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Abstract
Objectives This study aimed to investigate the diagnostic test accuracy of MRI-based radiomics studies for 
predicting EGFR mutation in brain metastasis originating from lung cancer.

Methods This meta-analysis, conducted following PRISMA guidelines, involved a systematic search in PubMed, 
Embase, and Web of Science up to November 3, 2024. Eligibility criteria followed the PICO framework, assessing 
population, intervention, comparison, and outcome. The RQS and QUADAS-2 tools were employed for quality 
assessment. A Bayesian model determined summary estimates, and statistical analysis was conducted using R and 
STATA software.

Results Eleven studies consisting of nine training and ten validation cohorts were included in the meta-analysis. 
In the training cohorts, MRI-based radiomics showed robust predictive performance for EGFR mutations in brain 
metastases, with an AUC of 0.90 (95% CI: 0.82–0.93), sensitivity of 0.84 (95% CI: 0.80–0.88), specificity of 0.86 (95% 
CI: 0.80–0.91), and a diagnostic odds ratio (DOR) of 34.17 (95% CI: 19.16–57.49). Validation cohorts confirmed strong 
performance, with an AUC of 0.91 (95% CI: 0.69–0.95), sensitivity of 0.79 (95% CI: 0.73–0.84), specificity of 0.88 (95% 
CI: 0.83–0.93), and a DOR of 31.33 (95% CI: 15.50–58.3). Subgroup analyses revealed notable trends: the T1C + T2WI 
sequences and 3.0 T scanners showed potential superiority, machine learning-based radiomics and manual 
segmentation exhibited higher diagnostic accuracy, and PyRadiomics emerged as the preferred feature extraction 
software.

Conclusion This meta-analysis suggests that MRI-based radiomics holds promise for the non-invasive prediction of 
EGFR mutations in brain metastases of lung cancer.
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Introduction
In recent decades, lung cancer has stood out among the 
predominant cancer-related fatalities globally [1], com-
prising approximately 1.8  million deaths annually [2]. 
Lung cancer is the most common type of cancer that 
metastasizes to the brain, affecting approximately 7–10% 
of non-small cell lung cancer (NSCLC) patients at the 
time of diagnosis. Additionally, 20–40% of patients with 
NSCLC may develop brain metastases (BM) at later 
stages of the disease [3]. A substantial rise in the inci-
dence of BMs has been observed in recent years, possibly 
due to prolonged patient survival. Current BM patients 
benefit from more efficient therapeutic methods and 
advanced imaging modalities, thereby improving BM 
detection compared to earlier methods [4]. Although 
there have been specific advances in sophisticated treat-
ments and augmented survival rates, BM is still a notable 
cause of morbidity linked with progressive neurological 
deficits [5]. Analyzing tumor molecular subtypes utiliz-
ing gene expression profiling could offer deeper insight 
into their biology and pave the way for personalized BM 
therapy. In this regard, mutations in epidermal growth 
factor receptor (EGFR) are found in 10–60% of NSCLC 
cases and contribute to unfavorable survival outcomes 
[6]. Stimulation of EGFR through ligand binding trig-
gers receptor tyros in kinase function, leading to cell 
proliferation and metastasis [7]. On the other hand, the 
emerging evidence indicates that EGFR-positive lung 
cancer patients suffering from brain metastasis experi-
ence enhanced survival compared to those lacking these 
mutations. This improvement is accompanied by elevated 
response to whole-brain radiotherapy and the develop-
ment of novel chemotherapy drugs, EGFR tyrosine kinase 
inhibitors (TKI) [8–10]. Therefore, early and precise dis-
crimination between patients with EGFR mutation and 
those with EGFR wild type is a crucial prerequisite for 
effective therapeutic decision-making [11]. The clinical 
assessment of EGFR mutations is contingent on obtain-
ing biopsy tissue samples and blood specimens. Blood 
analyses encounter limitations, comprising substandard 
sample quality, high costs, and a heightened incidence 
of false positives [12]. Nevertheless, brain metastases 
are typically diminutive and can be dispersed through-
out the brain, making it impractical and often unfeasible 
to perform invasive biopsies or surgical resections for 
molecular testing purposes. Consequently, the majority 
of metastatic brain lesions are detected through magnetic 
resonance (MR) imaging without confirming the pres-
ence of pathological tissue. Hence, it is prudent to explore 
non-invasive imaging-based techniques for detecting the 
mutation status of lung cancer-mediated brain metasta-
sis patients [13, 14]. In this regard, radiomics has been 
the center of debates as a methodology for converting 
medical images into consistent and quantitative data to 

facilitate clinical decision support. Radiomics is a process 
of employing mathematical, machine learning, or deep 
learning algorithms to extract quantitative features from 
diagnostic images. These methods unveil the hidden 
characteristics of tumor images that are not discernable 
to the naked eye, offering the prediction of intended out-
comes [15]. This process initiates with Data Acquisition 
and contributes to the gathering of digital format images, 
such as magnetic resonance (MR), ultrasound (US), and 
CT scans. Standard protocols are applied to provide reli-
ability, reproducibility, and comparability in radiomics 
results. In the Segmentation Step, the region of inter-
est (ROI) is delineated either manually, automatically, 
or semi-automatically. Despite the precision of manual 
segmentation, it is time-consuming and requires a large 
amount of data. Conversely, automatic segmentation 
lacks human input but can be prone to errors. Semiau-
tomatic techniques integrate both strategies, requiring 
manual correction of automatically generated ROIs. Fol-
lowing Feature Extraction, machine learning or deep 
learning approaches are used to extract quantitative 
radiomics features from the ROI. Upon the Modeling 
Process, the selected radiomics features, either alone or 
combined with closely related genetic, biological, and 
clinical data, are recruited for model development. Even-
tually, the model’s accuracy is internally and externally 
evaluated to ascertain its predictive efficacy beyond the 
primary population used for training, which is referred to 
as the Validation Step [16]. Radiomics has proven highly 
effective in assessing gene mutation status and devising 
personalized treatment approaches in oncology, relying 
on the analysis of medical imaging data [17]. Numerous 
prior studies have investigated the application of imag-
ing-based radiomics for evaluating EGFR mutation status 
in lung cancer. The majority of these studies have concen-
trated on brain metastases [18, 19].

