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Abstract 

Objectives  The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endo-
scopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).

Methods  Eighty-one patients, including 51 with grade 1 PNETs and 30 with grade 2/3 PNETs, were included in this 
retrospective study after confirmation through pathological examination. The patients were randomly allocated 
to the training or test group in a 6:4 ratio. Univariate and multivariate logistic regression were used for screening 
clinical and ultrasonic characteristics. Ultrasomics is ultrasound-based radiomics. Ultrasomics features were extracted 
from both the intratumoral and peritumoral regions of conventional EUS images. Subsequently, the dimensionality 
of these radiomics features was reduced using the least absolute shrinkage and selection operator (LASSO) algorithm. 
A machine learning algorithm, namely multilayer perception (MLP), was employed to construct prediction models 
using only the nonzero coefficient features and retained clinical features, respectively.

Results  One hundred seven ultrasomics features based on EUS were extracted, and only features with nonzero 
coefficients were ultimately retained. Among all the models, the combined ultrasomics model achieved the greatest 
performance, with an AUC of 0.858 (95% CI, 0.7512 - 0.9642) in the training group and 0.842 (95% CI, 0.7061 - 0.9785) 
in the test group. A calibration curve and a decision curve analysis (DCA) also demonstrated its accuracy and utility.

Conclusions  The integrated model using EUS ultrasomics features from intratumoral and peritumoral tumors accu-
rately predicts PNETs’ pathological grades pre-surgery, aiding personalized treatment planning.
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Introduction
Pancreatic neuroendocrine tumors (PNETs) originate 
from neuroendocrine cells of the pancreas and are one 
type of neuroendocrine neoplasm (NEN), representing 
3% of all pancreatic tumors [1, 2]. Although PNETs are 
relatively uncommon, their incidence is growing owing 
to the increased use of cross-sectional imaging [3, 4]. 
The 2022 World Health Organization (WHO) classifies 
PNETs into well-differentiated (grade 1, G1), interme-
diately differentiated (grade 2, G2), and poorly differen-
tiated (grade 3, G3) tumors based on their mitotic rate 
and Ki-67 proliferation index [5]. Tumor grading is a 
critical prognostic indicator for individuals with PNETs 
[6, 7]. PNETs demonstrate a diverse spectrum of biologi-
cal behavior, ranging from low-grade malignancy (G1) to 
highly aggressive (G3) tumors [8]. G1 asymptomatic and 
non-functional PNETs, especially those with a diameter 
smaller than 2 cm, are recommended to undergo active 
monitoring [9]. Conversely, prior research has sug-
gested that G2 non-functional PNETs should be catego-
rized as high-risk and G2/3 PNETs are associated with 
poorer prognoses and typically necessitate more aggres-
sive treatment [10–12]. Due to the significant influence 
of pathological grading on treatment strategies, accurate 
determination of PNETs grading is crucial in clinical set-
tings to ensure optimal patient therapies [13].

Nowadays, surgical removal of tumors serves as the 
mainstay of treatment for the majority of PNETs, par-
ticularly for the G2/3 ones [14, 15]. The most reliable 
approach for the pathological grading of PNETs contin-
ues to be the examination of postoperative pathological 
specimens [16], highlighting the limitations of preopera-
tive prognostic stratification methods [17]. Presently, the 
primary method for preoperative diagnosis and grading 
of PNETs is endoscopic ultrasonography-guided fine-
needle aspiration/biopsy (EUS-FNA/B) [18–20]. Nev-
ertheless, this technique is hindered by its invasiveness, 
limited accuracy, challenges in capturing tumor hetero-
geneity, and a high technical threshold [21]. Hence, there 
is a pressing need for a precise and non-invasive tech-
nique to identify and classify G1 and G2/3 PNETs before 
surgical intervention.

Previous studies have shown that computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and EUS 
can help predict the grading of PNETs before surgery 
[22–29], but their accuracy and validation may hard to 
accomplish the diagnostic requirements [3, 30]. EUS is 
commonly used to diagnose PNETs and is considered a 
highly accurate imaging tool for pancreatic diseases due 
to its ability to produce detailed images of pancreatic 
lesions [31]. According to European Neuroendocrine 
Tumor Society (ENETS) guidelines, EUS is the preferred 
imaging method when other tests are inconclusive [32]. 

EUS has demonstrated superior efficacy in the detection 
of PNETs compared to CT, MRI, and abdominal ultra-
sonography (US), especially for small lesions [33, 34].

Standardized imaging technology, big data analytics, 
artificial intelligence, and interpretable machine learning 
algorithms demonstrate significant potential in the realm 
of medical research [3, 35, 36]. Recently, the integration 
of radiomics and machine learning strategies as an emer-
gent imaging analysis for tumor diagnosis, treatment 
evaluation, and prognosis assessment has been rapidly 
widespread [37, 38]. Numerous studies have shown that 
radiomic features in MR imaging can reflect tumor het-
erogeneity and predict glioma grading [39].

