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Abstract
Objective This study was to develop a multi-parametric MRI radiomics model to predict preoperative Ki-67 status.

Materials and methods A total of 120 patients with pathologically confirmed breast cancer were retrospectively 
enrolled and randomly divided into a training set (n = 84) and a validation set (n = 36). Radiomic features were derived 
from both the intratumoral and peritumoral regions, extending 5 mm from the tumor boundary, using magnetic 
resonance imaging (MRI). The MRI sequences employed included T2-weighted imaging (T2WI), dynamic contrast-
enhanced (DCE) imaging, diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. The 
T-test and the Least Absolute Shrinkage and Selection Operator Cross-Validation (LASSO CV) were conducted for 
feature selection. Modelintra, modelperi, modelintra+peri were established by eleven supervised machine learning (ML) 
algorithms to predict the expression status of Ki-67 in breast cancer and were verified by the validation groups. 
The model’s performance was evaluated by employing metrics such as the area under the curve (AUC), accuracy, 
sensitivity, and specificity.

Results The features of intratumor, peritumor, intratumor + peritumor were extracted 851, 851 and 1702 samples 
respectively, 14, 23 and 35 features were selected by LASSO. ML algorithms based on modelintra and modelperi 
consistently yield AUCs that are below 80% in the validation set. Hower, Logistic regression (LR) and linear discriminant 
analysis (LDA) based on modelintra+peri demonstrated significant advantages over other algorithms, achieving AUCs of 
0.92 and 0.98, accuracies of 0.94 and 0.97, sensitivities of 1 and 0.96, and specificities of 0.85 and 1 respectively in the 
validation set.

Conclusion The integrated intra- and peritumoral radiomics model, developed using multiparametric MRI data and 
machine learning classifiers, exhibits significant predictive power for Ki-67 expression levels. This model could facilitate 
personalized clinical treatment strategies for individuals diagnosed with breast cancer (BC).

Clinical trial number Not applicable.
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Introduction
Breast cancer (BC) constitutes the highest incidence 
worldwide, as the commonest malignant cancer in 
women globally [1, 2]. Based on precision medicine, 
tumor biomarkers including Ki-67 protein are becom-
ing more and more important in clinical research. Ki-67 
is correlated with tumor invasion, risk of recurrence, and 
prognosis, serving as a significant prognostic indicator. 
and has been used for individualized treatment for breast 
cancer [3–6].

Immunohistochemistry (IHC) has become the pri-
mary method for evaluating preoperative Ki-67 expres-
sion levels. Nevertheless, it is invasive and may pose 
a risk of complications. Sampling error may exist in 
biopsy because of heterogeneity in tumor [7].Because the 
expression level of Ki-67 changes dynamically, detection 
of Ki-67 through postoperative biopsy cannot accurately 
guide clinical treatment prior to surgery. Studies have 
found high Ki-67 expression in breast cancer patients 
with pathological complete response (pCR), and preop-
erative Ki-67 status was beneficial to patients receiving 
neoadjuvant chemotherapy (NAC) in predicting pCR [8, 
9]. Additionally, Ki-67 was approved for predicting the 
recurrence-free survival rate in patients receiving short-
term endocrine therapy [10]. Therefore, it is essential to 
identify a timely and noninvasive approach for the preop-
erative detection of Ki-67 expression status.

Radiomics is a rapidly emerging technology. It involves 
the high-throughput extraction of quantitative features 
from medical images [11, 12]. These visually unidentifi-
able information can be used to develop machine learn-
ing (ML) models for clinical prediction [13]. Radiomics 
with magnetic resonance imaging (MRI) can be used to 
discriminate molecular subtype, predict human epider-
mal growth factor receptor-2 (HER-2) and Ki-67 sta-
tus, identify lymph node metastasis in patients with BC 
[14–18]. Cui et al. [19] showed that the AUC values is 
0.78 and 0.71 respectively of the model predicting posi-
tive expression of Ki-67 and P53. However, the acquired 
image features by ultrasonic can easily be affected by 
operator experience. Li et al. [17]reported that radiomics 
signatures extracted from dynamic contrast-enhanced 
MRI (DCE-MRI) had the potential to identify HER-2 and 
Ki-67 status. Previous studies mostly focused on single 
MRI sequence, which may be insufficient to evaluate pic-
torial information. Liu et al. [20] conducted deep learn-
ing by extracting radiomics from T2-weighted imaging 
(T2WI), diffusion-weighted imaging (DWI), and DCE-
MRI, they found that a multi-parameter classification 
model has better predictive ability for Ki-67 compared 
to models with single sequence. However, this study only 

extracted radiomics features of part regions in the lesion 
area without three-dimensional structure.