However, despite the promising potential of these 
methods, the diagnostic accuracy and overall perfor-
mance of MRI-based radiomics and deep learning models 
remain unclear. Given the growing body of literature on 
this topic, we aimed to conduct a meta-analysis to evalu-
ate the diagnostic performance of MRI-based radiomics 
and deep learning models for predicting EGFR mutation 
status in brain metastases from lung cancer. This meta-
analysis is needed to consolidate the current evidence, 
identify potential factors influencing model performance, 
and provide insights into the clinical applicability of these 
approaches. In this study, we will first outline the sys-
tematic methodology employed in the study, including 
eligibility criteria, data extraction, and statistical analy-
sis methods, in the Materials and Methods section. We 
will then present the diagnostic performance results of 
MRI-based radiomics for predicting EGFR mutations, 
along with heterogeneity and subgroup analyses, in the 
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Results section. In the Discussion, we will interpret these 
findings, compare them with existing literature, address 
the study’s limitations, and propose future research 
directions. Finally, we will conclude by summarizing the 
study’s contributions and its potential implications for 
clinical practice and future investigations.

Contributions of the study

1. This is the first meta-analysis to specifically focus on 
the diagnostic accuracy of MRI-based radiomics and 
deep learning models for EGFR prediction in lung 
cancer brain metastases, filling a critical research 
gap.

2. It highlights the potential of non-invasive radiomics 
approaches to complement or replace invasive biopsy 
techniques, offering a safer alternative for patients.

3. It identifies optimal radiomics methodologies, 
including segmentation techniques, imaging 
sequences, and modeling algorithms, providing 
insights for future clinical applications.

Materials and methods
This meta-analysis was conducted according to Preferred 
Reporting Items for Systematic Reviews and Meta-anal-
ysis (PRISMA) guidelines [20]. An institutional review 
board (IRB) was not obtained because of the nature of the 
study. The protocol for this systematic review and meta-
analysis was registered with the International Prospective 
Register of Systematic Reviews (PROSPERO) under the 
registration number CRD42024609642.

Search strategy
A systematic literature search was conducted through 
PubMed, Embase, and Web of Science to identify relevant 
studies from inception to October 14, 2023, and updated 
on November 3, 2024. The search was limited to studies 
in the English language, using the following keywords 
and relevant free text terms: (“Radiomics” OR “Machine 
learning” OR “Deep learning”) AND “EGFR” AND “Brain 
Metastasis” AND “Lung Cancer” AND “MRI”.

Eligibility criteria
The literature acquired through database retrieval was 
imported into Mendeley software. Following removing 
duplicate publications, a complete examination of titles 
and abstracts was undertaken to exclude literature that 
did not adhere to the specified inclusion criteria. Sub-
sequently, the full texts of the remaining studies under-
went careful scrutiny for their definitive inclusion. The 
PICO framework, encompassing population, interven-
tion, comparison, and outcome, guided the identifica-
tion of relevant studies with the following parameters: 
(1) Population: Individuals diagnosed with lung cancer 

and brain metastasis, with EGFR status assessment in 
primary tumors; (2) Intervention: Utilization of MRI-
based radiomics; (3) Comparison: Evaluation of MRI 
radiomics for EGFR detection in contrast to pathological 
approaches; and (4) Outcome: Provision of comprehen-
sive diagnostic test accuracy indicators, including sensi-
tivity and specificity.

Inclusion criteria comprised (a) the use of radiomics 
to predict EGFR status in brain metastases of lung can-
cer patients, (b) all participants possessing documented 
pathological EGFR status, and (c) the availability of suf-
ficient data for constructing a 2 × 2 contingency table 
containing true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN). Exclusion crite-
ria included (a) review papers, case reports, meetings, 
letters, abstracts, editorials, comments, posters, and 
guidelines; (b) studies not employing radiomics for EGFR 
prediction; (c) literature published in languages other 
than English, (d) and studies with cohort overlap.

Data extraction
Two authors independently carried out the extraction of 
data and the assessment of study quality. The fundamen-
tal data extracted encompassed details such as the first 
author’s name and year of publication, the country where 
the study was conducted, study design, number of cen-
ters, type of primary lung cancer (if provided), number 
of lesions/patients with brain metastases, utilization of 
separate validation cohorts for model validation, scanner 
manufacturer, magnetic field strength (Tesla), evaluated 
MRI sequence, type of radiomics approach (deep learn-
ing vs. machine learning), and the integration of clinical 
factors with radiomic features for model construction. 
Additionally, comprehensive information was extracted, 
covering aspects such as ROI dimension, ROI segmen-
tation software, feature extraction software, number 
of extracted/selected features, radiomics feature types, 
interclass correlation coefficient assessment of features, 
feature reduction algorithm, and model construction 
algorithm.

Quality assessment
For the evaluation of included articles, a rigorous assess-
ment of methodological quality was undertaken using 
two specialized tools: the Radiomics Quality Score 
(RQS) and the Quality Assessment of Diagnostic Accu-
racy Studies-2 (QUADAS-2). The RQS, a 16-item scoring 
system designed for radiomics studies, was employed to 
gauge the methodological robustness and reporting com-
pleteness of the included studies, with assessments con-
ducted independently by two authors to ensure reliability 
[21]. Concurrently, a modified version of the QUADAS-2 
tool, specifically tailored for diagnostic accuracy 
radiomics studies, was utilized to assess the risk of bias 
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and concerns about applicability in key domains such as 
patient selection, index test, reference standard, and flow 
and timing. This dual-tool approach provided a compre-
hensive evaluation covering both radiomics and diagnos-
tic accuracy aspects [22, 23]. To enhance reliability, the 
assessments using both tools were conducted indepen-
dently by two authors, with any discrepancies resolved 
through consensus discussions. The following questions 
were used in the modified version of QUADAS-2:

Patient selection domain

  • Were the inclusion/exclusion criteria specified?
  • Was the type of study specified (retrospective vs. 

prospective)?
  • Were the patients’ characteristics specified?

Index test

  • Were imaging acquisition protocols and 
segmentation methods detailed?

  • Was the image processing approach detailed?
  • Was a validation technique used?

Reference standard

  • Was the reference standard likely to classify the 
target condition correctly?

  • Was a biopsy taken from brain metastasis?

Flow and timing

  • Did all patients receive the same reference standard?