Radiomics techniques have also been effective in pre-
dicting the grading of PNETs on CT and MRI scans 
[40–42]. Additionally, features from ultrasomics analy-
sis of B-mode ultrasound images show potential in pre-
dicting PNETs’ pathological grading [43]. Additionally, 
prior research has demonstrated a significant association 
between radiomics features of the peritumoral region 
and tumor-related outcomes, including diagnostic accu-
racy, pathological characteristics, and prognostic indica-
tors [44–46].

The effectiveness of ultrasomics approaches utiliz-
ing EUS in distinguishing between G2/3 and G1 PNETs 
remains uncertain, despite the acknowledged superior-
ity of EUS as an imaging modality. Leveraging existing 
knowledge, we employed a machine learning algorithm 
to construct and validate a robust ultrasomics model 
incorporating intratumoral and peritumoral character-
istics, intending to accurately predict the pathological 
grading of PNETs. Concurrently, we integrated the mod-
els with Shapley Additive Explanations (SHAP) to eluci-
date and visualize the model outputs.

Materials and methods
Study population
This retrospective study was approved by the institu-
tional ethics review board of the First Affiliated Hospi-
tal of Guangxi Medical University (No. 2023-K346-01, 
2023-12-29), which waived the need for patient approval 
or signed informed consent to review medical images 
and clinical information. This study included 81 patients 
with PNETs, 51 with G1 and 30 with G2/3, who had sur-
gery or EUS-FNB at our institution from October 2013 
to January 2024. The inclusion and exclusion criteria are 
displayed as follows.

Patients in the study had to meet specific criteria: they 
had to have a preoperative EUS scan of the pancreas, con-
firmation of PNETs and their grade through pathology, 
clear EUS images before biopsies, and no prior chemo-
therapy or radiotherapy. Patients excluded from the study 
did not meet criteria such as the inability to display the 
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entire lesion, motion artifacts or noise in images, and the 
presence of other tumors. Registered patients were ran-
domly assigned to a training or test group in a 6:4 ratio. 
Figure 1 shows how the study population was enrolled for 
a retrospective analysis.

EUS image acquisition
A standard dynamic EUS procedure was applied based on 
the EU-ME2 device (Olympus, Japan) and the SU-9000 
device (FUJIFILM, Japan). All the ESU images were con-
sistently taken by an experienced EUS specialist, who has 
a track record of over 10000 EUS practices, resulting in 
high-quality images of pancreatic lesions. Images were 
standardized with a level of 125 and a window of 250 
grayscale values, and stored in our institutional Picture 
Archiving and Communication System (PACS).

Endoscopic ultrasonography features and clinical 
characteristics
In this research, a retrospective analysis was conducted 
on various clinical parameters, including age, gender, and 
pathological diagnosis. To bolster the study’s validity, all 
EUS images were thoroughly scrutinized and assessed 
by two skilled EUS specialists, each possessing 6-7 years 
of experience in pancreatic EUS. Importantly, these 
specialists were unaware of the histopathological and 

clinical information related to the cases under analysis. 
This study analyzed clinical parameters and endoscopic 
ultrasonography features of pancreatic masses, including 
age, gender, pathology grading, location of the pancreatic 
mass, maximum diameter, shape, margin characteristics, 
echo characteristics, uniformity of echo, calcification, 
and cystic. In cases of multiple pancreatic lesions, the 
analysis focused primarily on the largest lesion with con-
firmed pathology.

ROI delineation
Images were stored in Digital Imaging and Communi-
cations in Medicine (DICOM) format and converted to 
nii.gz format. Two experts in EUS, with 6 and 7 years 
of experience, manually delineated the intratumoral 
region of interest (ROI) utilizing ITK-SNAP software 
(version 3.8.1, website as http://​www.​itksn​ap.​org). In 
instances of disagreement between the two specialists, 
a dialogue and consensus method were utilized. Both 
specialists were blinded to the pathological results. The 
lesions were segmented layer by layer along the edges 
on conventional EUS images, excluding neighbor-
ing normal tissue, blood vessels, bile ducts, and pan-
creatic ducts. Our prior research demonstrated that 
integrating EUS intratumoral features with radiomic 
features of the peritumoral region, extending 3 mm 

Fig. 1  Flowchart for enrolling the study population

http://www.itksnap.org
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outward enhanced the model’s efficacy in distinguish-
ing between insulinomas and nonfunctional PNETs 
[47]. However, it remains unclear whether the peritu-
moral region contains predictive and diagnostic infor-
mation for grading PNETs. Given the mean tumor sizes 
of 28.21 ± 16.05 mm and 29.29 ± 19.25 mm in the train-
ing and test groups, respectively, a threshold of 3 mm 
was selected to prevent the inadvertent inclusion of 
extrapancreatic regions that do not contribute mean-
ingful information. The peritumoral ROI was obtained 
through the utilization of a conventional morphologi-
cal dilation technique within the ITK-SNAP software. 
This method entailed enlarging the delineation of the 
intratumoral ROI by 3 mm. All peritumoral ROIs were 
finally examined by an endoscopist. Following this, 
three separate ROI images were chosen for each EUS 
image, including an intratumoral ROI, a peritumoral 
ROI, and a combined ROI that encompassed both the 
intratumoral and peritumoral ROIs. A detailed depic-
tion of the process for acquiring the ROIs can be found 
in Fig. 2.