The study aimed to assess the accuracy of radiomics 
ML model based on combined intra- and peritumoral 
regions in functional multi-parameter MRI (mp-MRI) 
maps in prediction of Ki-67 expression level in patients 
with BC.

Materials and methods
Patient population
A total of 145 female patients diagnosed with invasive 
ductal carcinoma between January 2019 and November 
2022 were retrospectively enrolled. Inclusion criteria: (1) 
Breast cancer confirmed by histopathology with Ki-67 
detection. (2) Breast MRI examination was performed 
1 week before treatment. (3) Patients without other pri-
mary tumors. Exclusion criteria: (1) Image quality were 
poor. (2) Patients were treated with radiotherapy or che-
motherapy before MR examination. 120 targets were 
finally enrolled (72 with Ki-67 high expression and 48 
with Ki-67 low expression) and were randomly assigned 
into the training and validation cohorts at a ratio of 7:3. 
The age range is from 32 to 77 years old, with an average 
age of 55.78± 8.94 years. Table 1 listed the clinical infor-
mation of patients.

Pathological assessment
IHC was used to determine the expression of ER(estrogen 
receptor, ER), PR(progesterone receptor, PR), HER-2, and 
Ki-67. Ki-67 was considered high if the Ki-67 level was 
greater than 14%. Tumors with staining intensity scores 
of 3 + were considered as positive HER-2 status.

MRI examination
All MR examinations were conducted using a 3.0 T mag-
netic resonance scanner (Magnetom Verio, Siemens, 
Germany) equipped with an 8-channel breast phased-
array coil. Several standard imaging sequences were 
involved: (1)T2WI, repetition time (TR): 3380 ms, time 
to echo (TE): 61 ms, slice thickness: 4.0  mm, 0.8  mm 
slice interval, field of view (FOV) 340*340  mm; matrix 
320*192 mm; (2) DWI, TR 5500 ms, TE 5 ms, acquisition 
frequency 2442  Hz/pixel, slice thickness 5  mm, 1.0  mm 
slice interval, diffusion sensitivity coefficient b = 800s/
mm2, FOV 340*349  mm; matrix 130*96  mm; (3) ADC 
diagram was generated automatically; (4) DCE, TR 4.67 
ms, TE 1.66 ms, slice thickness 1.2 mm, 0 slice interval, 
FOV 340*340 mm; matrix 448*336 mm.

Keywords Radiomics, Machine learning, Breast cancer, Ki-67 expression level
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MRI image analysis
Two radiologists were arranged to retrospectively ana-
lyze MRI images. Both radiologists were blinded to the 
pathological outcomes. They assessed the morphologic 
features of masses containing lesion type, shape, mar-
gin and internal enhancement [21]. Another radiolo-
gist with 20 years of experience was consulted in case of 
disagreements.

Lesion delineation and segmentation
Images from sequences of the second post-contrast 
images of DCE, T2WI, DWIb800 and ADC were exported 
from the picture archiving and communication system 
(PACS) into 3D Slicer software  (   h t t p s : / / w w w . s l i c e r . o r g /     ) 
. A radiologist with 5 years of experience manually and 
volumetrically segmented the regions of interest (ROI). 
The ROIs were reviewed by another experienced radi-
ologist. They were all blinded to clinical and pathologi-
cal information. ROI delineation was contoured along 

the margin of each slice of the tumor. The ROI on ADC 
maps was transferred from DWI maps. The peritumoral 
regions were obtained automatically from intratumoral 
regions by 3D Slicer software. The distance of equidis-
tant 3-dimensional dilation was 5  mm. The overview of 
research process was shown in Fig. 1.