Statistical analysis
The summary estimates for sensitivity (SENS) and speci-
ficity (SPEC), combining these metrics along with the 
diagnostic odds ratio (DOR) across all included studies 
with 95% confidence intervals (CIs) were illustrated using 
forest plots. A summary receiver operating characteristic 
curve was constructed, and the meta-analysis was con-
ducted using the “meta4diag” and “INLA” packages in 
the R language, as well as the “midas” module in STATA 
version 14.2 [24, 25]. Summary receiver operating char-
acteristic (SROC) curves were constructed in meta4diag 
package. In Bayesian statistics, uncertainty is often char-
acterized by probability distributions. In this context, the 
uncertainty in the estimated area under the curve (AUC) 
is captured through the Bayesian framework by sampling 
from the posterior distributions of sensitivity and speci-
ficity conditional on the given data. The process involves 
creating multiple groups of sensitivity and specificity 
values by drawing samples from the posterior distribu-
tions. Each set of sampled values leads to the generation 

of a different SROC curve and, consequently, a different 
estimated AUC. By repeating this process multiple times 
(1000 bootstrap), a distribution of estimated AUC values 
is obtained. From this distribution, statistical summa-
ries such as the mean, standard deviation, and quantiles 
can be calculated to provide a more comprehensive 
characterization of the uncertainty associated with the 
estimated AUC. Diagnostic accuracy performance was 
generally assessed using the AUC, categorized into low 
(0.5–0.7), moderate (0.7–0.8), good (0.8–0.9), and excel-
lent (0.9-1.0) discriminatory power levels. Heterogene-
ity among studies was estimated through Cochran’s Q 
test and Higgins’ I2 statistic, with I2 values above 50% 
indicating significant heterogeneity. The threshold effect 
was evaluated using Spearman’s correlation coefficient 
between sensitivity and false-positive rate in MetaDiSc 
software. Subgroup analyses comparing pooled AUCs, 
sensitivity, specificity, and DOR among different sub-
groups were conducted using the “meta4diag” package. 
Publication bias was explored through a Deeks funnel 
plot, and significance was determined using the Deeks 
asymmetry test, with a threshold set at p-values below 
0.05 for significance.

Results
Literature search
According to Fig. 1, illustrating the study selection pro-
cess, a total of 171 studies were identified through the lit-
erature search, among which 79 records were duplicates. 
Consequently, 92 remaining studies underwent screening 
based on their titles and abstracts to determine their rel-
evance to the research question. At this stage, 73 studies 
were excluded due to a lack of relevance regarding the 
titles/abstracts. Therefore, 19 studies were considered eli-
gible for an in-depth full-text review. However, seven of 
these studies did not predict EGFR mutation or predicted 
T790M mutation across EGFR-positive patients. Con-
sequently, 11 eligible studies for the meta-analysis were 
detected [18, 26–35].

Characteristics of the included studies
Table  1 shows the basic characteristics of the included 
studies. Eleven studies containing ten validation and nine 
training cohorts, with available data for extraction, were 
included in the meta-analysis, with a total number of 
1634 patients. Six studies had separate validation cohorts 
[18, 26, 28–30, 32–34], and among them, two had two 
cohorts (internal and external) [28, 34], and one did not 
provide data for calculation 2 × 2 table in its training 
cohort [26, 33]. All studies were retrospectively designed. 
Six studies were conducted in China [18, 28–30, 32, 34], 
and the rest of the studies were in South Korea [26, 27], 
India [31], Israel [33], and the United States [35]. Eight 
studies were single-center [18, 26, 27, 30–32, 35], and two 
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were multicenter [28, 29, 33, 34]. Scanner manufactur-
ers were Philips [18, 26], GE [28], Siemens [28, 29, 32, 34, 
35], a combination of GE/Philips [30], and not mentioned 
in two studies [27, 33]. Magnetic field strength was 3.0 T 
[18, 26, 28, 29, 34, 35], 1.5T [31], and a combination of 
both [30, 32] and not mentioned in two studies [27, 33]. 
Three studies combined clinical factors with radiomics 
signatures [30, 31, 35]. Two studies used deep learning-
based radiomics methods [29, 31, 33], and the rest used 
conventional machine learning radiomics methods [18, 
26–28, 30, 32, 34, 35]. Different MRI sequences were used 
to extract radiomics features, and T1-CE was chosen fre-
quently [18, 27, 29, 31–35]. Table  2 shows the detailed 
characteristics of the radiomics models. ROI was delin-
eated manually in nine studies, and two study used semi-
automatic ROI delineation [26, 35]. Three studies used a 
3D ROI structure [23, 27, 32], while most ROI structures 
were 2D [18, 24–26, 28–31]. ITK-SNAP was the most 
frequently used software for ROI segmentation in seven 

studies [18, 28, 29, 31, 32, 34, 35], followed by 3D Slicer 
[26, 30] and AnalyzeDirect [33]. Likewise, PyRadiomics 
was the most frequently applied software for extract-
ing radiomics features [18, 26, 28, 29, 32, 34, 35]. The 
extracted features ranged from 3,934 to 107 across the 
studies. Various algorithms were used for feature reduc-
tion across the studies, and LASSO was used in one-third 
of the included studies [18, 28, 29, 32, 34].

For the modeling algorithm, logistic regression (LR) 
was adopted frequently [18, 27, 28, 30, 32, 34], followed 
by random forest (RF) [26, 27, 35] and convolutional neu-
ral network (CNN) [31, 33] models.

Quality assessment
QUADAS-2
The results of the modified QUADAS-2 assessment for 
the nine included studies are illustrated in Fig. 2. In the 
patient selection domain, a study [31] was deemed to 
have a high risk of bias due to including patients receiving 

Fig. 1 PRISMA flowchart of the study
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systemic chemotherapy, and an unclear risk of bias was 
considered for one study [18] due to not mentioning the 
exact exclusion and inclusion criteria. In the index test 
domain, three studies were considered to have a high 
risk of bias due to not using any validation technique 
[31] or poor image protocol quality [27, 28]. For the flow 
and timing domain, one study [31] was deemed to have 
an unclear risk of bias due to uncertainty in receiving 
the same reference standard across the participants, and 
one considered to have a high risk of bias due to using 
biopsy or surgery, different per patients [28]. More than 
half of the studies (5/11) [18, 28, 30, 34, 35] were deemed 
to have a high risk of bias in the reference standard sec-
tion since the EGFR mutation assessment was performed 
on primary lung lesions rather than brain metastasis. 
In addition, there were unclear risks of bias in the three 
studies as the source of biopsy for EGFR evaluation was 
not mentioned [27, 28, 31]. However, no high applicabil-
ity concern was detected in almost all studies, indicating 
that the included articles matched the review questions.