Standardization techniques were utilized for image 
and data preprocessing to enhance the reproducibil-
ity of the results. The intraclass correlation coefficient 
(ICC) was used to assess the consistency among and 
within observers. A cohort of 25 patients, compris-
ing 18 with G1 PNETs and 10 with G2/3 PNETs, was 

randomly chosen for the study. After two weeks, the 
EUS specialists segmented the ROIs again, using an ICC 
threshold of > 0.8 to signify a high level of agreement.

Ultrasomics feature extraction
The classification of handcrafted features can be 
divided into three distinct categories: geometric, inten-
sity, and textural. Geometric features focus on the 
three-dimensional morphological attributes of tumors. 
Intensity features involve the statistical distribution of 
voxel intensities within the tumor in the first order. In 
contrast, textural features analyze patterns and higher-
order spatial distributions of intensities. This study 
employed various methodologies, such as the gray level 
co-occurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
and neighborhood gray-level difference matrix 
(NGTDM), for the extraction of texture features from 
the region of interest (ROI). The ulstrasomics features 
were extracted from the intratumoral and peritumoral 
ROIs separately, and the features of the combined ROIs 
were obtained by integrating those extracted from both 
regions. The extraction processes followed the guide-
lines set forth by the Image Biomarker Standardization 
Initiative (IBSI).

Fig. 2  Comprehensive graph of the intratumoral and peritumoral ROIs. The red region indicates the “intratumoral ROI”; the green region indicates 
the “peritumoral ROI”. (ROI, region of interest)
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Ultrasomics feature selection
A Mann-Whitney U test was conducted to compare fea-
tures between the training and test groups. Ultrasomics 
features with a significance level of p < 0.05 were selected 
for subsequent analysis. Spearman’s rank correlation 
coefficient was employed to assess the interrelationship 
among each ultrasomics feature, aiming to verify the fea-
tures’ reliability. Features exhibiting a correlation coeffi-
cient exceeding 0.9 with another feature were preserved 
with one of them. To improve feature representation, a 
greedy recursive deletion method was applied for fea-
ture filtering. This method entailed iteratively removing 
the feature with the highest level of redundancy within 
the existing set. The study employed the least absolute 
shrinkage and selection operator (LASSO) regression 
model to identify ultrasomics features with nonzero coef-
ficients through the 10-fold cross-validation technique. 
Notably, the minimum criterion determined the penalty 
parameter (lambda.min). Feature selection was carried 
out in the training group and then applied to the test 
group. The LASSO regression analysis was performed 
using the Python scikit-learn package.

Ultrasomics features with non-zero coefficients were 
selected for inclusion in the regression model and com-
bined to create an ultrasomics signature. Subsequently, 
each patient was assigned an ultrasomics score by apply-
ing a linear combination of the selected features and their 
respective model coefficients.

Construction of different ultrasomics models and clinical 
models
A Multilayer Perceptron (MLP) machine learning algo-
rithm was employed to create classification models for 
the accurate differentiation of G1 and G2/3 PNETs. After 
applying LASSO feature selection, the chosen intratu-
moral ultrasomics features, peritumoral ultrasomics fea-
tures, and combined ultrasomics features were utilized 
as inputs for MLP models to establish an intratumoral 
ultrasomics model, a peritumoral ultrasomics model, 
and a combined ultrasomics model. Additionally, a clini-
cal model, based on MLP, was also constructed using 
selected endoscopic ultrasonography features. All these 
models were established definitively by utilizing a 5-fold 
cross-validation methodology. To achieve optimal model 

Fig. 3  The workflow of this study
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performance and mitigate the risk of overfitting, we con-
ducted hyperparameter tuning.

Ultrasomics models and clinical model assessment
The diagnostic effectiveness of various machine learning 
models was evaluated by assessing metrics including the 
receiver operator characteristic curve (ROC), area under 
the curve (AUC), accuracy, specificity, sensitivity, positive 
predictive value (PPV), F1 Score, and negative predictive 
value (NPV). Furthermore, a Delong test was employed 
to compare the performance of these ultrasomics and 
clinical models in terms of the AUC.

The alignment between the prognostic forecasts gener-
ated by diverse ultrasomics models, clinical model, and the 
resultant outcomes was assessed through the computation 
of the calibration curve, which juxtaposed the prognostic 
estimates of these models with the actual observations. 
The calibration performance of three ultrasomics models 

and one clinical model was evaluated by constructing cali-
bration curves and using the Hosmer-Lemeshow (H-L) 
test to assess their calibration ability. Additionally, decision 
curve analysis (DCA) was employed to evaluate the clini-
cal utility of these predictive models. Finally, the SHAP 
value of each retained ultrasomics feature was computed 
to enhance the interpretability of the predictions gener-
ated by the machine learning model.

