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Abstract
Background  Computed tomography attenuation correction (CTAC) is commonly used in cardiac SPECT imaging 
to reduce soft-tissue attenuation artifacts. However, CTAC is prone to inaccuracies due to CT artifacts and SPECT-CT 
mismatch, along with additional radiation exposure to patients. Thus, these limitations have led to increasing interest 
in CT-free AC, with deep learning (DL) offering promising solutions. We proposed a new DL-based CT-free AC 
methods for cardiac SPECT.

Methods  We developed a feature alignment attenuation correction network (FA-ACNet) based on the 3D U-Net 
framework to generate predicted DL-based AC SPECT (Deep AC). The network was trained on 167 cardiac SPECT/
CT studies using 5-fold cross validation and tested in an independent testing set (n = 35), with CTAC serving as the 
reference. During training, multi-scale features from non-attenuation-corrected (NAC) SPECT and CT were processed 
separately and then aligned with the encoded features from NAC SPECT using adversarial learning and distance 
metric learning techniques. The performance of FA-ACNet was evaluated using mean square error (MSE), structural 
similarity index (SSIM) and peak signal-to-noise ratio (PSNR). Additionally, semi-quantitative evaluation of Deep AC 
images was performed and compared to CTAC using Bland-Altman plots.

Results  FA-ACNet achieved an MSE of 16.94 ± 2.03 × 10− 6, SSIM of 0.9955 ± 0.0006 and PSNR of 43.73 ± 0.50 after 
5-fold cross validation. Compared to U-Net, MSE and PSNR improved by aligning multi-scale features from NAC SPECT 
and CT with those from NAC SPECT. In the testing set, FA-ACNet achieved an MSE of 11.98 × 10− 6, SSIM of 0.9976 and 
PSNR of 45.54. The 95% limits of agreement (LoAs) between the Deep AC and CTAC images for the summed stress/
rest scores (SSS/SRS) were [− 2.3, 2.8] and [-1.9,2.1] in the training set and testing set respectively. Changes in perfusion 
categories were observed in 4.19% and 5.9% of studies assessed for global perfusion scores in the training set and 
testing set.

Conclusion  We propose a novel DL-based CT-free AC approach for cardiac SPECT, which can generate AC images 
without the need for a CT scan. By leveraging multi-scale features from both NAC SPECT and CT, the performance of 
CT-free AC is significantly enhanced, offering a promising alternative for future DL-based AC strategies.
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Background
Myocardial perfusion imaging (MPI) by single-photon 
emission computed tomography (SPECT) is an exten-
sively used non-invasive imaging approach for diagnos-
ing and assessing treatment outcomes in obstructive 
coronary artery disease (CAD) [1–4]. In the clinical prac-
tice, detection of regional perfusion abnormalities in MPI 
can identify high-risk patients with obstructive CAD. 
However, the imaging appearance of perfusion abnor-
malities may mimic soft-tissue attenuation artifacts, par-
ticularly those caused by the diaphragm, breast tissue, or 
obesity [5–7]. These soft-tissue attenuation artifacts may 
cause false-positive results, leading to unnecessary inva-
sive coronary angiography (ICA) or overtreatment.

Attenuation correction (AC) is a critical technique 
used to compensate for the impact of varying tissue 
densities on the gamma rays emitted from a radioactive 
tracer. It helps to mitigate soft-tissue attenuation artifacts 
by applying mathematical algorithms that estimate the 
degree of attenuation based on the patient’s anatomical 
information. By compensating for the attenuation effects, 
AC could reduce soft-tissue attenuation artifacts and 
improve the diagnostic accuracy of cardiac SPECT [8]. 
Computed tomography attenuation correction (CTAC) is 
a commonly used method for cardiac SPECT that con-
verts Hounsfield units from CT scans into attenuation 
coefficients [9, 10]. However, CTAC approaches may still 
introduce artifacts, primarily due to CT-related issues 
[11] and SPECT-CT mismatches [12–14]. Moreover, 
the use of CT scans also increases additional radiation 
exposure to patients. Thus, there is an important need to 
develop CT-free AC methods for SPECT.

