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Abstract 

Background Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, 
complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). 
Consequently, preoperative diagnosis of moderate-to-severe chronic cholangitis is essential for guiding treatment 
strategies and surgical planning. This study aimed to develop and validate a deep learning radiomics nomogram 
(DLRN) based on contrast-enhanced CT images and clinical characteristics to preoperatively identify moderate-to-
severe chronic cholangitis in children with PBM.

Methods A total of 323 pediatric patients with PBM who underwent surgery were retrospectively enrolled 
from three centers, and divided into a training cohort (n = 153), an internal validation cohort (IVC, n = 67), and two 
external test cohorts (ETC1, n = 58; ETC2, n = 45). Chronic cholangitis severity was determined by postoperative pathol-
ogy. Handcrafted radiomics features and deep learning (DL) radiomics features, extracted using transfer learning 
with the ResNet50 architecture, were obtained from portal venous-phase CT images. Multivariable logistic regression 
was used to establish the DLRN, integrating significant clinical factors with handcrafted and DL radiomics signatures. 
The diagnostic performances were evaluated in terms of discrimination, calibration, and clinical usefulness.

Results Biliary stones and peribiliary fluid collection were selected as important clinical factors. 5 handcrafted and 5 
DL features were retained to build the two radiomics signatures, respectively. The integrated DLRN achieved satisfac-
tory performance, achieving area under the curve (AUC) values of 0.913 (95% CI, 0.834–0.993), 0.916 (95% CI, 0.845–
0.987), and 0.895 (95% CI, 0.801–0.989) in the IVC, and two ETCs, respectively. In comparison, the clinical model, hand-
crafted signature, and DL signature had AUC ranges of 0.654–0.705, 0.823–0.857, and 0.840–0.872 across the same 
cohorts. The DLRN outperformed single-modality clinical, handcrafted radiomics, and DL radiomics models, with all 
integrated discrimination improvement values > 0 and P < 0.05. The Hosmer–Lemeshow test and calibration curves 

*Correspondence:
Wan-liang Guo
gwlsuzhou@163.com
San-li Shi
sanlishi1982@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-025-01579-3&domain=pdf


Page 2 of 14Mao et al. BMC Medical Imaging           (2025) 25:40 

showed good consistency of the DLRN (P > 0.05), and the decision curve analysis and clinical impact curve further 
confirmed its clinical utility.

Conclusions The integrated DLRN can be a useful and non-invasive tool for preoperatively identifying moderate-
to-severe chronic cholangitis in children with PBM, potentially enhancing clinical decision-making and personalized 
management strategies.

Keywords Children, Chronic cholangitis, Deep learning, Nomogram, Pancreaticobiliary maljunction, Radiomics

Introduction
Pancreaticobiliary maljunction (PBM) is a congenital 
defect in which the pancreatic and bile ducts join out-
side of the duodenal wall, usually forming a long com-
mon channel [1]. There is a higher incidence of PBM in 
Asian populations, which is 100 to 1000 times higher 
than in other parts of the world [2]. This anatomical 
anomaly induces prolonged reflux of pancreatic juice into 
the common bile duct (CBD), leading to chronic inflam-
mation of the CBD [3]. PBM is considered to involve a 
hyperplasia-dysplasia-carcinoma sequence caused by 
chronic inflammation [3, 4]. Therefore, for children diag-
nosed with PBM, surgery is recommended regardless of 
the presence of symptoms [5].

Chronic cholangitis is a critical factor influencing the 
clinical management and prognosis of PBM. Long-term 
severe cholangitis can cause close adhesion between the 
CBD wall and the surrounding tissues, which increases 
the difficulty of operation [5–7]. In addition, the infiltra-
tion of a large number of chronic inflammatory cells can 
thicken the CBD wall and increase fragility, thereby ele-
vating the risk of intraoperative injury [5, 6]. Importantly, 
such chronic inflammatory changes are significantly 
associated with postoperative anastomotic stricture [8]. 
Therefore, accurate preoperative diagnosis of moderate-
to-severe chronic cholangitis in PBM is crucial for opti-
mizing surgical planning, minimizing intraoperative 
risks, and improving patient outcomes.