Radiomic feature extraction
A total of 851, 851 and 1702 radiomics characteristics 
were calculated using the Pyradiomics package  (   h t  t p s  : 
/ / w  w w  . r a d i o m i c s . i o / p y r a d i o m i c s . h t m l     ) extracted from 
intratumor, peritumor, intratumor + peritumor ROIs. 
Characteristics contained first-order statistical features 
(n = 18) such as mean and peak value, shape-based fea-
tures (n = 14), texture features (n = 75) such as Gray Level 
Dependence Matrix, Gray Level Neighborhood Matrix 
and wavelet features (n = 744).

Table 1 MRI morphologic features and clinical and histopathological characteristics of IBC patients in the training and validation 
cohorts
Characteristics Training cohort(n = 84) Validation cohort(n = 36)

High Ki−67(n = 49) Low Ki−67(n = 35) p High Ki−67(n = 23) Low Ki−67(n = 13) p
Age (mean ± SD) 55.94 ± 8.12 56.29 ± 9.08 0.340 54.70 ± 9.89 55.69 ± 10.66 0.517
Menopausal status 0.795 0.878
Premenopausal 21(42.9%) 14(40%) 13(56.5%) 7(53.8%)
Postmenopausal 28(57.1%) 21(60%) 10(43.5%) 6(46.2%)
Lesion type 0.473 0.683
Mass 39(79.6%) 30(85.7%) 19(82.6%) 10(76.9%)
Non-mass enhancement 10(20.4%) 5(14.3%) 4(17.4%) 3(23.1%)
Lesion internal enhancement 0.004 0.555
Homogeneous 21(42.9%) 26(74.3%) 10(43.5%) 7(53.8%)
Heterogeneous 28(57.1%) 9(25.7%) 13(56.5%) 6(46.2%)
Mass shape* 0.612 0.340
Round or oval 21(53.8%) 18(60%) 13(68.4%) 5(50%)
Irregular 18(46.2%) 12(40%) 6(31.6%) 5(50%)
Mass margin* 0.488 0.948
Circumscribed 29(74.4%) 20(66.7%) 15(78.9%) 8(80%)
Irregular or speculated 10(25.6%) 10(33.3%) 4(21.1%) 2(20%)
Tumor grade 0.106 0.772
II 22(44.9%) 22(62.9%) 13(56.5%) 8(61.5%)
III 27(55.1%) 13(37.1%) 10(43.5%) 5(38.5%)
HER-2 0.019 0.592
Positive 22(44.9%) 28(80%) 11(47.8%) 5(38.5%)
Negative 27(55.1%) 7(20%) 12(52.2%) 8(61.5%)
ER < 0.001 0.027
Positive 26(53.1%) 3(8.6%) 13(56.5%) 12(92.3%)
Negative 23(46.9%) 32(91.4%) 10(43.4%) 1(7.7%)
PR < 0.001 0.143
Positive 22(44.9%) 5(14.3%) 10(43.4%) 8(66.7%)
Negative 27(55.1%) 30(85.7%) 13(56.5%) 4(33.3%)
* Mass shape and margin were calculated with a denominator of 69 masses in the training cohort and 29 in the validation cohort. Data are numbers of patients, 
with percentages in parentheses. IBC, invasive breast cancer; SD, standard deviation; HER2, human epidermal growth factor receptor 2; ER, estrogen receptor; PR, 
progesterone receptor

https://www.slicer.org/
https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
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Feature selection and radiomic model construction
The T-test and the Least absolute shrinkage and selec-
tion operator cross-validation (LASSO CV) were used 
for filtering the most relevant features in training group 
(Fig. 2). 14, 23 and 35 features were selected from intra-
tumor, peritumor, intratumor + peritumor ROIs. 17 
peritumoral features (out of 35) included in the mod-
elintra + peri. Modelintra, modelperi, modelintra+peri were 
established by eleven supervised machine learning (ML). 
Algorithms consisted Support Vector Machine (SVM)), 
Logistic Regression (LR), Decision Tree (DT), Linear Dis-
criminant Analysis (LDA), Adaptive Boosting (AdaBoost) 
and so on. The radiomics ML models were evaluated 
using 10-fold cross-validation five times, average values 
of scores of models obtained were taken for evaluation. 
The models were independently verified in the validation 
cohort using area under the receiver operating character-
istic (ROC) curve (AUC), accuracy, sensitivity, specificity, 

and F-1 score as metrics. These metrics were calculated 
by Anaconda software  (   h t t p s : / / w w w . a n a c o n d a . c o m /     ) .  