RQS score
Table  3 presents individual and overall RQS scores for 
the included studies. The average RQS score for the nine 

studies was 10.27 (28.5%, ranging from 8.3 to 41.6%), 
with one study scoring below 10%. About three-quarters 
of the studies (8/11) achieved scores between 11 and 13 
points, corresponding to 30–36% of the total possible 
points. None of the studies used phantom study, imag-
ing at multiple time points, prospective design, decision 
curve analysis (potential clinical application), and cost-
effectiveness analysis. In contrast, biological correlation, 
feature reduction, discrimination statistics, and compari-
son to the gold standard were performed in all studies. 
Imaging protocol quality was satisfying in more than 63% 
of the studies (7/11) and poor in four studies [27–29, 
31]. Multiple segmentations (by different radiologists/
software) were performed in about three-quarters of the 
studies (8/11) [18, 26, 30–35]. Multivariable (combined 
model) was conducted in four studies [28, 30, 31, 35]. 
Cut-off analysis was only provided in one study [30].

Meta-analysis
Diagnostic accuracy test
In the training cohorts, the diagnostic indicators, AUC 
(0.90 [0.82–0.93]), SENS (0.84 [0.80–0.88]), SPEC (0.86 
[0.81–0.90]), PLR (6.14 [4.1–9.34]), NLR (0.19 [0.13–
0.24]), and DOR (34.17 [19.16–57.49]), were pooled, and 

Table 1 Basic characteristics of the included studies
Author/Year Country Study 

design
Centers Can-

cer 
Type

Number of 
lesions/patients

Valida-
tion 
cohort

Scanner 
manufacturer

Tesla MRI tech-
nique/
sequence

Ra-
diomics 
Type

Com-
bined

Ahn et al. 2020 
[27]

South 
Korea

Retro 1 LUAD, 
SCLC

61P No NM NM T1-CE ML No

Chen et al.2020 
[35]

USA Retro 1 LUAD 110P No Siemens 3T T1-CE and 
FLAIR

ML Yes

Wang et al. 
2021 [18]

China Retro 1 LUAD 52P Yes Philips 3T T1-CE, 
T2-FLAIR, 
T2WI, and 
DWI

ML No

Fan et al. 2022 
[34]

China Retro 2 NSCLC 310P Yes Siemens 3T T1-CE and 
T2WI

ML No

Haim et al. 
2022 [33]

Israel Retro 2 NSCLC 293P Yes NM NM T1-CE DL No

Zheng et al. 
2022 [32]

China Retro 1 - 162P Yes Siemens 3T/1.5T T1CE, 
T2WI,
T2 FLAIR

ML No

Mahajan et al. 
2023 [31]

India Retro 1 NSCLC 117P No GE 1.5T T1WI, 
T2WI, 
T1-CE,
and FLAIR

DL Yes

Huang et al. 
2023 [30]

China Retro 1 LUAD 58P Yes GE and Philips 3T/1.5T FLAIR, 
T1W, T2W.

ML Yes

Cao et al. 2024 
[29]

China Retro 2 NSCLC 232P Yes Siemens 3.0 T T1-C and 
T2-W MRI

DL No

Cao et al. 2022 
[28]

China Retro 2 NSCLC 188P Yes Siemens 3.0 T T1CE and 
T2W

ML No

Park et al. 2021 
[26]

South 
Korea

Retro 1 NSCLC 51P Yes Philips 3.0 T T1C and 
DTI

ML No

Abbreviations: T1-CE, contrast-enhanced T1-weighted; FLAIR, fluid-attenuated inversion recovery; T2WI, T2-weighted imaging, DWI, diffusion-weighted imaging; 
ML, machine learning; DL, deep learning
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their respective 95% confidence intervals were deter-
mined. In the validation cohorts, the values for diagnostic 
indicators were as follows: AUC (0.91 [0.84–0.94]), SENS 
(0.79 [0.73–0.84]), SPEC (0.88 [0.83–0.93]), PLR (7.15 
[4.39–11.23]), NLR (0.24 [0.17–0.31]), and DOR (31.33 
[15.50–58.3]). The coupled forest plot showing sensitivity 

and specificity in training and validation cohorts is 
shown in Fig. 3. The forest plot showing DOR in training 
and validation groups is shown in Fig. 4. In addition, the 
SROC shows the estimated AUC with summary points, 
credible regions, and prediction regions in training and 
validation cohorts in Fig. 5.

Table 2 Detailed characteristics of the included studies
Study ROI 

Dimension
ROI Segmentation ROI seg-

mentation 
Software

Feature 
extraction 
Software

Selected 
features(n)/ 
extracted 
(n)

Radiomics 
feature types

ICC Feature 
reduction 
algorithm

Mod-
eling 
algo-
rithm

Ahn et 
al. 2020 
[27]

2D Manually NM MATLAB 22 / 1209 First-order, 
second-order,
higher-order

- RF, norm 
minimization, 
concave 
minimization,
MRMR, 
Relief, 
Laplacian

RF, 
SVM, 
Ada-
Boost, 
LR

Chen et 
al.2020 
[35]

3D Semi-automated ITK-SNAP Pyradiomics 50 / 2520 Intensity-based, 
shape-based, 
textural 
features

ICC > 0.8 ICC > 0.8, 
MRMR, RF

RF

Wang et 
al. 2021 
[18]

2D Manually ITK-SNAP Pyradiomics 9 / 438 First-order, tex-
ture features, 
shape, wavelet

- LASSO LR

Fan et 
al. 2022 
[34]

2D Manually ITK-SNAP Pyradiomics 8 / 1967 First-order, 
shape, texture 
features

ICC > 0.85 Mann–Whit-
ney U test
ICC > 0.85, 
LASSO

LR

Haim et 
al. 2022 
[33]

2D Manually AnalyzeDirect Fast.ai 
framework

- - - ResNet-50 CNN

Zheng et 
al. 2022 
[32]

2D Manually ITK-SNAP Pyradiomics 26 / 1470 First-order, 
shape, texture 
features

ICC > 0.7 Univariate 
analysis, 
LASSO

LR

Huang et 
al. 2023 
[30]

3D Manually 3D slicer FeAture 
Explorer 
software

9/107 First order, in-
tensity, shape, 
and textural 
features

ICC of 
> 0.75

RFE and LR LR

Mahajan 
et al. 
2023 [31]