Recently, deep learning (DL) has shown promising 
results in medical image classification [15], image seg-
mentation [16], and image generation [17]. DL-based 
AC methods have been proposed to generate predicted 
AC SPECT images (Deep AC) without the need for a CT 
scan [18]. There are two main strategies for DL-based AC 
in cardiac SPECT including direct and indirect method. 
The direct methods involve predicting Deep AC directly 
from non-attenuation-corrected (NAC) SPECT images 
[19–21], while the indirect methods focus on predicting 
synthetic attenuation maps, which can be incorporated 
into iterative reconstructions for AC or implemented in 
a vendor-independent post-reconstruction manner [22, 
23]. These methods have shown promise to CT-free AC 
task. However, the direct methods seem to rely on cor-
relation between the NAC and CTAC and the indirect 
methods focus on the NAC and attenuation map. The 
additional anatomical and attenuation information pro-
vided by raw CT images is often underutilized in both 
methods. The potential for the information contained 
in CT images to enhance the correlation of NAC images 
and CTAC images remains unclear. Thus, we investigated 

whether incorporating additional CT images could 
enhance DL-based CT-free AC for cardiac SPECT.

In this study, we propose a novel CT-free AC approach 
for cardiac SPECT based on a 3D U-Net framework to 
leverage additional CT images and enhance CT-free AC 
performance, and evaluated this model on a dataset of 
202 clinical stress/rest cardiac SPECT images.

Methods
Cardiac SPECT/CT datasets
This retrospective study was approved by the local insti-
tutional review board and the requirement for informed 
consent was waived (approval number: 20231386). We 
collected 202 anonymized myocardial perfusion studies 
that used 99mTc-sestamibi SPECT at West China Hos-
pital from May 2019 to April 2021. Normal and abnor-
mal scans were selected from both stress and rest tests 
based on the report system. Due to missing data, not all 
patients had paired stress and rest scans. However, all 
individual studies included NAC images, CTAC images, 
and paired low-dose CT images.

Patient preparation
Patients are required to fast for at least 4 h prior to the 
examination. Cardiac medications, including calcium 
channel blockers and β-blockers, should be withheld on 
the day of the study. Additionally, patients should refrain 
from consuming strong tea, coffee, or other caffeine-con-
taining beverages, as well as methylxanthine-containing 
medications, for at least 12 h before pharmacologic stress 
imaging. All radiopaque objects in the thoracic region 
should be removed prior to imaging [24, 25].

Imaging acquisition and processing
All rest/stress cardiac SPECT images were obtained 
using a dual-head integrated SPECT/CT camera (GE 
Discovery NM/CT 670) with an electrocardiographically 
(ECG)-gated two-day imaging protocol. Both rest and 
stress SPECT images were gated at 8 frames per cardiac 
cycle. SPECT images were acquired using a low-energy 
high-resolution (LEHR) collimator to optimize resolu-
tion, with a 20% energy window centered on the 140 keV 
photopeak of 99mTc. Approximately 60  min after the 
injection of 740 MBq 99mTc-sestamibi, SPECT images 
were acquired with a 180° orbit from right anterior 
oblique (RAO) to left posterior oblique (LPO). The scan 
speed was 20 s per projection, with a 3° rotation per cycle 
for both the rest and stress studies. A low-dose CT scan 
was acquired after the rest/stress SPECT acquisitions for 
attenuation correction (AC) with the following param-
eters: tube current: 20 mA, tube voltage: 120 kV, rotation 
time: 0.8  s, pitch: 0.938, number of slices: 30, and slice 
thickness: 5  mm. The matrix size for both projections 
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and reconstructions was 64 × 64 pixels, with a pixel size 
of 6.8 × 6.8 mm.

