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Abstract

Background: Secondary use of large scale administrative data is increasingly popular in health services and clinical
research, where a user-friendly tool for data management is in great demand. MapReduce technology such as
Hadoop is a promising tool for this purpose, though its use has been limited by the lack of user-friendly functions
for transforming large scale data into wide table format, where each subject is represented by one row, for use in
health services and clinical research. Since the original specification of Pig provides very few functions for column
field management, we have developed a novel system called GroupFilterFormat to handle the definition of field and
data content based on a Pig Latin script. We have also developed, as an open-source project, several user-defined
functions to transform the table format using GroupFilterFormat and to deal with processing that considers date
conditions.

Results: Having prepared dummy discharge summary data for 2.3 million inpatients and medical activity log data
for 950 million events, we used the Elastic Compute Cloud environment provided by Amazon Inc. to execute
processing speed and scaling benchmarks. In the speed benchmark test, the response time was significantly
reduced and a linear relationship was observed between the quantity of data and processing time in both a small
and a very large dataset. The scaling benchmark test showed clear scalability. In our system, doubling the number
of nodes resulted in a 47% decrease in processing time.

Conclusions: Our newly developed system is widely accessible as an open resource. This system is very simple and
easy to use for researchers who are accustomed to using declarative command syntax for commercial statistical
software and Structured Query Language. Although our system needs further sophistication to allow more flexibility
in scripts and to improve efficiency in data processing, it shows promise in facilitating the application of
MapReduce technology to efficient data processing with large scale administrative data in health services and
clinical research.
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Background
Secondary large scale data such as nation-wide adminis-
trative data are increasingly utilized in clinical and health
service research for timely outcomes studies in real
world settings [1-5]. This trend has further been fueled
by recent improvements in informatics technology for
handling ultra large volumes of on-site data through
work parallelization and cloud computing. For example,
the launch of the Sentinel System by the US Food and
Drug Administration in 2008 aimed at establishing an
active surveillance system for monitoring drug safety in
real-time, using electronic data from multiple healthcare
information holders. In Japan, the Diagnosis Procedure
Combination (DPC) inpatient database survey has col-
lected nationwide administrative data since 2003 [6], and
several epidemiological studies have been based on this
inpatient database [7-12].
Administrative data including time (e.g., day, hour),

procedure, or episode (e.g., hospitalization or visit), are
often presented in long table format. However, prevalent
statistical software for epidemiological analyses prefers
datasets prepared in wide table format with each indivi-
dual record corresponding to one row. Extracting data
from different sources requires linkage of data with
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Figure 1 Data transformation from log data to a wide table.
multiple unique patient identifiers, and complicated
steps for data merge and transformation (Figure 1). Fur-
thermore, it is often necessary in epidemiological studies
to calculate the time interval between different events
recorded in different rows, and then to transform these
data into a wide table column. Suppose one wished to
know whether administration of antibiotics within three
days after surgery reduced the chance of postsurgical in-
fection. Then, the time interval between the first and last
dates of antibiotic administration would need to be cal-
culated and queried.
Data processing and transformation as described above

can be simply handled using existing Structured Query
Language (SQL) technology [13] with a moderate sized
dataset. However, treatment of ultra large databases such
as the nationwide administrative data is beyond the sca-
ling capacity of SQL, and instead parallelized environ-
ments are required. Open source MapReduce technology
such as Hadoop has become popular as a software frame-
work for large scale distributed data analysis [14,15]. The
usefulness of Hadoop, however, is still limited. Many epi-
demiologists, health service researchers, and health policy
analysts who are familiar with the declarative style of
existing statistical software and SQL commands do not
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use Hadoop because MapReduce programming is too
rigid and difficult for these end users to write procedural
code. Also, these researchers often need trial-and-error
ad-hoc analysis for data description and planning optimal
analytic strategy. For such purposes, we need a more user-
friendly framework that allows iterative, easy, and quick
transformation of ultra-large scale administrative data into
an analytic dataset. Recent development of the Pig Latin
language is promising for filling this gap between proce-
dural programmers and data users, and allows user-
friendly use of MapReduce technology, though its use in
the bioinformatics arena is still limited [16].
Given the background and incentives above, we have

developed several user-defined functions (UDF) to
process large scale administrative data for ease of epi-
demiological analysis, based on a Pig Latin script in the
Hadoop framework [17]. The developed script is very easy
to use even for researchers who are accustomed to using
declarative command syntax for statistical software and
SQL. The developed functions were tested with a large
claims database for response speed and scalability and, as
presented below, achieved fairly satisfying results.