Statistical analysis
Descriptive data and continuous variables were assessed 
by independent sample t-test, categorical variables was 
analyzed by chi-square test on SPSS 17.0. The probability 
(P) value of < 0.05 represents statistically significant. Uni-
variate analysis of selected features and correlation analy-
sis were used by the Mann-Whitney U test and Spearman 
rank correlation test. The measurement of AUC, sensitiv-
ity and specificity were compared by Python 3.9  (   h t t p s : / / 
w w w . p y t h o n . o r g /     ) [22].

Results
Clinical characteristics
The clinical characteristics of all patients are listed in 
Table  1. Lesion internal enhancement, HER-2, ER, PR, 
status varied significantly between the high Ki-67 and 

Fig. 2 Intratumoral combined with peritumoral Radiomics features were selected using the Least absolute shrinkage and selection operator cross 
validation (LASSO CV) method, as shown in Fig. 2A and B. The LASSO regression method was used for feature selection according to leave-one-out 
cross-validation (A), and the optimal number of features for prediction was determined based on the lowest misclassification error (B). These radiomics 
signatures were developed for predicting pathway alterations

 

Fig. 1 An overview of the study methodology

 

https://www.anaconda.com/
https://www.python.org/
https://www.python.org/
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low Ki-67 groups (with P < 0.05) in the training cohort, 
and ER status varied significantly validation. There exists 
no significant difference in age, menopausal status, lesion 
type, mass shape and tumor grade(P > 0.05).

Radiomics features
The Correlation matrix of variables (Fig.  3A) showed 
that optimal features from the combined intra and 
peritumoral regions are relatively independent. Fea-
tures selected were correlated with Ki-67 expression 
status(Fig. 3B). The details of 35 radiomics features iden-
tified were presented in Table 2.

The predictive performance of radiomics models
Features selected from the intra-tumor group, peri-
tumor group, and intra-tumor + peri-tumor group were 
used to build prediction models with 11 ML algorithms. 
Area under the curve(AUC) values comparison was 
shown in Fig. 4. AUC values of different ML algorithms 
based on modelintra+peri for identification of Ki-67 status 
in the training and testing cohort (Fig.  4A); AUC val-
ues of different ML algorithms based on modelintra for 
identification of Ki-67 status in the training and testing 
cohort(Fig.  4B); AUC value of different ML algorithms 
based on modelperi for identification of Ki-67 status in the 
training and testing cohort(Fig. 4C).

The predictive performance of different ML algorithms 
based on modelintra+peri was summarized in Table 3. The 
ML classifiers for Logistic Regression and Linear Dis-
criminant Analysis exhibited a clear superiority, with 
AUC scores of 0.98 (CI: 0.942, 0.986) and 0.97 (CI: 0.826, 
0.989), accuracy rates of 0.98 and 0.96, sensitivities of 
0.98 and 0.96, and specificities of 0.97 and 0.97 within the 
training cohort. In the validation cohort, they attained 
AUCs of 0.92 (CI: 0.955, 1.000) and 0.98 (CI: 0.674, 
0.968), accuracy rates of 0.94 and 0.97, sensitivities of 
1.00 and 0.96, and specificities of 0.85 and 1.00, respec-
tively. The ROC curves in training and validation set were 

shown in Fig. 5. ROC curves of ML algorithms for iden-
tification of Ki-67 status in the training cohort (Fig. 5A); 
ROC curves of ML algorithms for identification of Ki-67 
status in the validation cohort (Fig. 5B).

Discussion
In this study, we developed and validated radiomics mod-
els using 11 ML algorithms for preoperative prediction of 
Ki-67 expression status in BC. Radiomics features were 
extracted from intra- and peritumoral regions based on 
multi-parametric MR maps. Results showed that the 
combined intra- and peritumoral radiomics with ML 
exhibits significant predictive power for Ki-67 expression 
levels.