Magnetic resonance imaging (MRI) is the preferred 
modality in evaluating PBM [9]. However, due to the 
abdominal breathing artifacts in pediatric MRI exami-
nations, contrast-enhanced computed tomography 
(CE-CT) remains an effective diagnostic tool for PBM, 
particularly in younger children [10, 11], and for preop-
eratively assessing critical anatomical variations in PBM, 
such as the aberrant right hepatic artery [12, 13]. While 
CE-CT images are routinely acquired, radiologists often 
encounter difficulties in diagnosing and grading PBM-
associated chronic cholangitis due to the lack of specific 
imaging criteria. Currently, diagnosis largely relies on 
postoperative histopathological evaluation. This chal-
lenge is particularly pronounced in moderate-to-severe 
cases, where precise preoperative diagnosis is critical 
for surgical planning. Thus, it is necessary to develop 

an objective, reliable, noninvasive and accurate diagnos-
tic approach to improve the preoperative evaluation of 
chronic cholangitis in children with PBM.

Radiomics is a promising technique that transforms 
conventional medical images into high-throughput quan-
titative features, which has been increasingly used in 
disease diagnosis and prognostic prediction [14, 15]. In 
addition, when deep learning (DL) features derived from 
convolutional neural networks are incorporated into 
handcrafted radiomics, superior performance has been 
achieved in lesion decoding and prognostic prediction, 
such as gastric cancer, radiation esophagitis, hepatocel-
lular carcinoma and so on [16–18]. Previous studies have 
established the feasibility of identifying chronic cholan-
gitis in PBM children using either handcrafted radiom-
ics models or DL models separately [19, 20]. However, 
these studies were limited by small sample sizes and lack 
of independent external validation. Notably, no research 
has yet combined clinical characteristics with both hand-
crafted and DL radiomics features for preoperative diag-
nosis of cholangitis.

Therefore, this study aimed to develop and validate a 
deep learning radiomics nomogram (DLRN) for preop-
erative identification of moderate-to-severe chronic chol-
angitis in children with PBM using multicenter datasets, 
offering a non-invasive and effective alternative to histo-
pathological examination for early detecting choledochal 
inflammation.

Methods
Study patients
This retrospective study was approved by the review 
boards of each participating center, with waived patient 
informed consent. Pediatric patients with PBM who 
received preoperative CE-CT examination followed by 
pancreaticobiliary surgery between January 2011 and 
February 2023 from three independent hospitals were 
retrospectively reviewed. In children, PBM was diag-
nosed based on an abnormally long common chan-
nel (> 5  mm) between the pancreatic and bile ducts, as 
confirmed by surgery or imaging examination [21]. The 
inclusion criteria were as follows: (1) age ≤ 18 years old; 
(2) availability of histopathological slides of CBD; (3) 
abdominal CE-CT examination performed within one 
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month before surgery; and (4) availability of clinicopatho-
logical and imaging data. The exclusion criteria were as 
follows: (1) poor CT image quality impeding lesion seg-
mentation; (2) incomplete clinicopathological and imag-
ing data; (3) prior history of biliary drainage; and (4) 
previous abdominal surgery for other diseases. The flow 
of patient selection is shown in Fig. S1.

A total of 323 eligible children with PBM were included 
in the final analysis. Of these, 220 were from center I 
(Children’s hospital of Soochow university) and were ran-
domly divided into a training cohort (TC, n = 153) and an 
internal validation cohort (IVC, n = 67) at a 7:3 ratio. 58 
patients from center II (Xuzhou Children’s Hospital) and 
45 patients from center III (Shandong Provincial Hospi-
tal) were collected as external test cohort 1 (ETC1) and 
external test cohort 2 (ETC2), respectively. Details of the 
sample size calculation are provided in Supplementary 
Method S1. The study flowchart is presented in Fig. 1.

Assessment of moderate‑to‑severe chronic cholangitis
The severity of chronic cholangitis was evaluated by 
two experienced pathologists through histopathological 
examination of resected CBD specimens. The grading 
criteria were as follows: grade 0, no inflammation; grade 
1, infiltration of a small number of lymphocytes without 
aggregation; grade 2, moderate lymphocyte infiltration 
with multifocal aggregation; and grade 3, extensive lym-
phocyte infiltration with epithelial erosion [8]. Grades 

0 and 1 were categorized as non-moderate-to-severe 
chronic cholangitis, while grades 2 and 3 were classified 
as moderate-to-severe chronic cholangitis. Both patholo-
gists were blinded to the clinical and imaging data of all 
subjects, and any disagreements were resolved through 
discussion to reach a consensus.