All studies were processed using Myovation proto-
col and done on a Xeleris 4.0 (GE Healthcare) worksta-
tion. The 3D ordered subset maximization expectation 
algorithm (OSEM, 2 iterations and 10 subsets) was used 
in both NAC and CTAC images, and post-filtering was 
applied with Butterworth filter (cutoff frequency of 0.4 
cycles/cm and power of 10). The CT-based attenuation 
maps were manually registered with the SPECT images 
using the scanner software (GE ACQC) if there was 
any mismatch. No scatter correction was applied for all 
SPECT images.

Pre-processing of images
The transverse NAC, CTAC, and low-dose CT images 
were resampled to a resolution of 64 × 64 × 32 using cen-
ter cropping and zero-padding. During preprocessing, 
the voxel values of NAC, CTAC and low dose CT images 
were restricted to ranges of 0 to 1200, 0 to 3600, and 0 
to 4800, respectively. All images’ intensities values were 
normalized within the range from 0 to 1.

Architectures of feature alignment attenuation correction 
network
In this study, we proposed a feature alignment attenua-
tion correction network (FA-ACNet) based on a con-
ventional 3D U-Net framework [26]. The overview 
architecture of FA-ACNet is shown in Fig. 1.

During training, we added additional parallel branches 
in the downsampling process to handle two input types 
separately: one with only NAC SPECT as input, and the 
other with both NAC SPECT and CT as input simulta-
neously. These are fed into the SPECT encoder ( Est) 
and the SPECT/CT encoder ( Esc) respectively to obtain 
encoded multi-scale features, which are then fed sepa-
rately into the decoder and feature alignment module 
(FAM). The feature alignment module (FAM) receives 
multi-scale features and outputs a binary classification 
indicating whether the multi-scale features originated 
from NAC SPECT and CT, or from NAC SPECT alone. 
Within the decoder, these multi-scale features are pro-
gressively merged into the network to produce the Deep 
AC images for both input schemes. It is important to 
note that while the two input feature types share a single 
decoder, they are processed independently during the 
forward pass, resulting in two separate outputs. During 
inference, only NAC SPECT is used as input, with the 
goal of achieving output comparable to the result from 

Fig. 1  Overview of the proposed FA-ACNet. The architecture of FA-ACNet consists of two encoders Est and Esc. Est receives only NAC SPECT images, 
while Esc receives both NAC SPECT and CT images simultaneously. The plus sign indicates concatenation in the channel dimension, i.e., concat opera-
tion. F  denotes the Feature alignment module (FAM) which receives multi-scale features and outputs a binary classification (d̂) indicating whether the 
multi-scale features originated from NAC SPECT and CT, or from NAC SPECT alone. Ds represents the decoder, which generates the predicted Deep AC 
images from NAC SPECT and CT, or from NAC SPECT alone
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using both NAC SPECT and CT as input. Specifically, the 
input data passes through 5 alternately connected downs-
ampling convolution modules and 4 max pooling layers. 
Each down-sampling convolution module contains two 
sets of convolution layers, combined with ReLU activa-
tion function. Simultaneously, multi-scale features will 
also pass through 5 concatenated up-sampling convolu-
tion modules, which replace one convolution layer with 
a deconvolution layer based on the down-sampling con-
volution module. Metric learning and adversarial learn-
ing are employed to align the encoded features originated 
from NAC SPECT to those from NAC SPECT and CT. 
Detailed descriptions of these learning techniques are 
provided in the Supplementary Materials. The genera-
tor network in this paper minimizes the MSE loss using 
labeled data. The two loss functions are as follows:

	
Lmse = 1

2n

n∑
i=1

(ŷs
i − yi)2 + (ŷsc

i − yi)2� (1)
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The first formula corresponds to the loss function for 
directly generating Deep AC from NAC SPECT. The sec-
ond formula is used when generating Deep AC indirectly 
from NAC SPECT. The xs, (xs

, xc), ysand ysc denote 
the original NAC SPECT, the NAC SPECT and CT, and 
the corresponding output Deep AC, respectively.

