in breast cancer, in addition 
to measuring tumor size [10]. Ultrasound has become the 
preferred screening method for breast disease because it 
is non-radioactive, economical and reproducible [11–15]. 
With the continuous development of newer ultrasound 
imaging technologies, different ultrasound imaging tech-
niques play their respective roles in assessing the efficacy 
of NAC, providing an imaging basis for selecting treat-
ment options and prognosis of breast cancer patients.

However, ultrasonography is an examination that is 
highly dependent on the operating and diagnosing phy-
sicians, primarily because of its low imaging resolution, 
low imaging quality due to scattered noise and artifacts, 
and insufficient detection of tissue details [16], which 
can affect the objectivity and accuracy of diagnosis to a 
certain extent [17]. With the rapid development of deep 
learning, convolutional neural network (CNN) based 
models are used as feature extractors to automatically 
extract more abstract and higher-level features to predict 
the pathological response of NAC. Nowadays, several 
studies have applied CNNs to breast cancer NAC efficacy 
prediction.

Some studies [18–20] designed a dual-branch neu-
ral network based on ultrasound images to early predict 
NAC efficacy. These models aimed to simultaneously 
use pre-neoadjuvant chemotherapy (pre-NAC) and 
after the first NAC (NAC1) ultrasound images. Predic-
tions were made by calculating the similarity between 
the ultrasound images of pre-NAC and NAC1. Gu et al. 
[21] expanded the approach proposed in [20] and devel-
oped a deep learning radionics pipeline using cascading 
models constructed at different stages of NAC treatment. 
The cascade consists of two Siamese networks. The first 
network predicted efficacy through ultrasound images 
pre-NAC and after the second NAC (NAC2). The sec-
ond Siamese network aimed to predict the outcome from 
ultrasound images pre-NAC and fourth NAC (NAC4).

In addition, Adoui et  al. [22] proposed a multi-input 
deep learning architecture for predicting NAC responses 
in breast cancer based on MRI images for the first time, 
using a parallel CNN architecture to explore changes in 
lesions in MRI images pre-NAC and NAC1 simultane-
ously, ultimately enabling the classification of patient 
pathological responses with considerable accuracy. The 
study also developed a single-input model that used MRI 
images from pre-NAC or NAC1 as input and found that 
the predictive effect of using multistage data was better 
than that of single-stage data, demonstrating the great 
potential of multistage data early in chemotherapy in 
the field of NAC efficacy prediction. The performance 
of deep learning models can be improved by fusing 
MRI image features from different modalities [23–25]. 
Based on this, Joo et  al. [26] proposed a multimodal 
deep learning model that combines MRI images and 
clinical information to predict whether a breast cancer 
patient achieves complete pathological remission using 
pre-chemotherapy MRI-T1 and MRI-T2 images and 
the patient’s clinical information based on an improved 
3D-ResNet50 architecture.

These studies results showed that the multimodal deep 
learning model using the fusion of clinical details and 
MRI images achieved better prediction performance 
than the deep learning model without fusion. The results 
of these studies suggest that a computer-aided approach 
that fuses multimodal information can help to improve 
the early prediction of NAC responses in breast cancer.

In clinical practice, doctors evaluate the efficacy of neo-
adjuvant chemotherapy in both of grayscale ultrasound 
(GUS) and color Doppler flow imaging (CDFI). GUS 
evaluates the efficacy by comparing changes in tumor 
size, echoes of tumors and tumor marginal tissue before 
and after chemotherapy, while CDFI can observe blood 
flow in the mass and adjacent tissues, which effectively 
reflects the changes in breast cancer blood vessels. How-
ever, existing work faces two issues: Firstly, effectively fus-
ing features from multimodal data. Previous researches 
[23–26] typically treated different modalities as inputs 
to branch networks and performed concatenation opera-
tions along the channel dimension to merge high-level 
feature information between different modalities. How-
ever, this approach has not been effective in exploring 
the highly complex relationships and complementary 
feature information between different modalities, lack-
ing an effective means of feature sharing for multi-modal 
data. (2) Effectively extracting temporal information from 
data at different chemotherapy stages. the dual-branch 
convolutional neural network is constructed for neo-
adjuvant chemotherapy efficacy prediction, with each 
branch taking input from the imaging data at each chem-
otherapy stage. Only a simple concatenation operation is 
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performed on the features of each stage’s data just before 
the network’s fully connected layers, and this approach 
does not fully utilize the temporal relationships between 
data from different chemotherapy stages, leading to the 
loss of tumor change characteristics during the chemo-
therapy process.