Clinical characteristics
Clinical data of the patients, including sex, age, clinical 
symptoms, and laboratory examination, were obtained 
from medical records. Based on preoperative CT images, 
the imaging features of Todani classification [22], diam-
eter of CBD, biliary stones, peribiliary fluid collection 
were evaluated. PBM is commonly associated with chole-
dochal cysts, being present in almost all Todani type I 
cysts (excluding type Ib) and type IVa cysts, while it is 
rarely observed in other Todani types (Ib, II, III, IVb, or 
V) [5, 23].

Imaging features were assessed independently by two 
experienced radiologists blinded to clinical and patho-
logical data (A and B, with 3 and 10 years of experience in 
abdominal imaging, respectively). For all categorical vari-
ables, consensus between the two radiologists must be 
reached for inclusion in the final analysis. For continuous 
variable, intraclass correlation coefficient (ICC) was used 
to evaluate the consistency between the two radiologists. 
The ICC for the diameter of CBD was 0.911 (95% CI, 
0.883–0.944), indicating excellent agreement between the 

Fig. 1 Workflow of this study. Abbreviations: DCA, decision curve analysis; DLRN, deep learning radiomics nomogram; ROC, receiver operating 
characteristic
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two observers. Therefore, the mean value of the two radi-
ologists’ measurements were used for the final analysis.

Image acquisition and standardization
All included patients underwent abdominal CE-CT 
examination within one month before surgery. Portal 
venous-phase CT images were retrieved from Picture 
Archiving and Communication Systems for further anal-
ysis. The CT image acquisition settings of the three cent-
ers are presented in Supplementary Method S2. In order 
to reduce data variability among multi-center cohorts 
and ensure the comparability of DL and traditional radi-
omics signature, image standardization was undertaken. 
This involved a two-step process: First, the CT images 
were preprocessed by setting the window level to 50 
Hounsfield Units (HU) and the window width to 400 
HU, thereby optimizing image contrast. Subsequently, 
the images were resampled to a voxel spacing of 1 × 1 × 1 
 mm3, ensuring consistent spatial representation across 
the dataset.

Image segmentation
The extrahepatic CBD is the primary site affected by 
PBM and the main surgical target for its management. 
Pathological evaluation of PBM-related chronic cholan-
gitis is also based on the resected CBD tissue. Therefore, 
three-dimensional regions of interest (ROIs) of the CBD 
segmentations were manually delineated on axial recon-
structed thin-slice portal venous-phase CT images by 
Radiologist A using ITK-SNAP software (version 3.8.0; 
http:// www. itksn ap. org). In patients with PBM present-
ing with Todani type IVa, segmentation was similarly 
restricted to the CBD, excluding intrahepatic dilated bile 
ducts. The segmentation encompassed the entire visible 
CBD, including both the bile duct wall and bile fluid, 
across all contiguous slices. This methodology aligns with 
previous studies in PBM, which similarly analyzed the 
full structure of the CBD [19, 20].

After one month, 30 cases from the TC were randomly 
selected, and their ROIs were segmented again by radi-
ologist A and radiologist B to evaluate the intra/inter-
observer reproducibility of handcrafted features. Both 
intra- and inter- ICCs > 0.85 were retained for subsequent 
analysis.

DL radiomics feature extraction
Handcrafted features of the three-dimensional ROIs were 
extracted using Pyradiomics Module (http:// pyrad iomics. 
readt hedocs. io) [24], with gray level discretization per-
formed at a fixed bin width of 25 HU. For each patient, 
1834 quantitative features were obtained, including seven 
categories: (1) 14 shape-based features; (2) 360 first-order 
features; (3) 440 Gy-level co-occurrence matrix features; 

(4) 280 Gy-level dependence matrix features; (5) 320 Gy-
level run-length matrix features; (6) 320  Gy-level size 
zone matrix features; (7) 100 neighboring gray-tone dif-
ference matrix features.

ResNet50 architecture was adapted to develop the 
convolutional neural network for DL feature extraction 
[25]. A total of 2048 DL features were extracted for each 
patient (Supplementary Method S3).

Feature selection and radiomics signature construction
Before feature selection, all handcrafted and DL radiom-
ics features were normalized using the Z-score method to 
ensure comparability across features with diverse scales. 
Then, a four-step procedure involving univariable analy-
sis, Spearman correlation analysis, the least absolute 
shrinkage and selection operator algorithm, and multi-
variable logistic regression was used for feature selection 
and signature construction (Supplementary Method S4).