It’s reported that Ki-67 plays a role in the cellular pro-
liferation process and contributes to the heterogeneity of 
tumor growth kinetics [18, 23]. Several studies proved 
that radiomics and nomograms possess potential in Ki-67 
status prediction in patients with lung adenocarcinoma 
or medulloblastoma [24, 25]. However, Ki-67 exists with 
proliferation differing from 1 to 90% in different intratu-
moral regions [23]. Therefore, it is necessary to evaluate 
the whole lesion in vivo. Among the 35 selected features 
from combined intra and peritumoral regions, the major-
ity features were Gabor wavelet features, capable of 
providing a comprehensive quantification of tumor het-
erogeneity across various spatial scales and directional 
orientations. Recent studies [17, 18] have also indicated 
that Gabor wavelet features offer more detailed insights 
into breast cancer and are essential elements in the con-
struction of a radiomics model.

Liang et al. [26] proposed that radiomics signatures 
from T2WI images were confirmed to be in accordance 
with the Ki-67 expression level. Yasemin et al. [18] 
focused on features from DCE and ADC maps to detect 
the Ki-67 expression level of breast cancer. However, 
prior radiomics studies mostly focused on single or two 
combined MR sequences. Huang et al. [27] suggested 

Fig. 3 Pearson correlation heatmap of selected features on predicting Ki-67 status. Dark colour denotes a positive correlation, and light colour denotes a 
negative correlation, and the shade of the color indicates the correlation degree (A).The correlation coefficients of 35 selected feature-based T2WI, DCE-
T1, DWI and ADC sequences (B)
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Table 2 Results of the feature selection for the combined intra and peritumoral radiomics model based on DCE, T2WI, DWI, ADC
Sequences Features Coefficients
DCE Peritumoral Features Original Gldm Small Dependence Low Gray Level Emphasis 0.002360951

Wavelet-LLH First order Kurtosis 0.01730243
Wavelet-LLH GlcmIdn 0.05626885
Wavelet-LHL Gldm Small Dependence Low Gray Level Emphasis -0.00687314
Wavelet-HLH Gldm Dependence Variance -0.02193275
Wavelet-HHL First order Mean -0.00995817
Wavelet-HHH First order Skewness 0.002915816
Wavelet-LLL First order Minimum -0.00377387

Intratumoral Features Wavelet-LHL Glcm Cluster Shade -0.01505743
Wavelet-LHH First order Skewness -0.01023311

T2WI Peritumoral Features Wavelet-LLH First order Kurtosis -0.03460180
Wavelet-LLH Glcm MCC -0.05261036
Wavelet-LHH First order Skewness 0.00643968
Wavelet-HHH Gldm Small Dependence High Gray Level Emphasis -0.02574802

Intratumoral Features Original Glcm Idn 0.05052320
Wavelet-LHL Glcm Cluster Shade 0.00797365
Wavelet-HLL Glcm Imc1 0.02661667
Wavelet-HLL Glszm Small Area Low Gray Level Emphasis 0.03090267
Wavelet-HLH Glcm Inverse Variance 0.01687358

DWI Peritumoral Features Wavelet-LHL Ngtdm Contrast -0.00164859
Wavelet-LLL Glcm Imc1 3.67152E-08

Intratumoral Features Original First order Kurtosis -0.03400322
Original Glcm Imc2 0.05353916
Wavelet-LHL Ngtdm Contrast -0.04085949
Wavelet-HHL Glszm Size Zone Non Uniformity Normalized -0.01320199
Wavelet-HHH Glszm Size Zone Non Uniformity Normalized -0.02049154

ADC Peritumoral Features Wavelet-LHH Glszm Large Area Low Gray Level Emphasis -0.03826035
Wavelet-HLH First order Mean -0.01349872
Wavelet-HHL Glcm Cluster Shade 0.03386282

Intratumoral Features Original Firs torder 10 Percentile 0.05392699
Wavelet-HLH First order Mean 0.01455839
Wavelet-HLH Glcm Cluster Prominence -0.00571082
Wavelet-HLH Glcm Correlation 0.01249993
Wavelet-HHH First order Skewness -0.00676369
Wavelet-LLL Ngtdm Busyness 0.03270688

Magnitude of the weight if their corresponding characteristics in the regression model. DCE, dynamic contrast-enhanced; T2WI, T2 weighted image; DWI, diffusion 
weighted image; ADC, apparent diffusion coefficient