In order to solve the above problems, we propose a 
deep learning method for early prediction of NAC for 
breast cancer based on multistage bimodal ultrasound 
images. This model is experimental on grayscale ultra-
sound and color Doppler flow imaging before and after 
the first stage of chemotherapy. The convolutional neural 
network model consists of two key modules: the bimodal 
layer-wise feature fusion and the temporal hybrid atten-
tion. The Bimodal Layer-wise Feature Fusion Module 
(BLFFM) learns richer high-level features from the two 
modalities of ultrasound images at the same stage. Then, 
the generated feature maps at different stages are input 
into the Temporal Hybrid Attention Module (THAM), 
which can capture key features related to the nature and 
lesion changes of breast tumors before and after NAC, 
and finally perform further prediction tasks. The model 
achieves excellent computer-aided diagnostic perfor-
mance on the data we have collected. The three main 
contributions of this paper are as follows:

1) This paper proposed the first convolutional neural 
network model based on bimodal layer-wise feature 
fusion and temporal hybrid attention module (BLTA-

CNN) for early efficacy prediction of NAC for breast 
cancer based on multistage bimodal ultrasound 
images.

2) A new Bimodal Layer-wise Feature Fusion (BLFFM) 
is designed. It can effectively mine the highly com-
plex correlations between different modal data and 
the complementary feature information between 
data and is an effective method for sharing features of 
bimodal data.

3) The Temporal Attention (TA) module is introduced 
based on Convolutional Block Attention Module 
(CBAM) [27] to form the Temporal Hybrid Atten-
tion Module (THAM). It not only learns important 
features of the images, but also correlations between 
features of lesion changes during chemotherapy and 
reinforces the network’s ability to understand key fea-
tures of breast tumor progression.

Methods
Figure 1 shows the overall framework of the BLTA-CNN. 
It uses ResNet50 as the backbone network and gray-
scale ultrasound (GUS) and color Doppler flow imaging 
(CDFI) images data from pre-neoadjuvant chemother-
apy (pre-NAC) and the first NAC (NAC1) as input to 
the four-branch network, and share the weight of the 
backbone of these branches. The BLFFM is designed for 
both modality data streams at the same stage, by which 
the model learns the unique information of a single 
modality and the complementary information between 

Fig. 1 The overall flowchart of the proposed BLTA-CNN framework
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different modalities. In addition, the model incorporates 
the THAM, which is able to not only focus on the impor-
tant features of cancer, but also capture the key features 
related to the change of breast cancer lesions before and 
after NAC1. Finally, the Global Average Pooling Layer 
and a fully connected layer complete the mapping from 
high-to-low-dimensional features, thereby enabling early 
breast cancer NAC efficacy prediction.

Bimodal Layer‑wise feature fusion module
The Layer-wise Feature Fusion Module (LFFM) is a typi-
cal network layer-level feature fusion approach. In the 
traditional level-wise fusion strategy, a single modal 
image is used as a single input to a single network. The 
independent feature representations learned by each net-
work are fused into each layer of the network. Finally, 
the fusion results are fed back to the decision layer to 
obtain the final prediction results. It can effectively inte-
grate and fully use bimodal images. Its dense connec-
tions between network layers can capture the complex 
relationships between modalities, entirely using more 
abstract, complex, and complementary information 
to enhance training for better performance [28–30]. 
Inspired by HyperDenseNet [28], the BLFFM connects 
the outputs of the corresponding layers from different 

modal data streams so that the different modal data in 
each layer are interrelated and the inputs of each layer of 
the same modal data stream correspond to the outputs 
of all previous layers, facilitating the flow of information. 
The advantage is that by connecting the layers of different 
modalities, the complex relationships between the differ-
ent modalities can be captured. At the same time, com-
plementary information is learned, and a significantly 
more enriched feature representation can be produced.

Figure  2 shows the implementation details of the 
BLFFM. Firstly, the model receives grayscale ultrasound 
(GUS) and color Doppler blood flow imaging (CDFI) as 
inputs. Initially, separate convolution operations are per-
formed on different modalities to obtain their respective 
initial feature maps, namely F0

g  and F0
c  . Subsequently, 

the ith layer feature map of one modality is obtained by 
convolution and nonlinear activation function operation 
on the feature map of the (i − 1)th layer of this modal-
ity path and the fusion feature map of the (i − 1)th layer 
that is obtained by BLFFM. The (i − 1)th layer fusion 
feature map is calculated by combining all the previous 
feature maps of this modality path with the feature maps 
of the (i − 1)th of another modality path. For example, 
for the GUS modality, the second layer feature map  F2

g  is 
obtained by calculating the feature maps  F1

g  and the first  

Fig. 2 An illustration of the BLFFM
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layer fusion feature map F1
g ,c , where the fusion feature 

map  F1
g ,c is obtained by calculating the feature maps F0

g  
and F1

g  of the GUS path, along with the feature map F1
c  of 

the CDFI path. This BLFFM is calculated as follows:

where Fi−1
g ,c  and Fi−1

c,g  respectively represent fused feature 
maps obtained through BLFFM,Conv represents dimen-
sionality reduction achieved by a 1 × 1 convolutional 
operation, and [⋯] denotes the concatenation operation 
of the feature maps. Finally, Fi−1

g ,c  is combined with the 
(i − 1)th layer feature maps Fi−1

g  of the GUS path to com-
pute the i-th layer feature map Fi

g , the same goes for Fi
c . 

The feature maps Fi
g and Fi

c can be computed as:

where Hi
g and Hi

c represent the mapping function con-
sisting of convolution operation and nonlinear activation 
function.