Statistical analysis
The study compared the clinical parameters, endoscopic 
ultrasonography features, and ultrasomics features of 
patients using statistical tests including the independ-
ent sample t-test, Mann‒Whitney U test, or X2 test. In 
addition, univariate and multivariate logistic regression 
were used to screen risk factors. A significance thresh-
old of a two-tailed p-value < 0.05 was set. The prediction 

Table 1  Clinical and radiological characteristics in the training and test groups

Gender: “0” means female, “1” means male; Shape: “0” means irregular shape, “1” means regular shape; Margin: “0” means unclear margin of lesion, “1” means clear 
margin of lesion; Echo: “0” means means not hypoechoic of lesion, “1” means hypoechoic of lesion; uniformity: “0” means nonuniformity of echo; “1” means uniformity 
of echo; Calcification: “0” means no calcification, “1” means calcification; Cystic areas: “0” means no cystic areas, “1” means cystic areas; Location: “0” means head and 
uncinate process of the pancreas, “1” means body and tail of the pancreas

Variable Training cohort (N = 48) Test cohort (N = 33)

G1 G2/3 P-value G1 G2/3 P-value

Age 50.87 ± 12.44 50.94 ± 15.96 0.597 41.60 ± 12.33 47.15 ± 13.74 0.276

Maximum diameter 23.13 ± 12.03 37.47 ± 18.55 0.005 23.17 ± 16.19 38.70 ± 20.38 0.022

Gender 0.938 0.478

  0 20(64.52) 10(58.82) 13(65.00) 6(46.15)

  1 11(35.48) 7(41.18) 7(35.00) 7(53.85)

Shape 0.007 0.047

  0 8(25.81) 12(70.59) 3(15.00) 7(53.85)

  1 23(74.19) 5(29.41) 17(85.00) 6(46.15)

Margin 0.210 0.012

  0 2(6.45) 4(23.53) 0(0.00) 5(38.46)

  1 29(93.55) 13(76.47) 20(100.00) 8(61.54)

Echo 0.402 0.398

  0 6(19.35) 1(5.88) 3(15.00) 0(0.00)

  1 25(80.65) 16(94.12) 17(85.00) 13(100.00)

Uniformity 0.434 0.146

  0 15(48.39) 11(64.71) 9(45.00) 10(76.92)

  1 16(51.61) 6(35.29) 11(55.00) 3(23.08)

Calcification 1.000 0.826

  0 30(96.77) 17(100.00) 18(90.00) 7(53.85)

  1 1(3.23) 0(0.00) 2(10.00) 6(46.15)

Cystic areas 1.000 0.051

  0 30(96.77) 16(94.12) 18(90.00) 7(53.85)

  1 1(3.23) 1(5.88) 2(10.00) 6(46.15)

Location 0.97 1.000

  0 13(41.94) 8(47.06) 11(55.00) 7(53.85)

  1 18(58.06) 9(52.94) 9(45.00) 6(46.15)
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performance of various models was assessed using met-
rics such as AUC, accuracy, sensitivity, specificity, PPV, 
F1 score, and NPV. A Delong test was used to compare 
AUC values between different models to evaluate their 
performance. The study workflow is depicted in Fig. 3.

Results
Baseline population characteristics and endoscopic 
ultrasonography features
In this retrospective study, a total of 81 patients (49 
women, 32 men) were included, with 48 patients in the 
training group and 33 patients in the test group. The 

Fig. 4  A Forest map of univariate logistic regression of clinical and radiological characteristics; B Forest map of multivariate logistic regression 
of clinical and radiological characteristics. (* means P-value < 0.05; ** means P-value < 0.01)
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results revealed no significant differences in age, gender, 
shape, echo characteristics, echo uniformity, calcifica-
tion, mass location, and presence of cystic degeneration 
between patients with G1 and G2/3 PNETs in both the 
training and test groups. However, it was observed that 
G1 PNETs had a significantly smaller diameter and more 
regular shape compared to G2/3 PNETs (Table 1). Both 
univariate (Fig.  4A) and multivariate (Fig.  4B) logistic 
regression analyses indicated a significant association 
between maximum diameter (OR = 1.010, 95% CI 1.003–
1.017) and shape (OR = 0.725, 95% CI 0.584–0.900) with 
G2/3 PNETs (Table 2).

Ultrasomics feature extraction and screening
The extraction and screening of radiomic features were 
conducted utilizing PyRadiomics, an internal feature 
analysis software, enabling the extraction of all manually 
crafted features. A comprehensive set of seven categories 
and 107 ultrasomics features were successfully obtained, 
comprising 18 first-order features, 14 shape features, and 
the remaining texture features. The definitions for these 
manually crafted features have been previously docu-
mented in prior literature [35].