Clinical model and DLRN construction
In the TC, statistically significant clinical characteristics 
(P < 0.05) were selected using univariate analysis, and 
subsequently incorporated into the multivariable logistic 
regression to construct the clinical model. Additionally, 
a DLRN, which combined the significant clinical char-
acteristics along with the handcrafted and DL signatures 
from the TC, was developed using multivariable logistic 
regression. A backward stepwise selection approach was 
used with the akaike information criterion (AIC) serving 
as the stopping rule. The variance inflation factor (VIF) 
was employed to assess multicollinearity among the fea-
tures. DLRN score for estimating the risk of moderate-to-
severe chronic cholangitis in the TC was also calculated 
and applied to patients in the IVC, ETC1 and ETC2.

Model evaluation
The performances of all generated models were calcu-
lated using the receiver operating characteristic (ROC) 
area under the curve (AUC), and other metrics meas-
uring performances, including sensitivity, specificity, 
accuracy, positive predictive value (PPV), and negative 
predictive value (NPV) were also recorded. To compare 
the performance of the DLRN with other models, the 
DeLong test was used to evaluate differences in AUC 
and integrated discrimination improvement (IDI) was 
implemented to assess the improvement in diagnostic 
accuracy. The calibration of the DLRN was evaluated 
using Hosmer–Lemeshow test and the calibration curve, 
derived through bootstrapping with 1000 resamples. 
Decision curve analysis (DCA) and clinical impact curve 
(CIC) were employed to evaluate the clinical value of the 
DLRN in the total cohorts.

http://www.itksnap.org
http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
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Statistical analysis
All statistical analyses were conducted using R software 
(version 4.2.1), Python (version 3.9.12), and IBM SPSS 
software (version 26.0). Statistically significant thresh-
old was set as P < 0.05. The detailed statistical analysis is 
shown in Supplementary Method S5.

Results
Baseline characteristics
The baseline clinical characteristics of all 323 pediatric 
patients with PBM are presented in Table 1 and Supple-
mentary Table  S1. Of all included patients, the median 
age was 3.0  years (IQR, 1.4–5.7  years) and 231 (71.5%) 
were female. The rate of moderate-to-severe chronic 
cholangitis was comparable across the four cohorts, 
with the rate of 37.3% (57/153) in TC, 37.3% (25/67) 
in IVC, 34.5% (20/58) in ETC1, and 40.0% (18/45) in 
ETC2. Additionally, the distribution of clinical charac-
teristics was similar among these four cohorts. In the 
TC, using univariate analysis, significant differences 
between non-moderate-to-severe chronic cholangitis 
and moderate-to-severe chronic cholangitis groups were 
showed in biliary stones and peribiliary fluid collection 
(P < 0.05; Table  1). Therefore, these two characteristics 
were selected for subsequent analyses and clinical model 
building.

Feature selection and radiomics signature development
In this study, two types of radiomics features, including 
1834 handcrafted and 2048 DL features were extracted. 
After feature selection (process shown in Supplementary 
Result S1 and Fig. S2), 5 handcrafted and 5 DL features 
were acquired to build the two radiomics signatures, 
respectively. The final features are shown in Supplemen-
tary Table  S2. As indicated in Table  2, the handcrafted 
radiomics signature yielded AUCs of 0.844 (95% CI, 
0.750–0.938), 0.857 (95% CI, 0.741–0.972), and 0.823 
(95% CI, 0.698–0.948) in the IVC, ETC1, and ETC2 
respectively. The DL radiomics signature achieved AUCs 
of 0.872 (95% CI, 0.768–0.977), 0.854 (95% CI, 0.758–
0.950), and 0.840 (95% CI, 0.715–0.964) in the IVC, 
ETC1, and ETC2, respectively.

Clinical model and DLRN construction
In the TC, two characteristics, biliary stones and peribil-
iary fluid collection, were selected to construct the clini-
cal model using multivariate logistic regression analysis 
with the lowest AIC value of 189.857 (Supplementary 
Table  S2). Then, the DLRN was established using these 
two clinical features, the handcrafted signature, and DL 
signature as the independent predictors, achieving the 
lowest AIC value of 106.554 (Fig.  2a and Table  3). The 
VIFs of the four factors ranged from 1.135 to 1.735, 

indicating minimal multicollinearity. In addition, the 
DLRN scores in the moderate-to-severe chronic chol-
angitis group were significantly higher than those in the 
non-moderate-to-severe group across all cohorts (all 
P < 0.001, Fig. 2b).