Temporal hybrid attention module
This study further improved the network structure to 
fully use the temporal relationship between pre-NAC and 
NAC1 stages and improve the model’s prediction accu-
racy. This paper proposes a Temporal Hybrid Attention 
Module (THAM), which introduces temporal informa-
tion based on Convolutional Block Attention Module 
(CBAM) [27]. It can not only capture the key features of 
breast tumor related attributes in the feature map, reduce 
the influence of non-tumor tissue information in the 
ultrasound image, but also enhance the learning ability of 
the network model for the key feature changes of breast 
tumor lesions before and after NAC.

The THAM comprises the CBAM and the TA modules. 
The CBAM attention mechanism is a more comprehen-
sive feature attention method that combines the channel 
domain and spatial domain attention. The target area is 
enhanced by adding a spatial attention module based on 
the channel attention module. It is assumed that Fp

g  , Fp
c  , 

Fn
g  , andFn

c  represent the output feature maps of GUS and 
CDFI for pre-neoadjuvant chemotherapy (pre-NAC) and 
the first NAC (NAC1), respectively, where g and c illus-
trate the GUS and CDFI modal data, respectively, and 
p, n represent the pre-NAC and NAC1 data, after the 
CBAM attention module produces the corresponding 

(1)Fi−1
g ,c = Conv

([

Fi−1
g , Fi−1

c , Fi−2
g , . . . , F0

g

])

(2)Fi−1
c,g = Conv

([

Fi−1
c , Fi−1

g , Fi−2
c , . . . , F0

c

])

(3)Fi
g = Hi

g

(

Fi−1
g ,c + Fi−1

g

)

(4)Fi
c = Hi

c

(

Fi−1
c,g + Fi−1

c

)

feature maps Fp′

g  , Fp′

c  , Fn′

g  , Fn′

c  . The feature maps can be 
computed as:

where Mca represents the channel attention weighting 
factor, Msa represents the spatial attention weighting fac-
tor, and ⊗    denotes the element-by-element multiplica-
tion. The bimodal fusion feature maps Fp′

g−c , Fn′
g−c of the 

two chemotherapy stages were obtained by fusion of the 
different modal data in the same stage. The feature maps 
can be computed as:

After obtaining the features from the CBAM between 
each stage, feature maps Fp′

g−c , Fn′
g−c  are spliced together 

to obtain the CBAM feature sequence that can be repre-
sented by X , which can be computed as:

where stack represents the stitching of feature maps 
F
p′

g−c,F
n′

g−c by temporal dimension.
The CBAM can only focus on the key features of the 

tumor, but cannot mine the characteristic information 
of tumor lesion changes, so to model the long-distance 
dependencies in the image sequences before and after 
NAC for breast cancer, we developed a temporal atten-
tion module on top of the CBAM. As illustrated in Fig. 3, 
the module is to estimate the salience and relevance of 
all regions in the breast cancer NAC image sequence 
through the time regardless of their distance.

The input features X ∈ RT×C×H×W  is first converted 
into two feature spaces q(X) and k(X) by two sets of 
1× 1× 1 convolutions, where C , H, and W  are its chan-
nel, height, and width, q(X) = WqX and k(X) = WkX

(Wq and Wk are trainable weight matrices) respectively. 
Subsequently, we reshape both q(X) and k(X) ∈ RM×C , 
where M = T ×H ×W  , to calculate the attention map 
of any pairs of regions through time dimension. The 
attention map FT (X) is given as follows:

(5)
F
p′

g = Msa Mca F
p
g ⊗ F

p
g ⊗ Mca F

p
g ⊗ F

p
g + F

p
g

(6)
Fp′

c = Msa

(

Mca

(

Fp
c

)

⊗ Fp
c

)

⊗
(

Mca

(

Fp
c

)

⊗ Fp
c

)

+ Fp
c

(7)
Fn′

g = Msa

(

Mca

(

Fn
g

)

⊗ Fn
g

)

⊗

(

Mca

(

Fn
g

)

⊗ Fn
g

)

+ Fn
g

(8)
Fn′

c = Msa

(

Mca

(

Fn
c

)

⊗ Fn
c

)

⊗
(

Mca

(

Fn
c

)

⊗ Fn
c

)

+ Fn
c

(9)F
p′
g−c = F

p′
g + Fp′

c

(10)Fn′
g−c = Fn′

g + Fn′
c

(11)X = stack
(

F
p′

g−c,F
n′

g−c

)
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where sij = q(X)k(X)⊺ . FT (X)j,i demonstrates how much 
Xi correlate with Xj . T  represents the temporal dimen-
sion or the length of the sequence, i and j denote the 
indexes of the two regions or feature locations involved 
in the attention calculation, respectively. The output fea-
ture map of the temporal attention is 
Y =

(

YT
1 ,YT

2 , · · · ,YT
j , · · · ,YT

M

)

 , where YT
j  represents 

the feature vectors at different positions in the sequence. 
YT
j  is given as follows:

v(X) = WvX ( Wv is a learnable matrix) and Xj is added 
back to keep more information. With such a design, the 
hybrid attention module can not only focus on important 
tumor tissue features, but also mine potential features of 
tumor lesion progression before and after NAC1.