The comprehensive series of intratumoral (Fig.  5A), 
peritumoral (Fig. 5B), and combined ultrasomics features 
(Fig.  5C), along with their corresponding p values, are 
presented in Fig.  5. Four intratumoral ultrasomics fea-
tures with nonzero coefficients were retained following 
feature downsizing and LASSO logistic regression. The 
coefficients and mean standard errors (MSEs) obtained 
from the 10-fold validation are depicted in Fig.  6A and 
B, respectively. Additionally, Fig.  6C showcases the 
retained intratumoral ultrasomics features and their cor-
responding coefficients. Similarly, Fig.  6D, E, and F dis-
play six peritumoral ultrasomics features, while Fig. 6G, 
H, and I exhibit six combined ultrasomics features, all of 
which have nonzero coefficients. The linear expressions 

are presented in Supplementary materials. Finally, based 
on the MLP algorithm, these retained intratumoral, 
peritumoral, and combined ultrasomics features were 
applied to construct intratumoral, peritumoral, and com-
bined ultrasomics models for predicting G2/3 PNETs, 
respectively.

The intratumoral, peritumoral, clinical, and combined 
ultrasomics models and their performance
Supplementary Fig.  1 presents the performance of vari-
ous machine learning algorithms within intratumoral 
ultrasomics models. It is noteworthy that the Random 
Forest (RF), XGBoost, and ExtraTrees models exhibit ten-
dencies toward overfitting. This issue is also observed in 
the Support Vector Machine (SVM) and LightGBM mod-
els, as evidenced by the higher AUC values in the testing 
group compared to the training group. In contrast, the 
MLP model demonstrates superior performance relative 
to the Logistic Regression (LR) and K-Nearest Neighbors 
(KNN) models. The MLP model shows greater consist-
ency between the training group (AUC = 0.833, 95% CI: 
0.712—0.954) and the test group (AUC = 0.800, 95% CI: 
0.629—0.971), underscoring its potential as an optimal 
model for further analyses.

Subsequently, the variables of maximum diameter 
and shape, identified through univariate and multivari-
ate logistic regression analyses, were selected for the 
development of a clinical model employing an MLP to 
predict G2/3 PNETs. This clinical model demonstrated 
an AUC = 0.810 (95% CI 0.6689 - 0.9516) in the train-
ing group, with an accuracy of 0.812, sensitivity of 0.706, 
specificity of 0.871, PPV of 0.750, and NPV of 0.844. Fur-
thermore, in the test group, the clinical model achieved 
an AUC = 0.762 (95% CI 0.5630 - 0.9601) (Table 3).

The ROC curves and AUCs of the clinical model, and 
intratumoral, peritumoral, and combined ultrasom-
ics models, generated using the MLP algorithm, are 

Table 2  Univariate and multivariable logistic regression analyses for selecting clinical and radiological characteristics

OR Odds ratio, CI Confidence interval,* means P-value < 0.05, ** means P-value < 0.01

Variable Univariate analysis Multivariate analysis

OR (95% CI) P-value OR(95% CI) P-value

Age 1.000(0.991, 1.009) 0.987

Maximum diameter 1.013(1.006, 1.020) 0.002** 0.725(0.584,0.900) 0.016*

Shape 0.656(0.528,0.815) 0.002** 1.010(1.003,1.017) 0.018*

Margin 0.700(0.495,0.990) 0.091

Echo 1.281(0.921, 1.781) 0.214

uniformity 0.860(0.680,1.088) 0.288

Calcification 0.696(0.305,1.587) 0.456

Cystic areas 1.164(0.645, 2.102) 0.668

Location 1.109(0.996,1.236) 0.115

Gender 1.057(0.828,1.350) 0.704
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Fig. 5  Violin plot for differential analyses of intratumoral (A), peritumoral (B), and combined (C) ultrasomics features with their corresponding p 
values
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depicted in Fig. 7A and B for the training and test groups, 
respectively. In both the training and test groups, the 
combined ultrasomics model showed the highest AUC. 
Detailedly, the combined ultrasomics model achieved 
an AUC = 0.858 (95% CI 0.7512 - 0.9642) in the train-
ing group, with an accuracy of 0.729, sensitivity of 0.765, 
specificity of 0.710, PPV of 0.590, and NPV of 0.765. Fur-
thermore, in the test group, the clinical model achieved 

an AUC = 0.842 (95% CI 0.7061 - 0.9785) (Table 3). While 
the performance of these four models did not exhibit 
significant variances in the training group, as depicted 
in Fig. 7C, the combined ultrasomics model appeared to 
demonstrate a notable superiority over the clinical model 
in the test group, as illustrated in Fig. 7D, based on the 
results of the Delong test.