2D Manually ITK snap Tensorflow - Semantic 
features

- Deep learn-
ing methods

CNN

Cao et 
al. 2024 
[29]

2D Manual ITK-Snap PyRadiomics 1976 
extracted

First-order, 
shape-based, 
and texture 
features

ICC > 0.85 LASSO MSF-
Net

Cao et 
al. 2022 
[28]

2D Manual ITK-Snap PyRadiomics 11/3,934 Shape-based, 
first-order, tex-
ture features

ICC > 0.85 Mann-
Whitney U 
test, LASSO 
regression, 
logistic 
regression 
with AIC

LR

Park et 
al. 2021 
[26]

3D Semi-automatic 3D Slicer PyRadiomics 5/526 First-order, 
shape-based, 
and second-
order texture 
features

ICC > 0.75 Tree-based 
feature 
selection

SVM, 
RF, 
LDA

Abbreviations: NM, not mentioned, RF, random forest; SVM, support vector machine; LR, logistic regression; MRMR, minimum redundancy maximum relevance; 
LASSO, least absolute shrinkage and selection operator; RFE, recursive feature elimination; CNN, convolutional neural network; CV, cross-validation
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Heterogeneity test
In the training cohorts, considerable heterogeneities 
were observed in sensitivity (I2 = 79.83%) and specific-
ity (I2 = 77.92%) values, as evidenced by p-value < 0.05 
for Cochran’s Q test. However, in the validation cohorts, 
moderate heterogeneity was observed in the pooled spec-
ificity value (I2 = 33.45%, p-value = 0.14), while Higgins’ 
I2 was near 0 for the pooled sensitivity (p-value = 0.84). 
Spearman’s correlation coefficient did not show a signifi-
cant threshold effect in both training (p-value = 0.3) and 
validation (p-value = 0.4) cohorts.

Subgroup analysis
Subgroup analysis was performed based on different 
cofactors to compare their diagnostic performance. The 
diagnostic indicators, including SENS, SPEC, and AUCs 
for each subgroup, are shown in Table 4. Herein, we dis-
cuss the differences in each subgroup accordingly:

Regional differences
In training models, six cohorts were investigated in 
China, whose pooled AUC was higher than other coun-
tries (AUC = 0.91) (Table  4). In validation cohorts, eight 
cohorts belonged to China (AUC = 0.83), one to Israel 
(AUC = 0.91) and one to South Korea (AUC = 0.91).

Comparison of MRI sequences
Across the training cohorts, different MRI sequences 
were used, and their comparison can be difficult due to 
the small number of cohorts in each subgroup. Based 
on our Bayesian subgroup analysis, we found that using 
features from the T1C sequence combined with T2W 
might outperform other sequences in terms of AUC 
(0.99). These results were also derived from validation 
cohorts, indicating that the T1C + T2W sequences might 
have a higher diagnostic performance compared to other 
sequences (AUC = 0.95). However, drawing this conclu-
sion needs further investigation.

Fig. 2 Risk of bias assessment (left) and applicability concerns (right) in each study (A) and overall (B)

 



Page 9 of 16Tabnak et al. BMC Medical Imaging           (2025) 25:44 

Scanner magnetic field strength
As expected in both training and validation cohorts, 
the diagnostic accuracy of 3.0 T scanners was higher 
(AUC = 0.90 in training) compared to 1.5T scanners 
or cohorts with both 3.0 T and 1.5 T scanners. In addi-
tion, the sensitivity and specificity of 3.0 T scanners were 
higher, ranging from 91 to 100% in training and 93–100% 
in validation cohorts.

ROI structure
The comparison between 2D and 3D ROI structures in 
the meta-analysis indicates distinct performance differ-
ences in training and validation cohorts. In the training 
cohort, 2D ROI achieved a slightly higher mean AUC 
(0.89 vs. 0.86) and sensitivity (0.86 vs. 0.82) compared 
to 3D ROI, while 3D ROI demonstrated marginally bet-
ter specificity (0.87 vs. 0.85). In the validation cohort, 3D 
ROI outperformed 2D ROI in both AUC (0.85 vs. 0.80) 
and sensitivity (0.82 vs. 0.77) but had slightly lower speci-
ficity (0.86 vs. 0.90). Additionally, 2D ROI methods were 
used in more studies (6 in both training and validation) 
compared to 3D ROI (3 in training and 4 in validation), 
which could influence the generalizability of the results 
for the 3D approach.

ROI segmentation method
Only one study employed semiautomatic segmentation 
in the training cohorts, yielding a mean AUC of 0.79, 
which was lower than the 0.89 achieved by manual seg-
mentation. Notably, the specificity for semiautomatic 
segmentation was slightly higher (0.90 vs. 0.85). However, 
because only one study used semiautomatic ROI segmen-
tation (n = 1), further research is needed to validate these 
findings. In contrast, the pooled AUC for semiautomatic 
segmentation was higher than for manual segmentation 
(0.84 vs. 0.81). Overall, the limited number of studies on 
semiautomatic segmentation makes it impossible to draw 
a definitive conclusion at this point.

ROI segmentation software
Among different software used for ROI segmentation, 
ITK-SNAP was used most frequently in training (n = 8) 
and validation cohorts (n = 7) and also had a higher diag-
nostic accuracy compared to 3DSlicer in training (0.92 
vs. 0.81) and validation (0.86 vs. 0.81) cohorts. In valida-
tion cohorts, a study used Analyze Direct software, and 
its AUC was slightly lower than ITK-SNAP (0.81 vs. 0.84).

Machine learning-based radiomics vs. deep learning 
radiomics
The comparison between ML-based and DL-based meth-
ods in the meta-analysis reveals that ML generally out-
performs DL in terms of AUC and sensitivity across both 
training and validation phases. Specifically, ML achieved Ta
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a higher mean AUC (0.89 vs. 0.88 in training, 0.82 vs. 
0.79 in validation) and sensitivity (0.86 vs. 0.83 in train-
ing, 0.80 vs. 0.75 in validation). However, DL methods 
demonstrated superior specificity, particularly in the vali-
dation phase (0.92 vs. 0.87). It is also notable that ML was 
used in a greater number of cohorts (7 in training and 8 
in validation) compared to DL (2 in both phases), which 
may affect the robustness and generalizability of the find-
ings for DL-based approaches.