Implementation
Referred technologies
Map and Reduce are common to many functional
programming languages such as Lisp and Scheme.
Google recently popularized the use of Map and Reduce
as a simpler solution for parallelizing computation
[18] for a certain subset of problems compared to other
approaches such as Parallel Virtual Machines [19]
Figure 2 Map Reduce architecture.
(Figure 2). One major benefit of the MapReduce ap-
proach is the ability to focus solely on the computation,
and not the shuffling of data between processors.
The programmer only needs to consider the computa-
tion itself and can assume that the data will be available
as required. This allows users with some programming
experience to create and run jobs without extensive
training in parallel computing. The second major bene-
fit of MapReduce concerns data locality. With the
MapReduce paradigm, most of the computation is done
on a slave node, which contains a copy of the input
data. This requires the minimal amount of data being
sent over the network, resulting in increased overall
efficiency.
Hadoop is an open-source implementation of the

MapReduce parallel programming paradigm and is sup-
ported by the open-source community. Hadoop provides
both the MapReduce parallel computation framework
and a distributed file system (called the Hadoop Distri-
buted File System, HDFS). Hadoop, which is an Apache
Foundation project written in Java, provides a master–
slave architecture where a single master node coordi-
nates many slave machines, which carry out data storage
and the actual computation. To enable data-local pro-
cessing, each slave machine tries to use only data stored
on the same machine for computation. This requires
very little shuffling of data over the network, resulting in
decreased demand for network I/O bandwidth. Ad-
ditional slave nodes can be added to the cluster to in-
crease HDFS storage capacity and computational power
as necessary.
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Finally, Apache Pig is a platform for analyzing large
datasets and consists of a high-level language for expres-
sing data analysis programs, coupled with the infrastruc-
ture for evaluating these programs. The salient property
of Pig programs is that their structure is amenable to
substantial parallelization, which in turn enables them to
handle very large datasets [17,20]. Pig’s infrastructure
layer consists of a compiler on the user’s client machine
that transforms Pig Latin programs into sequences of
MapReduce programs that run in parallel on the nodes
of a Hadoop cluster. Pig is a Java client side application
installed locally by users, and thus nothing is altered on
the Hadoop cluster itself [16].
Despite its innovativeness and broader feasibility, the

original Pig Latin has several drawbacks. Firstly, it has
only a “join” script to transform log data into a wide
table format, in which the data are compiled for one
field at a time. This prevents processing multiple fields
in parallel, resulting in slow processing and inefficient
script formation. Secondly, Pig includes only very poor
functions for date processing. It is quite cumbersome to
use Pig for filtering data by date or calculating day inter-
vals between events. These drawbacks must be overcome
to make Pig based scripts suitable for epidemiological
studies.

UDFs for data transformation into a table format
Transformation of long-shaped log data into a wide table
format requires management of the column field
scheme, e.g., assignment of column names and field
locations, and definition of the data content. Since the
original Pig has very limited functions for column field
management, we newly developed GroupFilterFormat to
handle the definition of field and data content. GroupFil-
terFormat also provides information linkage between dif-
ferent code systems, and generates new categories and
values. For example, pharmaceutical codes (such as Uni-
versal Product Numbers in the United States or Japanese
Article Numbers for pharmaceuticals in Japan) by pro-
duct may be cumbersome to handle, and one may wish
to categorize them into larger groups of pharmaceutic-
ally equivalent products (according to their generic
name). Furthermore, suppose pharmaceutical codes cor-
respond not only to the types of medication, but also to
the dose of the medication. GroupFilterFormat defines
which pharmaceutical code should be categorized into a
new larger category, and attaches the numeric dose in-
formation to the code.
The input format for GroupFilterFormat is as follows:

'groupname (item1 [value1, value2 . . .], item2 . . . ), . . .
'where groupname = a new group name corresponding
to a new field in wide format, item = the original code
per item, and value = a numeric value attached to each
item.
In the Map phase, Exists filters the data by excluding
data not defined by GroupFilterFormat, and reduces the
data volume to improve the efficiency of data processing.
In the Reduce phase, InnerGroup transforms the data
from long to wide format allowing a row observation to
correspond to each observed unit, e.g., patient or admis-
sion event. The original Pig has no functions for column
management. Developed data in a table format are
prepared for numeric processing. Value-Join provides
quantitative values linked with qualitative categorical
information as defined in GroupFilterFormat for further
numeric processing. For numeric calculation, the
calculation functions originally available in Pig can be
used (e.g., COUNT, SUM, MAX, and so on) (Figure 3).
UDFs for the management of date data
GetDaySpan calculates a day interval between two dates.
AddDaySpan adds an n day interval to a date to obtain
the date after the interval. These two UDFs are useful
for calculating age and event intervals. PickupSequence-
Values filters data observed consecutively for a period
starting from an assigned date. This UDF is useful for
extracting log data of pharmaceutical administration
repeated over a period (Figure 4).
Benchmark environment and test dataset
Time efficiency is an important issue in data manage-
ment. The main goal of this study was to provide
researchers with open-source, time-efficient software for
handling large scale administrative data. Existing me-
thods designed to handle small datasets would require a
vast amount of time to process a large dataset. This is a
serious problem because it may hinder researchers in
carrying out large-data studies. We developed our soft-
ware to solve this problem and contribute to the en-
hancement of research using a large administrative
database. Consequently, we evaluated the performance
of the software mainly in terms of time efficiency and
scalability.
The Elastic Compute Cloud (EC2) infrastructure ser-

vice from Amazon was used as a test bed for the per-
formance evaluation. We adopted a Large Instance
provided by Amazon EC2 with the following configu-
ration: 7.5 GB memory, 4 EC2 Compute Units (2 virtual
cores with 2 EC2 Compute Units each), 850 GB instance
storage, and a 64-bit platform.
In this benchmarking test, we created dummy admin-

istrative data for in-hospital services containing patient
discharge summary data and medical activity logs for 20
different kinds of medications. We prepared discharge
summary data for 2.3 million inpatients and medical ac-
tivity log data for 950 million events. The Input and
Output data image is as shown in Additional file 1:



Figure 3 Step-by-step example of data transformation. $N indicates the Nth column in the data field.
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Appendix 1 while the program script used for the
benchmark test is given in Additional file 2: Appendix 2.
We created a Hadoop cluster on Amazon EC2, com-

posed of one master for the master name and job tracker
node, and varying numbers of slave nodes for task
tracker and data nodes. For the processing speed bench-
mark, we used varying sized subsamples of the bench-
mark test data, that is, 1/1 sample (23 million patients),
1/2 sample (11.5 million patients), 1/4 sample (5.7 mil-
lion patients), and 1/8 sample (2.6 million patients), and
ran the same script 20 times with each subsample to
Figure 4 Step-by-step example of date management. $N indicates the
measure the processing time using one master node and
4 slave nodes. For the scaling benchmark, we used the
entire sample data, and ran the same script 20 times
using one master node and 2 slave nodes. Then we
doubled the number of slave nodes until 48 nodes were
used, repeatedly measuring the processing time.

Results and discussion
Table 1 and Figure 5 present the results of the proces-
sing speed benchmark using regression in a linear
model, (time(sec)) = 0.0015*(record)+155.22 R2=0.9998.
Nth column in the data field.



Table 1 Results of the processing speed benchmark

Number of
records

Average processing
time (s)

Max
time (s)

Min
time (s)

261,369 554.5976 565.765 545.513

569,738 986.0611 1000.902 971.052

1,150,684 1911.162 1932.173 1890.286

2,301,367 3616.403 3,673.40 3,598.07

Table 2 Results of the scalability benchmark

Number of
slave nodes

Average processing
time (s)

Max
time (s)

Min
time (s)