Network training parameters
FA-ACNet was trained using 5-fold cross-validation and 
tested on an independent internal testing set, with paired 
input (NAC) and output (Deep AC) images. The final 
learning rate of 0.00002 and the batch size of 16 were 
determined through experience and grid search. The FA-
ACNet was trained for 5000 epochs optimized by Adam 
[27] for the whole model except the feature alignment 
module which adopted stochastic gradient descent (SGD) 
optimizer [28]. We use the early stopping technique and 
have a patience setting of 200. In the total loss function 
of FA-ACNet, the weight coefficients of loss function of 
adversarial learning and distance metric learning were set 
to 0.5 and 2, respectively, and the discriminator’s param-
eters were updated every three epochs. The model was 
implemented using the PyTorch framework [29]. Model 
training and testing were performed on an Ubuntu server 
with four Tesla P100 (NVIDIA) graphics processing unit 
and 64GB RAM.

Imaging quality evaluation for deep AC
The voxel-wise performance of FA-ACNet was evaluated 
by comparing it with the CTAC. The index quantified 
included mean square error (MSE), peak signal-to-noise 
ratio (PSNR) and structural similarity (SSIM). MSE is a 
common estimator for image quality, defined as:

	

MSE = 1
mnc

m∑
i=1

n∑
j=1

c∑
k=1

[ŷ(i, j, k) − y(i, j, k)]2 � (3)

where ŷ and y represent the Deep AC and the original 
CTAC, respectively.

The well-known PSNR is defined as:

	
PSNR = 10 · log10(MAX2

MSE
)� (4)

where MAX  is the maximum possible pixel value, in our 
study, the value is 1. Additionally, the SSIM index is cal-
culated as:

	
SSIM = (2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx
2 + σy

2 + c2) � (5)

where µ  and σ  denote the average and the standard 
deviation of the original image x and the test image y. 
σ xy  is the covariance of x and y. The two variables c1 
and c2 are constants that prevent numerical instabilities.

Clinical evaluation of SSS/SRS for Deep AC
Moreover, the summed stress scores (SSS) and summed 
rest scores (SRS) for all generated Deep AC images were 
evaluated and compared to the CTAC images’ results. 
Visual semi-quantitative interpretation was assessed 
using 17-segment, 5-point scoring system (0 = normal, 
4 = absent tracer uptake) by an independent nuclear 
medicine physician. Totally, An SSS/SRS below 4 is con-
sidered normal or minimally abnormal, scores between 4 
and 8 indicate mild abnormalities, scores between 9 and 
13 suggest moderate abnormalities, and scores of 13 or 
more suggest significant extensive ischemia [30].

Statistical analysis
The paired t test was performed to determine whether 
the MSE, SSIM and PSNR were significantly different 
between baseline U-Net and FA-ACNet. The Mann-
Whitney U test was performed to compare the per-
formance of FA-ACNet in different subgroups. The 
Bland-Altman plot was used to evaluation the difference 
of clinical metrics between Deep AC and CTAC images. 
All analyses were conducted using MedCalc® statistical 
software. P values less than 0.05 were considered statisti-
cally significant.
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Results
We collected 202 clinical myocardial perfusion SPECT 
examinations for training (n = 167) and testing (n = 35) 
the model. The clinical characteristics of the patients 
enrolled in the study, such as age, gender, body mass 
index (BMI), and past medical history, are summarized in 
Table 1. According to the imaging interpretation results 
from the radiological information system, 69.31% of the 
studies were classified as normal or minimally abnormal, 
with no evidence of myocardial ischemia.