Combined models vs. radiomics-only models
In the training cohorts, the radiomics-only category 
comprised five cohorts with a pooled AUC of 0.88. In 
contrast, the combined model subgroups (integrating 
radiomics with potential clinical factors) consisted of 
two cohorts, with an AUC of 0.78. Because the validation 
cohorts did not use combined models, a subgroup analy-
sis was not performed; consequently, the pooled AUC 
for radiomics-only models was 0.85. While radiomics 

models demonstrated higher pooled sensitivity compared 
to combined models, their pooled specificity was lower.

Feature extraction software
PyRadiomics was the most frequently used software for 
feature extraction, and its diagnostic performance, based 
on mean AUCs, was higher than that of other software in 
training (0.93) and validation (0.84) cohorts.

Feature reduction algorithm
Among all feature-reduction approaches, LASSO was 
employed most frequently, yielding robust diagnostic 
performance in both the training (AUC = 0.92) and vali-
dation (AUC = 0.83) cohorts. By comparison, random 
forest (RF)–based methods were used in two training 
cohorts and showed high AUC values (0.95), but were not 
applied in any validation cohorts. Deep learning–based 
and recursive feature elimination (RFE) approaches had 
modest performance in the training cohorts (AUC = 0.84 

Fig. 3 Forest plots of the sensitivity and specificity in validation and training cohorts
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and 0.79, respectively) and slightly lower or comparable 
results in validation cohorts.

Modeling algorithm
In the training cohorts, LR achieved the highest mean 
AUC (0.91), outperforming both random forest (RF, 
0.83) and deep learning (DL, 0.88). In the validation 
cohorts, LR continued to show robust performance 
(AUC = 0.83), which was higher than the DL-based meth-
ods (AUC = 0.80) but lower than linear discriminant anal-
ysis (LDA, AUC = 0.85).

Publication bias
The analysis conducted using Deeks’ asymmetry test 
did not reveal any substantial publication bias within 
the training (p-value of 0.33) and validation (p-value of 
0.98) cohorts incorporated in the investigation, as illus-
trated in Fig.  6. This suggests that there is no notable 
skewness in the distribution of published studies, indicat-
ing a relatively unbiased representation of the available 
research on the topic. The absence of notable publication 

Fig. 5 SROC curves showing the estimated AUC with summary points, 
credible regions, and prediction regions in training and validation cohorts

 

Fig. 4 Diagnostic odds ratio across training and validation cohorts
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Subgroups Training (n = 9) Validation (n = 10)
N AUC (mean) SENS SPEC N AUC (mean) SENS SPEC

Country South Korea 1 0.86 (0.57–0.96) 0.82 (0.59–0.95) 0.71 (0.43–0.90) 1 0.85 
(0.65–0.87)

0.81(0.61–
0.94)

0.77 
(0.55–0.91)

USA 1 0.80 (0.44–0.94) 0.72 (0.43–0.91) 0.90 (0.73–0.97) 0 - - -
China 6 0.91 (0.84–0.96) 0.88 (0.81–0.94) 0.87 (0.79–0.92) 8 0.83 (0.81, 

0.92)
0.79 (0.74, 
0.84)

0.88 (0.82, 
0.92)

India 1 0.84 (0.48–0.97) 0.77 (0.48–0.94) 0.87 (0.67–0.97) 0 - - -
Israel 0 - - - 1 0.91 

(0.77,1.00)
0.69 (0.46, 
0.86)

0.98 (0.91, 
1.00)

MRI Sequence T1C 1 1.00 (0.40–0.99) 1.00 (0.98–1.00) 1.00 (1.00–1.00) 1 0.99 
(0.58–0.98)

0.96 
(0.87–0.99)

1.00 
(1.00–1.00)

T1C + FLAIR 1 0.83 (0.15–0.98) 0.70 (0.26–0.95) 0.90 (0.73–0.97) 0 - - -
FLAIR 2 0.93 (0.66–0.99) 0.88 (0.66–0.98) 0.83 (0.67–0.95) 2 0.85 

(0.70–0.95)
0.81 
(0.65–0.91)

0.83 
(0.65–0.94)

T1C + T2W 3 0.99 (0.74–0.98) 0.97 (0.83–1.00) 0.96 (0.86–0.99) 5 0.95 
(0.80–0.94)

0.92 
(0.82–0.97)

0.97 
(0.91–0.99)

T1C + T2WI + FLAIR 1 0.86 (0.33–0.99) 0.79 (0.39–0.98) 0.73 (0.44–0.92) 1 0.78 
(0.59–0.92)

0.74 
(0.55–0.88)

0.77 
(0.55–0.92)

DTI + T1C 0 - - - 1 0.85 
(0.62–0.96)

0.81 
(0.60–0.94)

0.77 
(0.54–0.91)

T1C + T1W + T2W + FLAIR 1 0.87 (0.26–0.99) 0.75 (0.32–0.97) 0.87 (0.67–0.97) 0 - - -
Magnetic Field 3T 5 0.99 (0.81–0.96) 0.97 (0.91–0.99) 0.97 (0.94–0.98) 7 0.95 

(0.82–0.93)
0.92 
(0.86–0.96)

0.97 
(0.93–0.99)

3T/1.5T 2 0.85 (0.53–0.94) 0.79 (0.58–0.92) 0.75 (0.65–0.83) 2 0.78 
(0.66–0.91)

0.74 
(0.61–0.85)

0.80 
(0.66–0.91)

1.5T 1 0.91 (0.37–0.96) 0.77 (0.45–0.95) 0.88 (0.80–0.94) 0 - - -
Radiomics 
method

ML 7 0.89 (0.81–0.94) 0.86 (0.79–0.91) 0.85 (0.79–0.91) 8 0.82 
(0.81–0.93)

0.80 
(0.74–0.85)

0.87 
(0.81–0.92)

DL 2 0.88 (0.69–0.95) 0.83 (0.67–0.93) 0.87 (0.75–0.95) 2 0.79 
(0.75–0.96)

0.75 
(0.63–0.85)

0.92 
(0.82–0.97)

Combined 
Radiomics

Only Radiomics 5 0.88 (0.85–0.95) 0.87 (0.83–0.90) 0.84 (0.78–0.90) 10 0.81 
(0.83–0.93)

0.79 
(0.74–0.83)

0.89 
(0.83–0.93)

Combined 2 0.78 (0.69–0.95) 0.75 (0.65–0.84) 0.89 (0.79–0.95) 0 - - -
ROI structure 2D 6 0.89 (0.82–0.94) 0.86 (0.80–0.92) 0.85 (0.78–0.91) 6 0.80 