Model evaluation and comparison
The DLRN exhibited good discrimination in the IVC, 
ETC1 and ETC2, with AUCs of 0.913 (95% CI, 0.834–
0.993), 0.916 (95% CI, 0.845–0.987), and 0.895 (95% CI, 
0.801–0.989), respectively (Table 2 and Fig. 3). The AUC 
of the DLRN was significantly higher than that of the clin-
ical model (AUC = 0.681 [95% CI: 0.555–0.807; P < 0.001] 
in the IVC; 0.705 [95% CI: 0.564–0.845; P = 0.005] in 
the ETC1; 0.654 [95% CI: 0.496–0.812; P = 0.011] in the 
ETC2) (Table  2 and Supplementary Table  S3). Further-
more, compared with other three single-modality mod-
els, the DLRN performed significant improvement in 
predictive accuracy (IDI > 0, all P < 0.05; Supplementary 
Table  S3). The calibration curves and Hosmer–Leme-
show test showed good agreements between the DLRN 
prediction and actual observation in each cohort (all 
P > 0.05; Fig.  2c). In the whole cohorts, DCA indicated 
that the DLRN obtained the highest net benefit than 
other models across all risk threshold (Fig. 4a). A visual 
inspection of CIC suggested that the DLRN could accu-
rately diagnose moderate-to-severe chronic cholangitis 
within a relatively wide range of threshold probabilities 
(Fig. 4b).

Discussion
In this study, we developed and independently validated 
four diagnostic models: a clinical model that consisted 
of biliary stones and peribiliary fluid collection, a hand-
crafted radiomics model, a DL radiomics model, and a 
DLRN that integrated clinical variables with two types of 
radiomics signatures. The results demonstrated that the 
DLRN enhanced the preoperative identification of mod-
erate-to-severe chronic cholangitis in children with PBM, 
offering high accuracy and robustness.

Severe chronic cholangitis secondary to PBM can lead 
to preoperative or intraoperative biliary perforation, and 
even malignant transformation [5, 26, 27]. Early identifi-
cation of the severity of chronic cholangitis is crucial for 
the precise and safe management of pancreaticobiliary 
surgery and for the short- and long-term prognosis of 
PBM. In a previous study, a handcrafted radiomics score 
based on T2-weighted MR images showed good perfor-
mance for the diagnosis of cholangitis in PBM, with an 
AUC of 0.834 in the validation cohort [19]. In our study 
for the preoperative identification of moderate-to-severe 
chronic cholangitis, the handcrafted radiomics model 
demonstrated comparable performance with AUCs 
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ranging from 0.823 to 0.857, and our model was validated 
in two independent centers. Notably, all five selected 
handcrafted radiomics features were higher-order, 
including the exponential, gradient, laplacian of gaussian 
and wavelet features. This is consistent with prior studies 
that higher-order features can reveal the deep attributes 
of images, capturing more detailed insights into lesion 
heterogeneity [28, 29]. These features achieved superior-
ity not only in neoplastic disease [28, 30], but also in non-
neoplastic diseases such as inflammatory bowel disease, 
pancreatitis, and liver fibrosis [31–33]. Similarly, in our 
study, the higher-order handcrafted radiomics features 
proved effective in identifying imaging heterogeneity 
associated with moderate-to-severe chronic cholangitis 
in PBM, demonstrating their potential to enhance diag-
nostic performance in non-neoplastic diseases.

However, the reliance on predefined feature extraction 
in handcrafted radiomics inherently limits its ability to 
fully capture the complexity of medical images. In con-
trast, DL has the capacity to discern complex patterns 
and capture intricate details from the hidden layers of 
neural networks without relying on predetermined fea-
tures, which complements the existing practices of hand-
crafted radiomics and opens new avenues for nuanced 
medical analysis [28, 34]. The application of DL has 
extended to various medical domains, encompassing 