Fig. 6  Ultrasomics feature selection with the LASSO regression model. A The LASSO model’s tuning parameter (λ) was selected using 10-fold 
cross-validation via the minimum criterion. The vertical lines illustrate the optimal value of the LASSO tuning parameter (λ) for the intratumoral 
ultrasomics features. B A LASSO coefficient profile plot with different log(λ) values is displayed. The vertical dashed lines represent 6 intratumoral 
ultrasomics features with nonzero coefficients selected with the optimal λ value. C The bar graph of intratumoral ultrasomics features with their 
nonzero coefficients. D, E, and F The same workflow was used for peritumoral ultrasomics feature analysis. G, H, and I The same workflow was used 
for the combined ultrasomics features analysis. (“intra” means “intratumoral”; “peri” means “peritumoral region with dilation of 3 mm”)
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Ultrasomics models and clinical model assessment
The calibration curves of the MLP-based various ultra-
somics models and clinical model demonstrated a high 
level of consistency between the predicted probability 
and perfectly calibrated G2/3 PNETs in both the train-
ing (Fig. 8A) and test (Fig. 8B) groups. The calibration 
was further validated through the Hosmer-Lemeshow 
test, confirming the models’ accurate predictions 
(Table  4). Additionally, DCA was conducted to assess 
the models’ performance, with the results presented in 
Fig.  9. The results of the combined ultrasomics model 
showed a significant improvement in patient inter-
vention efficacy in both the training (Fig. 9A) and test 
(Fig.  9B) groups, as evidenced by its predictive accu-
racy, when compared to theoretical scenarios without 
a prediction model, such as treating all or none. Addi-
tionally, the net benefit of the combined ultrasomics 
model appeared to outperform both the clinical model 
and other ultrasomics models in both the training and 
test groups.

Furthermore, the prediction accuracy of the MLP-
based combined ultrasomics model was further visual-
ized through a confusion matrix (Fig.  10A and B) and 
sample prediction histogram (Fig. 10C and D).

The density plot illustrated a spectrum of SHAP val-
ues for these retained  feature, indicating that the mod-
el’s output increased as the feature’s value decreased 
or  increased.  Figures  11  and 12A demonstrates that a 
patient’s SHAP value of 0.40 exceeds the baseline, indi-
cating a G2/3 classification. Conversely, another patient 
exhibited a SHAP value of -0.73, which falls below the 
baseline, suggesting a G1 classification, as depicted in 
Fig.  12B. Therefore, the integrated ultrasomics model 
exhibited comparable performance in the tasks of this 
study.

Discussion
In contrast to surface ultrasound, EUS provides a closer 
and clearer view of pancreatic lesions, making it a cru-
cial tool for evaluating pancreatic diseases [48]. Nota-
bly, preoperative EUS imaging for functional PNETs can 
help determine the best surgical approach by evaluating 
the lesion’s proximity to the main pancreatic duct [49]. A 
significant proportion of patients with functional PNETs, 
often associated with multiple endocrine neoplasia type 1 
(MEN1), frequently demonstrate the presence of multiple 
small pancreatic lesions. Given the inherent constraints 
of conventional CT and MRI modalities in accurately 
identifying these minute lesions, the use of EUS and con-
trast-enhanced EUS is strongly advised [33].

Numerous prior studies have examined the potential 
relationship between medical imaging features and the 
grading of PNETs. One study revealed that an indistinct 
boundary was more frequently observed in G2/3 PNETs 
with a specificity of 90.3% [22]. Additionally, Zhu H 
demonstrated that a well-defined margin on endoscopic 
ultrasound (EUS) images were predominantly linked to a 
lower pathological grade [28]. Claudio R also identified a 
positive correlation between tumor diameter and the risk 
of G2/3 PNETs [50]. Toshima F used univariate analysis 
to identify predictive factors for distinguishing between 
G1/2 and G3 PNETs, including tumor shape, size, and 
cystic degeneration. Multivariate regression analysis 
showed that an irregular lobulated mass was indicative 
of a G3 tumor diagnosis [51]. Consistent with previous 
findings, we found that irregular shape and larger tumor 
diameter were significantly associated with higher path-
ological grading by univariate and multivariate logistic 
regression analysis. Preoperative EUS imaging has dem-
onstrated efficacy in evaluating the characteristics and 
proximity of functional PNETs [49]. However, the cur-
rent diagnostic approach for distinguishing pancreatic 
masses via EUS primarily relies on macroscopic anatomi-
cal imaging features, leading to limited specificity and 
vulnerability to subjective interpretation by endoscopists. 

Table 3  Diagnostic performance of different models for predicting G2/3 PNETs in training and test groups

a Represents models were constructed based on MLP; MLP Multilayer perceptron

Modela Cohort AUC(95% CI) Accuracy Sensitivity Specificity PPV NPV F1

Combined model Training 0.858(0.7512—0.9642) 0.729 0.765 0.710 0.591 0.765 0.667

Test 0.842(0.7061—0.9785) 0.758 0.692 0.800 0.692 0.800 0.692

Intratumoral model Training 0.833(0.7121—0.9540) 0.812 0.471 1.000 1.000 0.775 0.640

Test 0.800(0.6287—0.9713) 0.788 0.692 0.850 0.750 0.810 0.720

Peritumoral model Training 0.787(0.6440—0.9310) 0.708 0.765 0.677 0.565 0.840 0.650

Test 0.788(0.6333—0.9436) 0.697 0.846 0.600 0.579 0.857 0.687

Clinical model Training 0.810(0.6689—0.9516) 0.812 0.706 0.871 0.750 0.844 0.727

Test 0.762(0.5630—0.9601) 0.788 0.692 0.850 0.750 0.810 0.720
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Thus, a reliable approach that can preoperatively pro-
mote grading prediction of PNETs is an imperative need.