Experimenter and results
Datasets and preprocessing
The data for this study were collected from the partner 
hospitals, with a collection of ultrasound videos (includ-
ing GUS and CDFI) and their pathology data from 101 
patients with locally advanced breast cancer. The dataset 
is a tracked ultrasound image dataset collected from 2015 
to 2020. All patients completed a four-stage course of 

(12)FT (X)j,i =
exp

(

sij
)

∑M
i=1exp

(

sij
)

(13)YT
j =

∑M

i=1
FT (X)j,iv(Xi)+ Xj

NAC, and the post-chemotherapy pathological findings 
were confirmed by pathological histology. In other words, 
each patient has video data of GUS and CDFI for pre-
NAC, NAC1, NAC2, and NAC4, as well as a final patho-
logical response report. In this work, only the ultrasound 
video data from the pre-NAC and NAC1 were used for 
the study, with the report of pathological response as the 
gold standard. This is a retrospective clinical study and 
has been ethically approved by the ethics committee of 
the partner hospital.

The data collected in this study were collected using the 
Esaote  MyLabTMTwice ultrasound device with the LA332 
probe. And the device is capable of acquiring grayscale 
ultrasound video and Color Doppler blood flow video. To 
input it into the neural network, the ultrasound video of 
each patient was pre-processed before starting the train-
ing process, which consisted of four steps, as shown in 
Fig. 4. The first step is to cut the video at a fixed frame 
interval (the length of the video may vary from patient to 
patient) to form Mi ultrasound images (i represents the 
i-th patient). The second step is to select Ni high-quality 
images of breast cancer by removing some images that 
contain artifacts, blurring, and non-diseased tissue. The 
process was carried out by two specialist radiologists 
(with 5 and 10  years of breast ultrasound experience, 
respectively) who read the breast ultrasound images 
independently without knowledge of the patient’s disease 
information and reached a consensus through discussion 
to ensure the correctness and reproducibility of the data-
set. The third step is to remove additional information 

Fig. 3 Temporal attention module
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from the images, such as the model of the instrument, 
scan or imaging time, and patient information, and to 
retain the complete ultrasound image of the breast can-
cer tissue. Finally, all ultrasound images are resized to 
256 × 256 before being fed into the deep neural network.

By performing the above four pre-processing steps 
on the raw ultrasound video of GUS and CDFI of the 
patient’s pre-NAC and NAC1 chemotherapy phases, 
resulting in 4N  images  (GUSpre,  CDFIpre,  GUS1,  CDFI1). 
The four images in each group need to ensure that the 
lesion cross-section position is basically the same, which 
helps the model to capture the correct and rich key fea-
tures of the lesion change. These four images correspond 

to the four-branch input of the BLTA-CNN model. For 
example, for the 100th patient, 10 images (N100 = 10) are 
selected from their original GUS and CDFI videos at each 
of the two stages, and 40 images are chosen to form 10 
sets of image combinations, noted as S1001 , S1002 , · · · , S10010  , 
each contains 4 images, such as:

Each branch of BLTA-CNN model input an image 
respectively, namely  GUSpre,  CDFIpre,  GUS1, or  CDFI1. 
Figure 5 shows the combination of images for each data 
set, with each group labeled with the patient’s final path-
ological response result (pCR or non-pCR).

s100k =

{

(

GUSpre
)100

k
,
(

CDFIpre
)100

k
, (GUS1)

100
k , (CDFI1)

100
k

}

, k ∈ [1,10].

Fig. 4 Data pre-processing flow chart (example for patient i)

Fig. 5 Schematic of the image combination samples input to the network
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The original video data were preprocessed with the 
above data to obtain 3000 sets of NAC ultrasound image 
combinations, each containing GUS and CDFI image 
data of pre-NAC and NAC1, and the corresponding 
pathological findings of NAC response. There were 930 
sets of ultrasound images (37 patients) with pathologi-
cal results of pCR and 2070 sets of ultrasound images (64 
patients) with non-pCR pathological results.

Experimental evaluation
In our experiments, we divided the dataset based on 
patient-level. Specifically, we assigned a unique identifier 
to each patient, then randomly sorted the list of patient 
identifiers and cross-divided the dataset fivefold based 
on the list, so that all images of the same patient are in 
the training or test set separately, rather than being dis-
tributed across different sets. The classification accuracy 
(Acc), sensitivity (Sen), specificity (Spec), Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV), and 
F1-score are used as evaluation metrics computed as 
follows:

where TP is the number of true positive, TN is the num-
ber of true negative, FP is the number of false positive, 
and FN is the number of false negative.

Experiments design and implementation details
A series of experiments are conducted on the dataset to 
evaluate the performance and significance of the pro-
posed BLTA-CNN.