Performance of FA-ACNet for CT-free attenuation 
correction
The results of indirect and direct methods to for gener-
ating Deep AC from NAC are shown in Table  2. After 
5-fold cross validation, the performance was evaluated 
in terms of averaged MSE (10− 6), SSIM and PSNR, com-
pared with the ground-truth CTAC. For the indirect pre-
diction of Deep AC, the FA-ACNet showed improved 
MSE and PSNR compared to the baseline, with values of 
16.94 ± 2.03 and 43.73 ± 0.50, respectively (both P < 0.05). 

There was no significant difference in the SSIM, although 
the SSIM values for both methods exceeded 0.9. This 
indicates that incorporating anatomical CT features sig-
nificantly improved CT-free AC performance compared 
to the baseline. For the direct prediction of Deep AC, FA-
ACNet demonstrated a notable improvement in SSIM, 
which increased from 0.3655 ± 0.0084 to 0.9717 ± 0.0002 
(P < 0.05). However, the MSE and PSNR did not show 
significant improvement. Overall, FA-ACNet performed 
better in generating Deep AC indirectly than directly, as 
reflected in all three metrics. Figures 2 and 3 display two 
case examples in horizontal long axis (HLA), vertical long 
axis (VLA), and short axis (SA) views, showing the NAC, 
CTAC, and Deep AC images. Following CT-free AC, the 
Deep AC images demonstrated greater consistency with 
the CTAC images, in contrast to the NAC images.

In the subsequent ablation study on indirect predic-
tion of Deep AC from NAC, the results in Table 3 show 
a significant decrease in CT-free AC performance when 
the decoder was shared without feature alignment. The 
MSE increased from 25.46 ± 2.78 to 27.83 ± 2.99. How-
ever, when either adversarial learning or distance met-
ric learning was used to align multi-scale features, the 
performance of CT-free AC improved compared to the 
baseline. The integrated FA-ACNet model achieved 
the best results, with an MSE of 16.94 ± 2.03, a PSNR of 
43.73 ± 0.50, and an SSIM of 0.9955 ± 0.0006.

In the further independent internal testing on 35 car-
diac SPECT studies, we utilized the best-performing 
model from the five-fold cross-validation experiments, 
the FA-ACNet achieved an MSE of 11.98, a PSNR of 
45.54, and an SSIM of 0.9976.

We further categorized all studies into various sub-
groups, including gender, imaging type (stress vs. rest), 
imaging interpretation (normal vs. abnormal), as well as 
non-obesity (BMI <28) and obesity (BMI ≥ 28) groups. 
As shown in Table 4, FA-ACNet for CT-free AC achieved 
higher image quality in the male group than in the female 
group, reflected by lower MSE values (14.81 ± 3.34 vs. 
18.68 ± 3.83, P = 0.01) in the training set. No statistically 
significant differences were observed across imaging 
types (P = 0.07), interpretation results (P = 0.09), or BMI 
groups (P = 0.70). Additionally, SSIM and PSNR met-
rics showed minimal variations across these subgroups. 
In the testing set, as shown in Table  5, no statistically 

Table 1  Clinical characteristics of 202 subjects
Characteristic Overall 

(n = 202)
Training set
 (n = 167)

Testing set 
(n = 35)

Age (year) 65.40 ± 11.0 64.05 ± 17.54 57.7 ± 11.4
Gender
  Male 94 (46.53) 71 (42.52) 23 (65.71)
  Female 108 (53.47) 96 (57.48) 12 (34.29)
BMI (kg/m2) 25.30 ± 2.93 25.27 ± 3.07 25.30 ± 2.16
Past medical history
  Diabetes mellitus 36 (17.82) 30 (17.96) 6 (17.14)
  Hypertension 97 (48.02) 81 (48.50) 16 (45.71)
  Dyslipidemia 36 (17.82) 22 (13.17) 14 (40.00)
  History of CAD 48 (23.76) 21 (12.57) 27 (77.14)
Imaging type
  Stress 86 (42.57) 69 (41.32) 17 (48.57)
  Rest 116 (57.43) 98 (58.68) 18 (51.43)
Imaging interpretation
  Normal or minimal 
abnormality