Radiomics enables the retrieval of multidimensional 
data from medical images, surpassing the limitations 
of human visual assessment. The utilization of radiom-
ics can improve the effectiveness of predictive models 
for different tumor types, thereby enhancing the reli-
ability and objectivity of diagnostic processes [52–54]. A 

multicenter study showed that non-contrast MRI radi-
omics and combined models outperformed clinical and 
radiological features in distinguishing Grade 1 and 2/3 
NF-PNETs [55]. Gu D’s research found that radiomic sig-
natures from CT imaging were better at predicting the 
histologic grading of PNETs [30]. Similarly, the current 
research on endoscopic ultrasomics is also emerging.

Fig. 7  The ROC curves of the different ultrasomics models and clinical models based on MLP in training (A) and test (B) groups. The results 
of the Delong test in the training (C) and test (D) groups. (“intra” means “intratumoral”; “peri” means “peritumoral”; clinic means “clinical”)
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Fig. 8  The calibration curves for the different ultrasomics models and clinical models based on MLP in training (A) and test (B) groups
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In a multicenter study, Li XY showed that combining 
machine learning algorithms with EUS ultrasomics fea-
tures can create a reliable classification model for assess-
ing gastrointestinal stromal tumors (GISTs) malignancy 
[52]. Gu et  al. developed a deep-learning ultrasomics 
model using EUS images to diagnose pancreatic ductal 
adenocarcinoma. This model effectively addresses the 
diagnostic variability among ultrasound endoscopy phy-
sicians with differing levels of expertise, thereby improv-
ing the accuracy of their diagnoses [56]. Similarly, a 
EUS-based ultrasomics model was specifically designed 
to differentiate between gastric GISTs, smooth muscle 
tumors, and nerve sheath tumors [57]. Unfortunately, 
there is a lack of published studies in the literature that 
have utilized EUS imaging ultrasomics for predicting the 
histologic grading of PNETs.

In this study, we utilized EUS-based ultrasomics fea-
tures obtained from intratumoral ROI, along with the 
implementation of MLP, a machine learning algorithm, to 
develop predictive models for grading PNETs. The out-
comes of our investigation demonstrated that the intra-
tumoral ultrasomics model yielded remarkably accurate 
prediction performance for G2/3 PNETs, with an AUC 
of 0.833 (95% CI 0.7121-0.9540) in the training group 
and an AUC of 0.800 (95% CI 0.6287 - 0.9713) in the test 
group. The intratumoral model demonstrated compara-
ble performance to the clinical model, which was devel-
oped using two ultrasonic features identified through 
multivariate logistic regression analysis. Notably, the area 
AUC values of the intratumoral model exceeded those of 
the clinical model in both the training and test groups. 
These results suggested that endoscopic ultrasomics 
might have an advantage in predicting the grading of 
PNETs, so we explored it further.

The current body of radiomics literature on PNETs 
primarily focuses on the intratumoral regions while 
neglecting the peritumoral region [55, 58–60]. Corre-
spondingly, previous studies have demonstrated the sig-
nificant predictive capabilities of peritumoral radiomics 
models concerning pathological outcomes, lymph node 
metastasis, and recurrence risk stratification [61–63]. 
Wang XX demonstrated in their study that a combined 

radiomic model, integrating intratumoral and peritu-
moral radiomics features, achieved an AUC of 0.715 (95% 
CI, 0.663-0.767) in the training group and 0.714 (95% CI, 
0.636-0.792) in the validation group [64]. Furthermore, a 
similar combined model applying intratumoral and peri-
tumoral contrast-enhancement CT radiomics features 
along with clinical factors was able to predict the micro-
satellite instability status of gastric cancer with moderate 
accuracy before surgery [65]. Previous studies indicated 
that the peritumoral area of tumors may offer impor-
tant predictive and diagnostic insights. Nevertheless, 
the effectiveness of endoscopic ultrasound-based peritu-
moral ultrasomics techniques in predicting the histologi-
cal grading of PNETs is currently uncertain.

Notably, in our study, the peritumoral ultrasomics 
model also achieved remarkably accurate prediction per-
formance for G2/3 PNETs, with an AUC of 0.787 (95% 
CI, 0.6440 - 0.9310) in the training group and an AUC of 
0.788 (95% CI, 0.6333 - 0.9436) in the test group. From 
our standpoint, both peritumoral and intratumoral 
regions show synergistic effects in distinguishing G1 and 
G2/3 PNETs. Therefore, A composite ultrasomics model 
incorporating characteristics from both peritumoral and 
intratumoral regions was developed and validated. Ulti-
mately, this combined model performed consistently 
well compared to individual models, achieving an AUC 
of 0.858 (95% CI, 0.7512 - 0.9642) in the training group 
and 0.842 (95% CI, 0.7061 - 0.9785) in the test group. 
Furthermore, this combined ultrasomics model outper-
formed the clinical model in the test group. The findings, 
bolstered by the DeLong and H-L tests, indicate that 
the integrated ultrasomics model greatly improves the 
predictive accuracy in assessing the grading of PNETs. 
A prior investigation demonstrated that an ultrasom-
ics model utilizing EUS imaging effectively distinguishes 
the pathological grading of PNETs, achieving an AUC 
of 0.987 (95%CI, 0.9650-1.0000) in the training cohort 
and an AUC of 0.781 (95% CI, 0.5933–0.9695) in the test 
cohort [66]. Nonetheless, this ultrasomics model, which 
exclusively concentrates on the intratumoral region, 
exhibits a propensity for overfitting the training data, 
resulting in suboptimal performance in the test cohort. 
In summary, the peritumoral area, specifically the tumor-
adjacent parenchyma encircling the tumor lesions, pro-
vides valuable prognostic insights.