not only diagnosis but also the prediction of treatment 
responses and the assessment of disease outcomes [35–
38]. In the current study, ResNet50 architecture was used 
in the current study to extract DL radiomics features and 
the resulting DL signature demonstrated noteworthy per-
formance in the diagnosis of moderate-to-severe cholan-
gitis. Our developed DL signature yielded AUCs ranging 
from 0.840 to 0.872, outperforming the clinical model 
in all cohorts and the handcrafted signature in most 
cohorts. Based on the high-capacity and multi-layered 
network structure, DL algorithm can extract nonlinear 
and abstract high-dimensional data. A prior study com-
bined UNet +  + and ResNeSt18 to classify chronic chol-
angitis severity in PBM using CE-CT images, achieving 
a Dice coefficient of 0.839 ± 0.150 for CBD segmentation 
and an AUC of 0.711 for classification [20]. While both 
studies employed DL methods, the observed differences 
in performance may be attributed to errors associated 
with automated segmentation in the prior study and its 
reliance on an end-to-end output method, in contrast to 
the current study’s approach of DL feature extraction and 
rigorous feature selection. Additionally, the prior study 
included a smaller patient cohort (76 vs. 323), which 
likely impacted the model’s accuracy and robustness. By 
leveraging feature-level DL extraction and selection, this 
approach enhanced the ability to identify critical features, 

Table 2 Performances of clinical model, handcrafted signature, DL signature, and DLRN in the four cohorts

Abbreviation: AUC  area under the receiver operating characteristic curve, CI confidence interval, DL deep learning, DLRN deep learning radiomics nomogram, NPV 
negative predictive value, PPV positive predictive value

Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort
 Clinical model 0.683 (0.594–0.772) 0.673 0.632 0.698 0.554 0.761

 Handcrafted signature 0.877 (0.821–0.933) 0.797 0.789 0.802 0.703 0.865

 DL signature 0.894 (0.837–0.951) 0.856 0.702 0.948 0.889 0.843

 DLRN 0.933 (0.893–0.973) 0.850 0.930 0.802 0.736 0.951

Internal validation cohort
 Clinical model 0.681 (0.555–0.807) 0.627 0.640 0.619 0.500 0.743

 Handcrafted signature 0.844 (0.750–0.938) 0.776 0.840 0.738 0.656 0.886

 DL signature 0.872 (0.768–0.977) 0.866 0.760 0.929 0.864 0.867

 DLRN 0.913 (0.834–0.993) 0.866 0.920 0.833 0.767 0.946

External test cohort 1
 Clinical model 0.705 (0.564–0.845) 0.690 0.650 0.711 0.542 0.794

 Handcrafted signature 0.857 (0.741–0.972) 0.828 0.600 0.947 0.857 0.818

 DL signature 0.854 (0.758–0.950) 0.776 0.750 0.789 0.652 0.857

 DLRN 0.916 (0.845–0.987) 0.862 0.800 0.895 0.800 0.895

External test cohort 2
 Clinical model 0.654 (0.496–0.812) 0.622 0.667 0.593 0.522 0.727

 Handcrafted signature 0.823 (0.698–0.948) 0.756 0.833 0.704 0.652 0.864

 DL signature 0.840 (0.715–0.964) 0.800 0.722 0.852 0.765 0.821

 DLRN 0.895 (0.801–0.989) 0.822 0.833 0.815 0.750 0.880
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Fig. 2 Deep learning radiomics nomogram (DLRN) and its performance. a DLRN for identifying moderate-to-severe chronic cholangitis developed 
based on the training dataset. b Violin plots of the differences in DLRN score between non-moderate-to-severe cholangitis and moderate-to-severe 
cholangitis groups in all cohorts. c Calibration curves of DLRN in the four cohorts. Abbreviations: ETC1, external test cohort 1; ETC2, external test 
cohort 2; HL test, Hosmer–Lemeshow test; IVC, internal validation cohort; TC, training cohort

Table 3 Multivariable logistic regression analysis of the DLRN

DLRN score = –4.584 + (1.559 × Biliary stones) + (1.253 × Peribiliary fluid collection) + (3.313 × Handcrafted signature) + (4.160 × DL signature)

Abbreviation: AIC Akaike information criterion, CI confidence interval, DL deep learning, DLRN deep learning radiomics nomogram, OR odds ratio

Intercept and variable β OR (95% CI) P value AIC

Intercept – 4.584 -  < 0.001 106.554

Biliary stones (present) 1.559 4.755 (1.666–15.192) 0.005

Peribiliary fluid collection (present) 1.253 3.501 (1.125–11.762) 0.034

Handcrafted signature (per 0.1 increase) 3.313 27.473 (2.124–433.374) 0.014

DL signature (per 0.1 increase) 4.160 64.089 (7.121–769.009)  < 0.001
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minimize redundancy, and enable the multi-scale inte-
gration of features from various sources.