140 (69.31) 107 (64.07) 33 (94.29)

  Mild abnormality 49 (24.26) 47 (28.14) 2 (5.17)
  Moderate abnormality 9 (4.46) 9 (5.39) 0 (0.00)
  Significant abnormality 4 (1.98) 4 (2.40) 0 (0.00)
Qualitative data are expressed as numbers followed by percentages in 
parentheses; continuous data are expressed as mean ± SD. BMI, body mass 
index; CAD, coronary artery disease

Table 2  Five-fold cross-validation results of U-Net and FA-ACNet for indirect and direct prediction of deep AC from NAC images
Method Indirect prediction of Deep AC Direct prediction of Deep AC

MSE (10− 6) SSIM PSNR MSE (10− 6) SSIM PSNR
Baseline: U-Net 25.46 ± 2.78 0.9927 ± 0.0021 42.16 ± 0.54 142.42 ± 2.73 0.3655 ± 0.0084 33.65 ± 0.29*
FA-ACNet 16.94 ± 2.03* 0.9955 ± 0.0006 43.73 ± 0.50* 879.38 ± 28.71* 0.9717 ± 0.0002* 31.44 ± 0.08
The group generating the best result is bolded

* This indicates that the index was significantly different between baseline U-Net and FA-ACNet (P < 0.05)
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significant differences were observed across all different 
subgroups.

Clinical evaluation of SSS/SRS for Deep AC
The comparison of SSS or SRS between Deep AC and 
CTAC is illustrated in Fig. 4. In the training set, the mean 
difference of SSS/SRS value was 0.2 and the 95% LoAs 
ranging from − 2.3 to 2.8. In the testing set, the mean 
difference of SSS/SRS value was 0.1, and the 95% LoAs 
ranging from − 1.9 to 2.1.

When assessing global perfusion scores in the training 
set, 8 out of 167 studies (4.79%) showed changes in per-
fusion categories. 4 studies changed from normal perfu-
sion (SSS = 0, SRS = 0, SSS = 0 and SRS = 0, respectively) 

to mildly abnormal perfusion (SSS = 4, SRS = 4 SSS = 4 
and SRS = 4, respectively), 3 studies changed from mildly 
abnormal perfusion (SRS = 4, SSS = 4 and SRS = 4, respec-
tively) to normal perfusion (SRS = 1, SSS = 2 and SRS = 2, 
respectively), and the other one changed from mildly 
abnormal perfusion(SSS = 8) to moderately abnormal 
perfusion (SSS = 10). In the testing set, 2 out of 35 stud-
ies (5.71%) showed changes in perfusion categories. One 
changed from minimal abnormal perfusion (SRS = 3) to 
mildly abnormal perfusion (SRS = 4), and the other one 
changed from mildly abnormal perfusion (SSS = 5) to 
moderately abnormal perfusion (SSS = 9).

Fig. 2  Rest NAC, CTAC, and DeepAC images from a 55-y-old man with body mass index of 27.53. On vertical long-axis images (middle) and short-axis 
images (bottom), there were defects in the inferior wall on NAC images only (white arrows). After AC correction, the CTAC and Deep AC images were both 
normal without defects. The MSE and SSIM was 74.9 × 10− 6 and 0.9992 between Deep AC and CTAC images
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Discussion
We proposed a novel DL-based CT-free AC approach 
for cardiac SPECT. Evaluation using 202 clinical studies 
showed that FA-ACNet can generate Deep AC images 
that are consistent with CTAC. This advancement is 

particularly beneficial for clinical applications involv-
ing SPECT-only scanners, where CT scans are typi-
cally unavailable. The ability to produce high-quality AC 
images without the need for CT scans not only reduces 