2 6,892.868 6,986.503 6,844.374

4 3,616.403 3,673.398 3,598.065

8 2,063.208 2,087.145 2,037.378

12 1,301.092 1,326.391 1,280.319

16 1,022.917 1,133.464 985.958

24 677.832 690.765 670.458

48 379.049 401.013 370.314
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As shown in the graph, there is a clear linear relationship
between the processing time and data size. The intercept
of the model is significant, at 155 seconds, which should
correspond to the lead time for batch processing.
Table 2 and Figure 6 give the results of the scaling

benchmark using regression in a power model, (time
(sec)) = 13132(number of node)-0.921 R2=0.9989. The
intercept of the model is significant and this result
shows that using double the number of nodes reduces
processing time by 47%.
The motivation for developing the current system was

to simplify the use of large scale administrative databases
in epidemiological and health service research, and for
policy evaluation. We believe the developed system will
be useful and will contribute to the above goal for the
following reasons.
Firstly, the developed system achieves satisfying scaling

for conversion of a large scale dataset for parallelization
with Hadoop. Because of the overhead of managing each
node, adding additional nodes yields a diminished vo-
lume of transactions, but retains adequate scaling ability.
Processing the 950 million log entries for administrative
activities in the performance test took one hour at a cost
of 10 US dollars using a parallel environment such as
the Amazon system with one master and eight slave
nodes. To complete the task in 10 minutes requires one
master plus 48 slave nodes at a cost of about 50 US
Figure 5 Processing speed benchmark. Dots indicate the average
processing time for 20 trials. The line indicates the prediction
equation fitted with a linear regression.
dollars. Thus, the system allows users to choose between
the tradeoff of time response and cost.
Secondly, the current system uses only free and open-

source components. It uses the Hadoop framework for
distributed data processing, and the Pig Latin language
for script development. These are free-share open-
source software (OSS) products under the Apache Li-
cense. System development of the UDFs in the current
study is also an OSS project, freely available for use and
alteration. Furthermore, Pig can execute the same script
on local computers even without Hadoop. Durok is a
subproduct that has developed from this use of Pig,
allowing the currently developed system to be used as
original application software. At present, Durok is open-
source software available under an Apache License;
however, it is not an official project of the Apache Foun-
dation. The Durok system can be applied to small data-
sets that can be processed without a distributed data
processing environment.
Finally, the system achieved quick response in proces-

sing the large administrative database to allow conve-
nient ad-hoc analysis in a trial-and-error fashion. Quick
and easy access to large databases allows researchers and
analysts broader opportunities for investigating innovative
Figure 6 Scaling benchmark. Dots indicate the average processing
time for 20 trials. The line indicates the prediction equation fitted
with a power regression.
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research questions, generating hypotheses to be tested in
formal research, and ad-hoc monitoring of adverse events.
The current system still needs further development of

the UDFs to allow more complicated data transform-
ation with simpler scripts. Currently, the proposed UDFs
are functionally separated into grouping and date func-
tions owing to restrictions in the format design of
GroupFilterFormat. However, users may wish to identify
patterns in timing and types of administered pharmaceu-
ticals through data mining to find best practice patterns
in a real setting. To satisfy such requirements, the for-
mat design needs further development to allow flexibility
in setting a reference time point in GroupFilterFormat.
We believe that the present system is generalizable to

any large scale administrative database which has a simi-
lar data format to the DPC data. Another challenge is to
further improve efficiency in data processing with
increased data sizes. The Reduce process is a limiting
factor in improving the speed of data processing. Cur-
rently the proposed scheme needs two iterations of the
Reduce step to transform a table (by Innergroup) and
numeric calculation. How to decrease the number of Re-
duce processes will be the key to achieving further
speedup. This may be possible by developing original
UDFs for numeric processing, or by reordering data pro-
cessing to avoid the second Reduce step.

Conclusions
Using a MapReduce program with a Pig Latin-based
script, we developed a tool to transform ultra large ad-
ministrative data into a wide table format. This tool is
very simple and easy to use by researchers, and shows
promise in applying MapReduce technology to efficient
data processing in health services and clinical research
with large scale administrative data.

Availability and requirements

� Project name: The University of Tokyo DPC project
� Project home page: http://github.com/hiromasah/

charsiu
� Operating system(s): Platform independent
� Programming language: Java
� Other requirements: Java 1.3.1 or higher, Hadoop

1.0.0, Pig 0.9.2
� License: Apache
� Any restrictions to use by non-academics: This is

an open source project.

Additional files

Additional file 1: Appendix 1. Dataset format.

Additional file 2: Appendix 2. Pig script.
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