Fig. 4 The bar chart shows the analysis results of the ROC curves for different ML algorithms based on three models. AUC value of different ML algorithms 
based on modelintra+peri for identification of Ki-67 status in the training and testing cohort (A). AUC value of different ML algorithms based on modelintrai 
for identification of Ki-67 status in the training and testing cohort (B). AUC value of different ML algorithms based on modelperi for identification of Ki-67 
status in the training and testing cohort (C)
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that radiomics based on multi-parametric MRI maps 
combining with ML approaches can predict the molecu-
lar subtype and expression of AR in BC non-invasively. 
A recent study by Mayidili et al. [15] proposed that ADC 
maps achieve a better predictive efficacy for lympho-
vascular invasion (LVI) than two or three combinations 
of MR sequences in patients with invasive breast can-
cer. The result was inconsistent with our study that the 
fusion radiomics features based on multi parametric MRI 

achieved good AUC in predicting Ki-67 expression level. 
The role of the fusion radiomics model needs to be tested 
in larger datasets.

With the development of computer science, ML, as a 
branch, becomes the emerging technology which can 
learn patterns from data to improve performance at dif-
ferent tasks [28, 29]. Gigi et al. [30] reported that personal 
health data and ML models, including neural network 
models have better predictive accuracy for breast cancer 

Table 3 A performance summary of ML algorithms with combined radiomics for prediction of Ki-67 status in each cohort
ML AUC (95%CI) ACC SEN SPE PPV NPV F-1 score
LR Training 0.98 (0.942, 0.986) 0.98 0.98 0.97 0.98 0.97 0.98

Validation 0.92 (0.955, 1.000) 0.94 1.00 0.85 0.92 1.00 0.96
LDA Training 0.97 (0.826, 0.989) 0.96 0.96 0.97 0.98 0.94 0.97

Validation 0.98 (0.674, 0.968) 0.97 0.96 1.00 1.00 0.93 0.98
kNNs Training 0.81 (0.764, 0.903) 0.82 0.88 0.74 0.83 0.81 0.85

Validation 0.79 (0.675, 0.970) 0.83 0.96 0.62 0.81 0.89 0.88
DT Training 1.00 (0.772, 0.914) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.59 (0.433, 0.743) 0.69 0.96 0.23 0.69 0.75 0.80
SVM Training 0.99 (0.952, 0.995) 0.99 1.00 0.97 0.98 1.00 0.99

Validation 0.77 (0.909, 0.993) 0.83 1.00 0.54 0.79 1.00 0.88
XGB Training 1.00 (0.902, 0.990) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.61 (0.634, 0.930) 0.69 0.91 0.31 0.70 0.67 0.79
RF Training 1.00 (0.915, 0.983) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.69 (0.659, 0.907) 0.75 0.91 0.46 0.75 0.75 0.82
LigthtGBM Training 1.00 (0.907, 0.988) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.63 (0.647, 0.905) 0.72 0.96 0.31 0.71 0.80 0.81
ANN Training 0.93 (0.864, 0.966) 0.92 0.86 1.00 1.00 0.83 0.92

Validation 0.74 (0.682, 0.970) 0.78 0.87 0.62 0.80 0.73 0.83
GB Training 1.00 (0.890, 0.984) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.59 (0.537, 0.903) 0.69 0.96 0.23 0.69 0.75 0.80
Adaboost Training 1.00 (0.886, 0.980) 1.00 1.00 1.00 1.00 1.00 1.00

Validation 0.73 (0.566, 0.870) 0.81 1.00 0.46 0.77 1.00 0.877
LR, Logistic Regression; LDA, Linear Discriminant Analysis; kNNs, k-Nearest Neighbor; SVM, Support Vector Machine; DT, Decision Tree; XGBoost, Extreme gradient 
boosting; RF, Random Forest; LightGBM, Light gradient boosting machine; ANN, Artificial Neural Network; GBM, Gradient boosting machine; AdaBoost, Adaptive 
Boosting

AUC, the area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; NPV, negative predictive value; PPV, positive predictive value; ML, machine learning.CI: 
confidence interval