Table 3  Results of ablation study on FA-ACNet for indirect prediction of deep AC from NAC images
Method Adversarial learning Metric learning MSE (10− 6) SSIM PSNR
Baseline: U-Net — — 25.46 ± 2.78 0.9927 ± 0.0021 42.16 ± 0.54
Direct shared decoder — — 27.83 ± 2.99 0.9936 ± 0.0006 41.93 ± 0.55
FA-ACNet √ — 21.76 ± 3.58 0.9948 ± 0.0006 42.98 ± 0.62
FA-ACNet — √ 18.82 ± 2.18 0.9951 ± 0.0003 43.09 ± 0.28
FA-ACNet √ √ 16.94 ± 2.03 0.9955 ± 0.0006 43.73 ± 0.50
The group generating the best result is bolded

Fig. 3  Rest NAC, CTAC, and DeepAC images from an 83-y-old woman with body mass index of 25.77. On horizontal long-axis (top), vertical long-axis im-
ages (middle) and short-axis images (bottom), there were defects in the apex, anterior (red arrows) and inferior walls (white arrows) on NAC images. After 
AC correction, the CTAC and Deep AC images were still abnormal. The MSE and SSIM was 204.54 × 10− 6 and 0.9926 between Deep AC and CTAC images
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patient radiation exposure but also enhances accessibility 
for facilities that rely solely on SPECT imaging.

In our study, we enhanced CT-free AC performance by 
incorporating CT features. This multi-scale feature align-
ment significantly improved the MSE and PSNR, suggest-
ing that FA-ACNet effectively aligns features between 
CT-based and CT-free AC tasks. This alignment enables 
better pixel-wise feature embedding, enhancing the accu-
racy of CT-free AC predictions. Additionally, we investi-
gated both direct and indirect approaches to generating 
Deep AC images. Similar with Chen et al. [4], our results 
indicate that the indirect approach, which predicts voxel 
differences between NAC and CTAC images, outper-
formed the direct method in terms of MSE. Remarkably, 
our indirect method does not rely on generating attenua-
tion maps.

In the subgroup analysis, imaging type, myocardial per-
fusion categories, and BMI did not significantly influence 

performance in the training test. However, a higher bias 
in female subjects was observed compared to male sub-
jects, consistent with findings from Shi et al. [23]. This 
discrepancy may stem from anatomical differences 
between genders. Future studies should aim to include 
a larger cohort of female patients, encompassing a wide 
range of breast sizes and densities, to further assess the 
model’s performance in this group.

Semi-quantitative evaluation of myocardial perfusion 
using Deep AC showed strong agreement with CTAC in 
most studies. In the training set, the bias and 95% lim-
its of agreement (LoAs) for SSS/SRS were 0.2 and [-2.3, 
2.8], respectively. In the internal testing set, the bias was 
0.1, with 95% LoAs of [-1.9, 2.1]. However, 4.79% of stud-
ies in the training set and 5.71% in the testing set showed 
shifts in their global perfusion categories, which is higher 
than the 3% reported by Prieto et al. [22]. These changes 
were mostly observed in studies near the categorical 
boundaries. Additionally, since visual analysis is subjec-
tive and prone to inter- and intra-observer variability, 
quantitative metrics like total perfusion deficit (TPD) 
may offer more reliable assessments [31]. This variabil-
ity could influence clinical decision-making. It is crucial 
that Deep AC images should be carefully reviewed by 
nuclear cardiology physicians before being used for clini-
cal interpretation.

While we did not directly compare our method with 
previous studies, our approach provides a new perspec-
tive on DL-based CT-free AC for cardiac SPECT. Earlier 
studies have focused on the types of inputs used in CT-
free AC, whether for transforming NAC images into AC 
images or for generating attenuation maps. For example, 
Chen X et al. proposed a customized 3D dual squeeze-
and-excitation residual dense network for CT-free AC, 
incorporating additional data like BMI, gender, and 
scatter-window data to improve network performance 
[32]. Similarly, Chen Y et al. developed a DL model to 
predict attenuation maps from NAC images using both 
photopeak window and varied scatter window settings 
from NAC images as inputs [33]. In contrast, our study 
investigates the added value of incorporating CT fea-
tures in intermediate steps, showing that multi-scale fea-
tures derived from the NAC SPECT and CT significantly 
enhance the CT-free AC performance, offering a promis-
ing alternative for future DL-based AC strategies.