(0.81–0.94)
0.77 
(0.70–0.83)

0.90 
(0.83–0.94)

3D 3 0.86 (0.75–0.94) 0.82 (0.71–0.91) 0.87 (0.76–0.94) 4 0.85 
(0.81–0.95)

0.82 
(0.74–0.89)

0.86 
(0.76–0.93)

Segmentation Manual 8 0.89 (0.84–0.94) 0.86 (0.82–0.91) 0.85 (0.79–0.90) 9 0.81 
(0.83–0.93)

0.79 
(0.73–0.83)

0.90 
(0.85–0.94)

Semiautomatic 1 0.79 (0.56–0.93) 0.72 (0.52–0.87) 0.90 (0.76–0.97) 1 0.84 
(0.64–0.96)

0.81 
(0.61–0.94)

0.76 
(0.50–0.92)

ROI environment ITK-SNAP 8 0.92 (0.82–0.94) 0.87 (0.80–0.92) 0.89 (0.85–0.92) 7 0.84 
(0.80–0.94)

0.80 
(0.74–0.85)

0.88 
(0.83–0.93)

3Dslicer 1 0.81 (0.42–0.94) 0.74 (0.46–0.92) 0.75 (0.56–0.89) 2 0.81 
(0.65–0.93)

0.77 
(0.63–0.88)

0.80 
(0.65–0.90)

Analyze Direct 0 - - - 1 0.81 
(0.57–0.99)

0.69 
(0.45–0.87)

0.98 
(0.91–1.00)

Feature extrac-
tion software

MATLAB 1 0.87 (0.45–0.97) 0.82 (0.52–0.96) 0.72 (0.51–0.87) 0 - - -
PyRadiomics 6 0.93 (0.81–0.96) 0.88 (0.80–0.94) 0.89 (0.84–0.93) 8 0.84 

(0.78–0.94)
0.80 
(0.74–0.85)

0.87 
(0.81–0.92)

TensorFlow 1 0.88 (0.38–0.97) 0.77 (0.42–0.96) 0.87 (0.73–0.96) 0 - - -
Feature Explorer 1 0.81 (0.35–0.96) 0.73 (0.38–0.94) 0.75 (0.52–0.90) 1 0.79 

(0.54–0.96)
0.74 
(0.52–0.89)

0.83 
(0.59–0.96)

Fast.ai.framework 0 - - - 1 0.80 
(0.59–1.00)

0.69 
(0.45–0.87)

0.98 
(0.91–1.00)

Table 4 Subgroup analyses in training and validation cohorts
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bias bolsters the trustworthiness and rigor of the overall 
findings, reinforcing the credibility of the synthesized 
conclusions.

Discussion
Brain metastases are a frequent complication of lung can-
cer, with an incidence that varies depending on factors 
such as cancer type and stage. Lung cancer, recognized 
for its propensity to metastasize, is estimated to exhibit 
brain metastases in approximately 20% of patients at the 

time of diagnosis. Certain genetic mutations, such as 
EGFR and ALK, further increase the risk of brain involve-
ment in NSCLC [37]. Predicting EGFR mutations in BMs 
of lung cancer is crucial for guiding treatment decisions 
and optimizing therapeutic outcomes. EGFR mutations 
influence the choice of targeted therapies, with certain 
EGFR TKIs, such as osimertinib, showing efficacy in 
addressing both systemic disease and brain lesions. The 
determination of EGFR mutation status provides valuable 
prognostic information, aiding in personalized treatment 

Fig. 6 -Deeks’ funnel plot for testing publication bias in training (A) and validation (B) cohorts

 

Subgroups Training (n = 9) Validation (n = 10)
N AUC (mean) SENS SPEC N AUC (mean) SENS SPEC

Feature Reduc-
tion Methods

RF 2 0.95 (0.69–0.93) 0.91 (0.77–0.98) 0.92 (0.76–0.99) 0 - - -
LASSO 5 0.92 (0.88–0.97) 0.90 (0.84–0.94) 0.88 (0.81–0.94) 4 0.83 

(0.80–0.93)
0.80 
(0.74–0.85)

0.88 
(0.82–0.93)

Tree Based - - - - 1 0.85 
(0.63–0.96)

0.81 
(0.60–0.94)

0.76 
(0.52–0.92)

DL 1 0.84 (0.59–0.96) 0.78 (0.55–0.93) 0.87 (0.67–0.97) 1 0.79 
(0.63–0.99)

0.69 
(0.45–0.87)

0.98 
(0.91–1.00)

RFE 1 0.79 (0.54–0.94) 0.75 (0.52–0.90) 0.74 (0.46–0.92) 1 0.78 
(0.60–0.95)

0.74 
(0.52–0.89)

0.83 
(0.59–0.96)

Modeling 
Algorithm

RF 3 0.83 (0.61–0.94) 0.78 (0.61–0.90) 0.82 (0.67–0.93) - - - -
LR 5 0.91 (0.84–0.96) 0.88 (0.81–0.94) 0.87 (0.78–0.93) 7 0.83 

(0.79–0.95)
0.80 
(0.73–0.85)

0.89 
(0.82–0.94)

DL 2 0.88 (0.66–0.96) 0.83 (0.67–0.93) 0.87 (0.73–0.95) 2 0.80 
(0.71–0.98)

0.75 
(0.62–0.86)

0.92 
(0.81–0.98)

LDA - - - - 1 0.85 
(0.60–0.97)

0.81 
(0.59–0.94)

0.76 
(0.46–0.93)