A recent study effectively employed SHAP in a CT 
radiomics-based model to non-invasively predict the 
pathological grading of PNETs [67]. In our research, we 
utilized SHAP values to visualize the impact of nonzero 
features in a combined ultrasomics model for individual 
patients. The summary plots underscored the significance 
of the retained ultrasomics features, elucidating the pre-
dicted outcomes. In addition to their high accuracy, the 

Table 4  The results of Hosmer-Lemeshow test

a Represents models were constructed based on MLP; MLP Multilayer perceptron

Modela P-value

Training cohort Test cohort

Intratumoral radiomics model 0.266 0.172

Peritumoral radiomics model 0.056 0.070

Clinical model 0.165 0.074

Combined radiomics model 0.424 0.209
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EUS-based combined ultrasomics models offer signifi-
cant interpretability, showcasing predictive value before 
EUS-FNA/B and surgery.

G2/3 PNETs demonstrate a notably heightened 
aggressiveness compared to G1 tumors, presenting 

an increased susceptibility to lymph node and micro-
vascular metastasis [68]. Moreover, metastatic PNETs 
display a moderate degree of T-cell infiltration when con-
trasted with localized PNETs [14]. Additionally, patients 
afflicted with G3 PNETs exhibit a significantly elevated 

Fig. 9  The DCA curves for the different ultrasomics models and clinical models based on MLP in training (A) and test (B) groups
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neutrophil-to-lymphocyte ratio in contrast to those with 
G1 or G2 PNETs [69]. Prior research has demonstrated 
a notable association between lymphatic, microvascu-
lar, and perineural invasion (LMPI) and the prognosis of 
PNETs [12]. Hence, the variances in micro invasion and 
immune cell infiltration surrounding the tumor could 
potentially elucidate the disparities in the ultrasomics 
characteristics of EUS in the peritumoral vicinity.

In recent years, studies have demonstrated that inte-
grating radiomics and machine learning models can 
enhance tumors’ diagnostic, prognostic, and predictive 
accuracy [70, 71]. In our previous research, we presented 

several joint predictive models based on EUS imaging 
ultrasomics and machine learning algorithms, which 
demonstrated efficacy in distinguishing PNETs and pan-
creatic cancer [72], as well as differentiating between 
functional and non-functional PNETs [47]. These find-
ings underscore the extensive potential of EUS ultrasom-
ics in investigating PNETs. MLP, a feedforward network 
with one-way propagation and a widely employed super-
vised learning algorithm, is among the most common 
neural networks [73, 74]. Based on our results, the com-
bined MLP models exhibited remarkable accuracy and 
efficiency in predicting the grading of PNETs.

Fig. 10  A The confusion matrix of the combined ultrasomics model in the training group. B The confusion matrix of the combined ultrasomics 
model in the test group. C MLP-based prediction scores of the combined ultrasomics model in the training group. D MLP-based prediction scores 
of the combined ultrasomics model in the test group. (“label = 0” and “0” mean “G1 PNETs”; “label = 1” and “1” means “G2/3 PNETs”)
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While the ultrasomics models utilizing EUS imag-
ing showed significant efficacy, this study is limited by 
several factors. Retrospective analyses performed at a 
single center are vulnerable to selection bias, and the 
manual segmentation process may introduce further 
bias in image segmentation [75]. The study encom-
passed an extended period (October 2013 to January 
2024), during which advancements in imaging technol-
ogy could have impacted the quality and consistency 

of EUS images. Consequently, future research on EUS-
based ultrasomics for grading PNETs must incorporate 
multicenter collaborations, large sample sizes, prospec-
tive study designs, automatic delineation, and multi-
modal methodologies. Finally, applying deep learning 
techniques and studying the biological changes in 
peritumor imaging features could help reduce bias and 
enhance model interpretability.

Fig. 11  SHAP summary plots of MLP-based combined model. The plot illustrated the feature relevance and combined feature attributions 
to the model’s predictive performance

Fig. 12  SHAP force plots explain how the MLP-based combined model discriminates the pathological grading of PNETs. The predicted diagnosis 
of these pancreatic lesions was G2/3 (A) and G1 PNETs (B), respectively
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Conclusion
In summary, a proficient ultrasomics model utilizing EUS 
was developed and validated, encompassing both intratu-
moral and peritumoral ultrasomics characteristics. The 
model exhibited a high level of accuracy in predicting 
the pathological grading of PNETs. These results present 
encouraging opportunities for improving the clinical effi-
cacy of EUS and provide valuable perspectives for future 
investigations and implementations in this field.
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