Despite these strengths, there are several limitations. 
Firstly, this is a single-center study and all the cardiac 
SPECT images were obtained using 99mTc-Sestamibi 
imaging and a single scanner. The performance of FA-
ACNet for different tracers (such as 99mTc-Tetrofosmin), 
different cameras, different image acquisition or pro-
cessing protocols, or different patient populations needs 
to be further validated. Secondly, our study did not use 
paired rest and stress scans, which would have allowed 

Table 4  Performance of FA-ACNet for predicting Deep AC from 
NAC across different subgroups in the training set

MSE (10− 6) SSIM PSNR
Training set(n = 167) 16.94 ± 2.03 0.9955 ± 0.0006 43.73 ± 0.50
Imaging type
Stress (n = 69) 18.77 ± 2.84 0.9950 ± 0.0054 43.32 ± 3.45
Rest (n = 98) 16.44 ± 4.19 0.9958 ± 0.0044 44.02 ± 2.93
Imaging interpretation
Normal (n = 107) 15.96 ± 1.39 0.9960 ± 0.0045 44.20 ± 2.89
Abnormal (n = 60) 18.55 ± 4.22 0.9945 ± 0.0053 42.90 ± 3.48
Gender
Male (n = 71) 14.81 ± 3.34* 0.9946 ± 0.0057 43.08 ± 3.00
Female (n = 96) 18.68 ± 3.83 0.9961 ± 0.0041 44.22 ± 3.21
BMI (kg/m2)
BMI ≥ 28 (n = 29) 16.02 ± 3.67 0.9956 ± 0.0041 42.88 ± 3.06
BMI<28 (n = 138) 17.11 ± 2.82 0.9954 ± 0.0050 43.91 ± 3.17
BMI, body mass index; * This indicates that the MSE was significantly different 
between male and female group (P < 0.05)

Table 5  Performance of FA-ACNet for predicting Deep AC from 
NAC across different subgroups in the testing set

MSE (10− 6) SSIM PSNR
Testing set (n = 35) 11.98 0.9976 45.54
Imaging type
Stress (n = 17) 12.80 0.9975 45.62
Rest (n = 18) 11.20 0.9976 45.46
Imaging interpretation
Normal (n = 33) 11.94 0.9975 45.56
Abnormal (n = 2) 12.54 0.9981 45.15
Gender
Male (n = 23) 11.98 0.9975 45.24
Female (n = 12) 11.97 0.9976 46.10
BMI (kg/m2)
BMI ≥ 28 (n = 2) 11.99 0.9965 45.43
BMI<28 (n = 33) 11.98 0.9976 45.54
BMI, body mass index
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us to train the model on images with defects and vali-
date it on normal images. Finally, the implications of 
this CT-free AC approach on cardiac dedicated SPECT 
scanners, which have a limited field-of-view, should be 
further explored. Although we implemented automated 
quality assessment steps using GE ACQC software to 
correct any mismatch between NAC images and attenu-
ation maps, there is still the possibility that the model 
may have learned artifacts present in the CTAC images, 
particularly if a significant portion of the data contained 
such artifacts.

Conclusion
We proposed a novel DL-based CT-free AC approach 
for cardiac SPECT that has the potential to generate AC 
images without the need for a CT scan. This approach 
can reduce radiation exposure to patients and acceler-
ate the preprocessing steps of cardiac SPECT in clinical 
workflows. Preliminary results demonstrated that incor-
porating multi-scale features derived from NAC SPECT 
and CT significantly enhances CT-free AC performance 
compared to the baseline U-Net model. This offers a new 
perspective on improving CT-free AC for cardiac SPECT.
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