(14)



































Acc = TP+TN
TP+TN+FP+FN

Sen =
TP

TP+FN

Spec = TN
TN+FP

PPV =
TP

TP+FP

NPV =
TN

TN+FN

F1− score = 2TP
2TP+FP+FN

1) Experiment 1: This experiment utilized only the 
ResNet50 model to evaluate the effectiveness of com-
bining grayscale ultrasound (GUS) and color Dop-
pler flow imaging (CDFI) data from pre-neoadjuvant 
chemotherapy (pre-NAC) and the first phase of 
chemotherapy (NAC1).

2) Experiment 2: Ablation experiments on two mod-
ules of BLTA-CNN to validate the effectiveness of the 
layer-wise feature fusion module and the temporal 
hybrid attention module proposed in this paper to 
achieve the early prediction task of NAC efficacy.

3) Experiment 3: This experiment compares the method 
proposed in this paper with mainstream deep learn-
ing classification models to evaluate the performance 
of the present model.

The details on the network training were as follows: 
Adam [31] with adaptive learning was used as the opti-
mizer, the initial learning rate was set to 0.001, the weight 
decay factor was 0.1, the number of training iterations 
was set to 500, the learning rate was reduced to 1/10 of 
the previous rate every 150 iterations, and the loss func-
tion uses the cross-entropy loss function used in the clas-
sification task. The experiments were performed on a 
Dell T640 tower server deep learning workstation with 
two NVIDIA GeForce RTX 2080Ti discrete graphics 
cards and two Intel Xeon Silver 4110 CPUs with 64 GB 
RAM. All models involved in the experiments are based 
on PyTorch 1.9.0 implementation.

Results

1) Results of Experiment 1: Table 1 shows the results of the 
different modalities of ultrasound imaging data for dif-
ferent stages of chemotherapy on ResNet50. Specifically, 
using  GUSpre,  CDFIpre,  GUS1 and  CDFI1, respectively, and 
their combination of  GUSpre +  CDFIpre,  GUS1 +  CDFI1, 
 GUSpre +  GUS1 and  GUSpre +  GUS1 +  CDFIpre +  CDFI1 
 (GUSpre+1 +  CDFIpre+1) to predict the efficacy. In the 

Table 1 Classification results of the different modalities of ultrasound imaging data for different stages of chemotherapy (unit: %)

Data Acc Sen Spec PPV NPV F1-score

GUSpre 77.47 ± 0.63 72.72± 4.28 79.57 ± 1.62 61.18 ± 0.95 86.89 ± 1.62 66.38 ± 1.71

CDFIpre 77.07 ± 1.48 63.37 ± 5.04 83.13 ± 1.74 62.45 ± 2.36 83.74 ± 1.86 62.82 ± 2.97

GUS1 78.27 ± 1.63 71.63 ± 2.13 81.20 ± 1.52 62.79 ± 2.52 86.61 ± 1.05 66.92 ± 2.30

CDFI1 77.87 ± 1.40 62.07 ± 2.26 84.86± 1.56 64.51 ± 2.67 83,49 ± 0.90 63.24 ± 2.16

GUSpre +  CDFIpre 79.07 ± 0.59 71.09 ± 4.09 82.60 ± 1.64 64.43 ± 1.22 86.64 ± 1.40 67.51 ± 1.67

GUSpre +  GUS1 78.83 ± 0.61 71.85 ± 6.12 81.92 ± 2.61 63.88 ± 1.65 86.93 ± 2.22 67.45 ± 2.11

GUS1 +  CDFI1 79.27 ± 0.33 71.74 ± 3.02 82.60 ± 1.47 64.63 ± 1.08 86.88 ± 1.02 67.95 ± 0.94

GUSpre+1 +  CDFIpre+1 79.70± 0.67 72.39 ± 2.94 82.93 ± 1.91 65.33± 1.82 87.19± 0.97 68.61± 0.89
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 GUSpre+1 +  CDFIpre+1 combination, the model could 
achieve the optimal results in accuracy, positive predic-
tive value, negative predictive value, and F1-score index, 
and the sensitivity and specificity were close to the opti-
mal results. Meanwhile, the experimental results of GUS-
pre,  CDFIpre, and  GUSpre +  CDFIpre, and  GUS1,  CDFI1, 
and  GUS1 +  CDFI1 showed that the prediction effect 
of bimodal data was better than that of single modality 
in the same chemotherapy stage. It also can be further 
observed that the results of  GUSpre +  GUS1 are better 
than those of  GUSpre, and  GUS1, which indicated the 
effectiveness of multistage data was better than that of 
single chemotherapy stage and confirmed the effective-
ness of bimodal data of different chemotherapy stages for 
NAC efficacy prediction.

2) Results of Experiment 2: Table  2 shows the 
results of different feature fusion methods on the 
 GUSpre+1 +  CDFIpre+1 image dataset. This experiment 
compared the proposed Bimodal Layer-wise Feature 
Fusion Module (BLFFM) with other common fea-
ture fusion methods. It validated the complementary 
information of different modes of data streams and 
the effect of feature fusion between different abstrac-
tion layers of the same data stream on the prediction 
performance of the network.