Table 4 (continued) 
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planning. This information helps in avoiding unnecessary 
treatments with limited efficacy and potential side effects 
[38]. Biopsy procedures to determine EGFR mutations in 
brain metastases face challenges due to the dispersed and 
small nature of these lesions across the brain. Invasive 
techniques like biopsies or surgeries may not be practical, 
especially when dealing with numerous or hard-to-reach 
metastases. As a result, identifying brain metastases 
often relies on non-invasive imaging methods such as 
MRI, preceding the need for pathological confirmation. 
Recognizing these obstacles, there is an increasing need 
to develop non-invasive imaging-based approaches for 
assessing the mutation status of brain metastases in lung 
cancer patients. Non-invasive methods offer a more 
viable and less risky way to gather crucial genetic infor-
mation, facilitating more effective and personalized treat-
ment decisions for individuals with brain metastases [13, 
35]. Thus, in this meta-analysis, we assessed the diag-
nostic performance of MRI-based radiomics methods 
as a novel approach for non-invasively predicting EGFR 
mutations in patients with BMs originating from lung 
cancers. The diagnostic performance of the radiomics 
models for predicting EGFR mutations in brain metas-
tases of lung cancer is promising. The pooled Bayesian 
model demonstrated excellent discriminative ability with 
high AUC values in nine training (AUC: 0.90) and ten 
validation (AUC: 0.91) cohorts. Sensitivity and specific-
ity were well-balanced, with SENS of 0.81 and SPEC of 
0.86 in the training cohort and SENS of 0.74 and SPEC 
of 0.91 in the validation cohort. Nguyen et al. [39] have 
previously investigated the diagnostic performance of 
radiomics methods based on different imaging modalities 
in primary lesions of NSCLC, and the results showed a 
pooled AUC of 0.789, representing a moderate discrimi-
natory power. However, it should be noted that most of 
the included studies in their meta-analysis were based 
on CT-scan images, which generally perform inferior to 
MRI for predicting biomarkers [40].

To ensure the quality of the articles included in this 
meta-analysis, two different tools, namely QUADAS-2 
and RQS, were utilized for quality assessment. The RQS 
tool revealed a mean score of 10.2, indicating a low to 
moderate adherence to available guidelines for radiomics 
studies among the included studies. Conversely, while 
there were no applicability concerns for the studies 
included in the meta-analysis according to the QUA-
DAS-2 tool, a major bias risk was identified in the refer-
ence standard domain. Many studies did not determine 
EGFR mutation through biopsy/surgery from the BMs, 
relying solely on histopathological examination of pri-
mary lesions. This introduces a significant risk of bias in 
the reference standard domain. Similar to other diagnos-
tic test accuracy meta-analyses, this study demonstrated 
high heterogeneity in pooled sensitivity and specificity 

values for both types of cohorts. The heterogeneity was 
particularly pronounced for pooled specificity compared 
to pooled sensitivity, suggesting that the results across 
the studies were more consistent in terms of sensitivity. 
The presence of heterogeneity necessitates the conduct 
of subgroup analysis, which we performed accordingly. 
Most of the included articles in this meta-analysis were 
from China, which may introduce regional bias. As we 
observed in the subgroup analysis, the overall diagnostic 
performance of Chinese articles was higher compared to 
other countries. Radiomics researchers often combine 
clinical factors with radiomics features to create more 
robust and clinically relevant models. While radiomics 
provides quantitative insights from medical images, inte-
grating clinical data enhances predictive accuracy by 
improving sensitivity and specificity. However, in con-
trast to previous meta-analyses [41, 42], we observed 
that the predicted performance of combined models 
is even lower than radiomics signatures. It appears that 
the combined model, incorporating both radiomics and 
potentially other factors, did not result in a noticeable 
improvement in diagnostic accuracy compared to using 
only radiomics. Hence, additional research is warranted 
to integrate clinical variables that exhibit a stronger cor-
relation with EGFR mutation. In addition, some differ-
ences related to the MRI imaging technique and methods 
were observed: First, images derived from 3.0 T scanners 
performed much better than 1.5 T ones or those consist-
ing of both. Second, we observed that the T1C sequence 
combined with the T2WI imaging sequence might per-
form better than other techniques. However, due to the 
small number of the included cohorts in each subgroup, 
drawing a definite conclusion is not possible and requires 
more original studies in the future. Likewise, ROI struc-
ture (2D vs. 3D), segmentation (semiauto vs. manual), 
and ROI delineation software also impact the final mod-
el’s diagnostic performance. Our findings suggest that 
using manual segmentation, and specific ROI segmenta-
tion software (such as ITK-SNAP) might lead to better 
diagnostic performance for predicting EGFR mutation in 
brain metastasis. Lastly, LASSO and LR are widely used 
for feature selection and model building in radiomics 
studies, and their performance was better overall com-
pared to other models. However, in previous meta-anal-
yses, these models were shown to be inferior to modern 
modeling algorithms, such as SVM, for predicting Ki-67 
expression in breast cancer by MRI-radiomics [22].

Limitations
The meta-analysis faces several limitations that warrant 
consideration in interpreting its findings. Firstly, the 
exclusion of eight studies due to potential cohort over-
lap, while essential for preserving data independence, 
introduces a risk of selection bias, as these excluded 
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studies may have offered unique perspectives. Secondly, 
the inclusion of a small number of studies (n = 11) raises 
concerns about statistical power and generalizability. 
Thirdly, some studies lack a separate validation cohort or 
missed data for the training cohort, potentially compro-
mising the reliability of the reported predictive models. 
The limited ability to generalize subgroup analysis results 
due to small subgroup sizes and diverse categorizations 
further complicates the interpretation. Lastly, a nota-
ble limitation involves the risk of bias in the reference 
standard domain, as reliance on primary lung lesions 
for EGFR mutation detection may introduce diagnos-
tic uncertainty, emphasizing the need for caution when 
extrapolating results to brain metastases directly. Trans-
parent acknowledgment of these limitations is crucial for 
a nuanced understanding of the meta-analysis outcomes 
and informs directions for future research and clinical 
applications.

Conclusion
In summary, this meta-analysis investigated the diagnos-
tic performance of MRI-based radiomics methods for 
predicting EGFR mutations in brain metastases originat-
ing from lung cancers. The results indicate a promising 
performance, with the pooled Bayesian model demon-
strating good discriminative ability in both training and 
validation cohorts. Specifically, the AUC values for the 
ROC analysis were high, with an AUC of 0.90 in the 
training cohort and 0.91 in the validation cohort. These 
values, exceeding the threshold of excellence (0.9), high-
lights the effectiveness of MRI-based radiomics in dis-
tinguishing EGFR mutation status in BMs. The use of 
non-invasive imaging methods, particularly MRI-based 
radiomics, is emphasized as a valuable and less risky 
approach for obtaining crucial genetic information, facili-
tating more effective and personalized treatment deci-
sions for individuals with brain metastases.

Despite some limitations and potential biases identified 
in the reference standard domain, this study highlights 
the need for continued research in the field of radiomics, 
particularly in refining MRI sequences, segmenta-
tion methods, and feature extraction techniques. The 
observed high diagnostic performance in studies from 
China, as well as the superior results from 3.0 T MRI 
scanners, further emphasize the importance of optimiz-
ing imaging protocols to enhance diagnostic accuracy.
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