Fig. 5 Receiver operating characteristic (ROC) curves of the 11 machine learning (ML) algorithms with combined radiomics for identification of Ki-67 
status in the training and validation cohorts. ROC curves of ML algorithms for identification of Ki-67 status in the training cohort (A); ROC curves of ML 
algorithms for identification of Ki-67 status in the validation cohort (B). FPR, False Positive Rate; TPR, True Positive Rate
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risk compared with the Breast Cancer Risk Prediction 
Tool (BCRAT). We developed and compared various ML 
algorithms based on 14, 23 and 35 features selected from 
intratumor, peritumor, and combined intratumor + peri-
tumor ROIs. Among the three models, all algorithms 
achieved a high AUC value on the training set, yet only 
the LR and LDA algorithms of Modelintra+peri reached an 
impressive 0.92 and 0.98 in the testing set, indicating a 
high level of predictive efficacy. In contrast, the AUC val-
ues for the algorithms in Modelintra and Modelperi were 
consistently below 0.8 in the testing set, suggesting that 
these models suffered from over fitting, which conse-
quently led to insufficient predictive performance.

Logistic Regression is an algorithm that employs the 
logistic function to estimate probabilities, making it par-
ticularly effective for handling high-dimensional datas-
ets. This method excels in scenarios where the datasets 
can be linearly separated [31]. On the other hand, Linear 
Discriminant Analysis is closely related to regression and 
variance analysis. In this context, the dependent vari-
able can be understood as a linear combination of other 
characteristics or measured values [31]. When applied 
in the field of radiomics models, both LR and LDA algo-
rithms demonstrate significant potential in prediction 
tasks. This is primarily due to their robust capabilities in 
processing high-throughput data, allowing for the accu-
rate estimation of probabilities and the interpretation of 
dependent variables in terms of linear combinations of 
other features.

In the comparing study, the AUC values for the algo-
rithms in modelintra or modelperi were consistently below 
0.8 in the testing set, but algorithms of Modelintra+peri 
achieved high AUC values, suggesting that combined 
intra and peritumoral radiomics can provide more 
detailed information about the tumor. Prior studies based 
on radiomics mainly focused on features from intratu-
moral regions. However, the tumor heterogeneity was 
consisted of intratumoral and peritumoral heterogene-
ity [32]. Features of the micro-environment around the 
tumor were related to peritumoral edema and blood ves-
sel invasionare, which were connected with cancer pro-
gression and metastasis [33]. Niu et al. [34] found that 
features from the peritumoral regions at a 2 mm peritu-
moral size achieved the best discriminative performance 
in the differentiation of benign and malignant breast 
lesions. Zhang et al. [21] suggested that a 6 mm dilation 
distance was suitable for classification tasks for hormone 
receptor (HR) and an 8 mm dilation distance suitable for 
HER2. Thus, the dilation distance varies in MR-reported 
researches, and there is no accurate criterion. In our 
study, we chose a 5.0  mm dilation distance, which was 
in accordance with the investigation of Braman et al. 
[35], who reported that the peri- and intratumoral DCE-
MRI imaging features with 2.5  mm to 5.0  mm dilation 

distances obtained great ability in predicting pCR after 
receiving NAC in patients with BC.

Limitations
There were some limitations in our study. Firstly, as a 
retrospective study, the patient volume was relatively 
small from a single center. To improve the predictive 
efficiency, it is requested for a larger multi-center study. 
Secondly, based on DCE-MRI maps, this study extracted 
features from the second-phase images, further informa-
tion would be ignored without integration of multi-phase 
images. Thirdly, the tumor circumference was obtained 
by expanding outward at a distance of 5 mm, there is no 
evidence whether it is the optimal peritumoral range. 
Fourthly, inter or intra-reader variability measures should 
be utilized to assess the inter or intraobserver agreement 
in image annotation, as this constitutes a limitation of the 
study. Fifthly, this article omits a comparative analysis of 
single-sequence MR versus multi-sequence MR, meriting 
further investigation.

Conclusion
We developed and validated a radiomics machine learn-
ing model for the preoperative prediction of Ki-67 
expression status, which is based on combined intra- and 
peritumoral features derived from multi-parameter MR 
maps. This predictive model offers individualized guid-
ance for patients with BC, both before and after therapy, 
by forecasting the expression status of Ki-67 in a timely 
and noninvasive manner.
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