In Table  2, Sum and Concat are the two commonly 
used feature fusion methods. Sum superimposes values 
on the feature map element by element while keeping 
the number of channels constant. At the same time, 
Concat performs a merge operation on the number of 
channels. Neural discriminative dimensionality reduc-
tion (NDDR) [32] is a feature fusion that can automati-
cally learn each abstraction layer from different data 
streams. Specifically, features with the same spatial 
resolution in a single-branch network are cascaded 
by channel, and a convolution operation dimension-
ally reduces the features with a 1 × 1 convolution ker-
nel. Finally, the fused features were fed into the next 
layer of the network. BLFFM is a layer-wise feature 
fusion approach proposed in this paper. BLFFM1 and 

BLFFM2 represent two implementations to maintain 
the same spatial resolution of the feature maps output 
from different convolutional layers, respectively, where 
BLFFM1 is a downsampling method of nearest neigh-
bor interpolation and BLFFM2 is to maintain the same 
spatial resolution by clipping the edge information. The 
results showed that the BLFFM method achieved the 
best performance. Among them, the accuracy, specific-
ity, positive predictive value, and F1-score of BLFFM2 
reached 83.93 ± 1.22%, 74.62 ± 7.44%, and 73.98 ± 1.4%, 
respectively. BLMFF1 had the best sensitivity (76.20 ± 
4.64%) and negative predictive value (89.14 ± 1.75%). In 
addition, BLFFM2 improved accuracy by 2.70% (81.23% 
vs. 83.93%), specificity by 4.04% (83.89% vs. 87.93%), 
and F1-score by 3.04% (70.94% vs.73.98%) compared to 
the Sum fusion method, which ranked third overall. It 
shows that the proposed method can effectively inte-
grate and fully use the rich feature information between 
multimodal and single-modal data, thereby improving 
the model’s prediction performance.

Table  3 shows the results of the different attention 
mechanisms on the  GUSpre+1 +  CDFIpre+1 image dataset. 
It is clear from Table 2 that the layer-wise feature fusion 
module is effective; therefore, the results of the experi-
ments in Table 3 all use ResNet50 with the introduction 
of the bimodal layer-wise feature fusion module BLFFM2 
as the baseline model to verify the effectiveness of the 
Temporal Hybrid Attention Module (THAM).

The influence of channeled, spatial attentional mecha-
nisms was first explored, including the five classical 
attentional mechanisms of Squeeze-and-Excitation (SE) 
[33], Bottleneck Attention Module (BAM) [34], Dual 
Attention Network (DANet) [35], Coordinate Attention 
(CA) [36], and Convolutional Block Attention Module 
(CBAM) [27]. The results showed that among the five 
channel and space attention mechanisms, the CBAM 
attention mechanism achieved the best F1-score of 79.07 
± 1.68%, which was 5.09% (79.07% vs. 73.98%), 3.68% 
(79.07% vs. 75.39%), 1.69% (79.07% vs. 77.38), 4.27% 
(79.07% vs.74.80%) and 2.35% (79.07% vs. 76.72%) bet-
ter than no attention mechanism (baseline), SE, BAM, 
DANet and CA, respectively.

Table 2 Classification results of the different fusion methods (unit: %)

Fusion methods Acc Sen Spec PPV NPV F1-score

Sum 81.23 ± 1.74 75.22 ± 8.95 83.89 ± 5.10 68.22 ± 5.31 88.71 ± 3.06 70.94 ± 2.95

Concat 81.00 ± 1.42 73.70 ± 2.52 84.23 ± 1.66 67.45 ± 2.45 87.87 ± 1.04 70.41 ± 2.06

NDDR 71.09 ± 8.75 86.83± 4.83 71.34 ± 5.02 87.41± 3.05 70.63 ± 2.62 71.09 ± 8.75

BLFFM1 82.90 ± 1.37 76.20 ± 4.64 85.87 ± 2.43 70.63 ± 2.90 89.14± 1.75 73.18 ± 2.22

BLFFM2 83.93± 1.22 74.89 ± 8.21 87.93± 4.77 74.62 ± 7.44 89.00 ± 2.62 73.98± 1.84
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In this study, the THAM module was based on the 
CBAM attention mechanism. The addition of the Temporal 
Attention (TA) module achieved optimal prediction results 
in terms of accuracy, sensitivity, negative predictive value, 
and F1-score, with a 2.60% increase in F1-score (81.67% 
vs. 79.07%) compared to the next best performing CBAM 
attention module. It shows that the traditional attention 
mechanism method is extended to the temporal dimen-
sion to adapt to the characteristics of tracking image data, 
which can effectively extract multitype information, includ-
ing global space, channel, and temporal, and enhance the 
feature representation to improve the performance of the 
network. These results suggest that focusing on the time 
sequence information of ultrasound imaging data is helpful 
for the prediction of NAC response.

In addition, to investigate the impact of different com-
binations of modules on the model’s prediction of NAC 
effectiveness, we used ResNet50 as the baseline and 
conducted experiments with different combinations of 
BLFFM, CBAM, and TA modules. The experimental 
results are shown in Table  4. We clearly observed that 
using all three modules, BLFFM, CBAM and TA, simul-
taneously yielded better predictive performance com-
pared to other combinations.