Furthermore, the influence of clinical factors on cholan-
gitis was considered. A combined DLRN was developed 
and validated, incorporating biliary stones, peribiliary 
fluid collection, as well as handcrafted and DL radiom-
ics signatures. Biliary stones and peribiliary fluid collec-
tion have been shown to be associated with cholangitis 
[39–41]. This is consistent with our study, thereby jus-
tifying their incorporation within the diagnostic model. 

The DLRN presented good calibration and excellent 
diagnostic performance with AUCs ranging from 0.895 
to 0.916, which was higher than the other three models 
alone across all cohorts. This finding aligns with previous 
research, highlighting that multi-scale information fusion 
can significantly enhance the predictive performance of 
models [18, 28]. For instance, Yin et al. [42] developed a 
multimodal model that integrated handcrafted and deep 
learning-based radiomics features from CT images along 
with key clinical characteristics to predict severe acute 

Fig. 3 Receiver operating characteristic (ROC) curves of the four models. Graphs show ROC curves of the deep learning radiomics nomogram 
(DLRN), deep learning (DL) signature, handcrafted signature, and clinical model in the training cohort (a), internal validation cohort (b), external test 
cohort 1 (c), and external test cohort 2 (d). Abbreviations: AUC, area under the receiver operating characteristic curve
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pancreatitis. Their results demonstrated that the multi-
modal model outperformed single-modality models and 
traditional scoring systems, achieving AUCs of 0.874 
and 0.916 in internal and external test sets, respectively. 
Similarly, another study employed a feature integration 
approach and showed that the combined nomogram 
model exhibited strong discriminatory ability for IgA 
nephropathy, achieving an ROC of 0.884 in the testing 
cohort [43]. The consistently superior performance of 

combined models across studies indicated the feasibil-
ity and importance of integrating radiomics with clinical 
features to improve diagnostic accuracy in inflammatory 
diseases. In addition, the minimal AIC and improved 
IDI in this study suggested that the improved discrimi-
natory ability of the DLRN is the result of effective fea-
ture amalgamation rather than model overfitting. The 
promising performance underscored the potential of 
the DLRN in enhancing individualized preoperative risk 

Fig. 4 Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC). a DCA of deep learning radiomics nomogram (DLRN), deep learning (DL) 
signature, handcrafted signature, and clinical model. b CIC of DLRN in the whole cohorts



Page 12 of 14Mao et al. BMC Medical Imaging           (2025) 25:40 

assessments for moderate-to-severe chronic cholangi-
tis, thereby assisting clinicians in selecting appropriate 
treatment strategies for pediatric patients with PBM to 
minimize intraoperative injuries. Furthermore, these 
patients should be closely monitored and actively fol-
lowed up to prevent serious perioperative and postopera-
tive complications.

This study has some limitations. First, this was a retro-
spective study, which was limited by inherent bias. There-
fore, further prospective studies are required to validate 
the robustness and the clinical utility. Second, the differ-
ences in CT systems and scan parameters across different 
centers could influence the radiomics results. However, 
these differences were partially addressed through image 
standardization. Importantly, these disparities also reflect 
the diversity of real-world clinical practice, where simi-
lar inconsistencies are often encountered. Such varia-
tions validate the reproducibility and generalizability of 
multi-center findings, highlighting the robustness of the 
DLRN and its potential for broader clinical implemen-
tation. Third, limitations in imaging resolution and seg-
mentation techniques prevented the bile duct wall from 
being delineated as an independent ROI. Consequently, 
the inclusion of bile fluid within the ROI may have intro-
duced confounding factors, potentially affecting the 
model’s reliability. We will pay attention to advancements 
in fine structure segmentation techniques and con-
tinue to explore improved strategies for separate feature 
extraction. Finally, our study primarily employed portal 
venous-phase CT images to extract radiomics features. 
Future research is needed to determine whether inte-
grating multimodal images could further enhance model 
performance.

Conclusions
In conclusion, the proposed DLRN, incorporating clinical 
characteristics with both handcrafted and DL radiomics 
signatures, exhibited excellent performance in identify-
ing moderate-to-severe chronic cholangitis. It can be a 
useful and non-invasive tool to preoperatively assess the 
severity of choledochal inflammation, thereby facilitating 
individualized treatment and management strategies in 
children with PBM.
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