3) Results of Experiment 3: This compares the per-
formance of BLTA-CNN with the deep learning clas-
sification model of the mainstream. These include 

EfficientNet [37], DenseNet [38], ShuffleNetV2 [39], 
Xception [40], MobileNetV2 [41], InceptionV4 and 
Inception_ResNetV2 [42], ResNeXt [43], these mod-
els represent various current mainstream CNN clas-
sification models. Figure  6 shows that the accuracy, 
sensitivity, positive predictive value, negative predic-
tive value, and F1-score of the proposed BLTA-CNN 
model are 88.53%, 83.48%, 80.15%, 92.60%, and 81.6%, 
respectively, which are better than other mainstream 
classification models. The effectiveness of the pro-
posed BLFFM and THAM for early prediction of NAC 
efficacy using GUS and CDFI data from pre-NAC and 
NAC1 was confirmed. Moreover, it can be observed 
from the box plot that the proposed BLTA-CNN model 
demonstrates relatively consistent performance across 
each fold of the dataset, indicating its stability across 
the different fold datasets, and also suggests that the 
BLTA-CNN model exhibits a high level of robustness. 
Therefore, it can identify NAC patients with different 
efficacy more accurately and consistently, and can pro-
vide a meaningful reference for clinical auxiliary diag-
nosis and personalized treatment scheme [44, 45].

Discussion
The early prediction of neoadjuvant chemotherapy 
(NAC) efficacy is critical for the improvement and per-
sonalized of treatment in breast cancer patients. At 

Table 3 Classification results of the different attentional module (unit: %)

Attentional Acc Sen Spec PPV NPV F1-score

Baseline 83.93 ± 1.22 74.89 ± 8.21 87.93 ± 4.77 74.62 ± 7.44 89.00 ± 2.62 73.98 ± 1.84

 + SE 85.27 ± 0.17 73.80 ± 4.63 90.34 ± 2.01 77.42 ± 2.71 88.69 ± 1.54 75.39 ± 1.24

 + BAM 85.17 ± 0.46 83.15 ± 6.79 86.06 ± 3.03 72.80 ± 2.56 92.21 ± 2.90 77.38 ± 1.52

 + DANet 86.13 ± 0.48 67.61 ± 7.27 94.33± 3.41 85.13± 5.94 86.95 ± 2.32 74.80 ± 1.93

 + CA 86.20 ± 0.39 74.79 ± 7.92 91.25 ± 3.45 79.85 ± 4.72 89.30 ± 2.79 76.72 ± 1.96

 + CBAM 87.20 ± 0.24 79.46 ± 7.81 90.63 ± 3.57 79.87 ± 6.01 91.07 ± 2.66 79.07 ± 1.68

 + THAM 88.53± 0.28 83.48± 3.82 90.77 ± 1.59 80.15 ± 2.24 92.60± 1.44 81.67± 0.90

Table 4 Classification results of the different module combinations (unit: %)

Methods Acc Sen Spec PPV NPV F1-score

ResNet50 79.70 ± 0.67 72.39 ± 2.94 82.93 ± 1.91 65.33 ± 1.82 87.19 ± 0.97 68.61 ± 0.89

 + BLFFM 83.93 ± 1.22 74.89 ± 4.63 87.93 ± 4.77 74.62 ± 7.44 89.00 ± 2.62 73.98 ± 1.84

 + CBAM 83.27 ± 0.59 75.43 ± 7.23 85.81 ± 4.21 71.28 ± 5.86 89.07 ± 3.22 73.70 ± 2.01

 + TA 83.01 ± 0.33 76.55 ± 6.81 84.07 ± 3.21 70.61 ± 4.96 87.72 ± 2.98 71.21 ± 2.34

 + BLFFM + CBAM 87.20 ± 0.24 79.46 ± 7.81 90.63 ± 3.57 79.87 ± 6.01 91.07 ± 2.66 79.07 ± 1.68

 + BLFFM + TA 85.26 ± 1.19 78.91 ± 5.97 87.07 ± 2.19 77.9 ± 5.12 88.72 ± 3.05 77.58 ± 2.13

 + CBAM + TA 86.32 ± 0.93 80.98 ± 4.98 85.77 ± 3.65 71.21 ± 4.61 90.79 ± 2.35 75.39 ± 2.26

 + BLFFM + CBAM + TA 88.53± 0.28 83.48± 3.82 90.77± 1.59 80.15± 2.24 92.60± 1.44 81.67± 0.90
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different stages of NAC, gray-scale ultrasound can 
record the changes in tumor size in real time in differ-
ent sections. However, the initial response is not always 
a change in tumor size, and the density of tumor cells 
may also change, so the use of gray-scale ultrasound 
alone to measure the maximum diameter of the mass 
may not be a comprehensive evaluation of the effect of 
NAC [46]. Due to the rapid growth of the breast cancer, 
the pressure on blood vessels and resistance index (RI) 
will be increased [47]. After NAC, some sensitive tumor 
tissues are denaturized and necrotic, the internal blood 
vessels are significantly atrophied, and the volume is 
reduced. The pressure on blood vessels is also reduced, 
and RI decreases accordingly. Color Doppler flow imag-
ing (CDFI) can predict the response of breast cancer to 
NAC by detecting the distribution of tumor vessels and 
the pattern of vascular blood supply. In this study, experi-
ments were performed using ResNet-50 in different data 
combinations. Table 1 results also demonstrate the great 
potential of multistage bimodal ultrasound data combi-
nations for early predict the efficacy of NAC in breast 
cancer.

Then, we propose the BLFFM, which can effectively 
explore the highly complex correlations between different 
modal data and the complementary feature information 
between the data, and Table 2 shows that it is an effective 
method for sharing the features of bimodal data. Finally, 
the Temporal Attention (TA) module was further intro-
duced on top of Convolutional Block Attention Module 

(CBAM) in order to enable the model to focus not only 
on the important features of each modal image itself at 
each stage and suppress unnecessary regional responses, 
but also on the key information about the important fea-
ture changes before and after NAC. Table  3 shows that 
the proposed temporal attention module can enhance 
the model’s ability to learn key features of lesion changes 
in different stages of breast tumors. Thus, the pro-
posed deep learning method BLTA-CNN for multistage 
bimodal ultrasound images is a data-driven deep learn-
ing model. The model can accurately predict treatment 
outcomes at an early stage of chemotherapy, enabling 
doctors to adjust chemotherapy regimens in a timely 
manner. For example, for patients predicted to have 
poor chemotherapy efficacy, doctors can quickly modify 
the combination of chemotherapy drugs or switch to 
other treatment approaches (such as targeted therapy 
or immunotherapy), thereby maximizing therapeutic 
effectiveness and increasing the likelihood of achieving 
pathological complete response (pCR). This precise pre-
dictive capability significantly enhances the scientific and 
practical value of treatment decisions. In addition, the 
model’s predictions can reduce unnecessary chemother-
apy cycles, sparing patients from the physical side effects 
and psychological stress caused by ineffective treatments. 
Earlier efficacy evaluation allows patients to choose more 
appropriate treatment plans in a timely manner, thereby 
improving their quality of life. Furthermore, the model’s 
predictions can provide patients with clear treatment 

Fig. 6 Comparison of the classification performance of BLTA-CNN with other mainstream models
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expectations, strengthening their understanding and 
trust in the treatment process. This personalized and pre-
cise approach to therapy not only significantly enhances 
patients’ overall treatment experience but also contrib-
utes to the optimization of healthcare resource allocation 
and utilization.

While this study has shown promising results in the 
early efficacy prediction of neoadjuvant chemotherapy 
for breast cancer, there are several limitations to our 
research. Firstly, in this study, we considered the data 
before and after NAC to be of equal importance, and 
future work will consider the design of multiple loss 
functions to assign feature weights to different modalities 
at different stages, and explore the effect of multistage 
bimodal ultrasound images on NAC efficacy prediction 
in a deeper way. Secondly, it is currently focused on the 
multimodal image hierarchy in this study. Metabolomics 
is a technique that allows early disease detection, includ-
ing tumors, by using body fluids and tissues to detect 
changes in small metabolic molecules. It is non-inva-
sive, convenient, and easy to implement [48]. It has been 
shown that changes in small metabolic molecules can 
also predict the efficacy and prognosis of chemotherapy 
for tumors [49–52]. In the future, we will further con-
sider combining metabolomics with medical imaging to 
implement a deep learning model based on multistage 
cross-modal early efficacy prediction of NAC for breast 
cancer. In addition, the proposed method is not fully 
automated, as it still requires manual image cropping 
from ultrasound videos for model training and testing. 
In the future, the development of a model for video-level 
data could be considered to comprehensively extract 
patient lesion features.

Conclusions
In summary, a novel BLTA-CNN model for predicting 
the efficacy of neoadjuvant chemotherapy (NAC) for 
breast cancer based on multistage and bimodal ultra-
sound images was proposed, which provides correspond-
ing solutions to the current challenges of deep learning 
in this research field. The Bimodal Layer-wise Feature 
Fusion (BLFFM) connects the features between different 
data flow layer pairs and the features between different 
layers of the same data flow to achieve an efficient mul-
timodal data feature-sharing mode. We further intro-
duce the Temporal Hybrid Attention Module (THAM), 
it not only learns important features of the images, but 
also correlations between features of lesion changes 
during chemotherapy and reinforces the network’s abil-
ity to understand key features of breast tumor progres-
sion. The rationality and effectiveness of the BLTA-CNN 
is verified by experiments on ultrasound image datasets 

of grayscale ultrasound (GUS) and color Doppler flow 
imaging (CDFI) data from pre-neoadjuvant chemother-
apy (pre-NAC) and the first NAC (NAC1). It performs 
optimally in comparative experiments with eight leading 
deep learning classification models. It suggests the poten-
tial for early prediction of NAC outcomes based on mul-
tistage bimodal ultrasound images. To our knowledge, 
this is the first study to combine deep learning with mul-
tistage bimodal ultrasound imaging for early prediction 
the efficacy of Neoadjuvant chemotherapy in patients.
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