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Abstract

Background: Semantic web technology has been applied widely in the biomedical informatics field. Large
numbers of biomedical datasets are available online in the resource description framework (RDF) format. Semantic
relationship mining among genes, disorders, and drugs is widely used in, for example, precision medicine and drug
repositioning. However, most of the existing studies focused on a single dataset. It is not easy to find the most
current relationships among disorder-gene-drug relationships since the relationships are distributed in
heterogeneous datasets. How to mine their semantic relationships from different biomedical datasets is an
important issue.

Methods: First, a variety of biomedical datasets were converted into RDF triple data; then, multisource biomedical
datasets were integrated into a storage system using a data integration algorithm. Second, nine query patterns
among genes, disorders, and drugs from different biomedical datasets were designed. Third, the gene-disorder-
drug semantic relationship mining algorithm is presented. This algorithm can query the relationships among
various entities from different datasets.

Results and conclusions: We focused on mining the putative and the most current disorder-gene-drug
relationships about Parkinson’s disease (PD). The results demonstrate that our method has significant advantages in
mining and integrating multisource heterogeneous biomedical datasets. Twenty-five new relationships among the
genes, disorders, and drugs were mined from four different datasets. The query results showed that most of them
came from different datasets. The precision of the method increased by 2.51% compared to that of the multisource
linked open data fusion method presented in the 4th International Workshop on Semantics-Powered Data Mining
and Analytics (SEPDA 2019). Moreover, the number of query results increased by 7.7%, and the number of correct
queries increased by 9.5%.
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Background
Semantic web technology has been applied widely in the
biomedical informatics field. The resource description
framework (RDF) data model is commonly used to rep-
resent data in the database. A uniform resource identi-
fier (URI) and character strings are used to represent
different entities and the relationships between entities.
These semantic datasets are published online and can be
accessed via the HTTP protocol and are also known as
linked open datasets [1]. For example, the Life Sciences
dataset is one of the most important parts of Linked
Open Data Cloud [2]. This database consists of 339 RDF
datasets, including 234 BioPortal datasets, 35 Bio2RDF
datasets, and 70 other datasets. Together, they contain
over 30 billion semantic relationships. Furthermore, a
vast number of semantic relationships has been ex-
tracted from biomedical literature databases with un-
structured natural language texts (e.g., MEDLINE) [3, 4].
The other existing biomedical datasets include gene-
related, disorder-related, and drug-related databases. For
example, PharmGKB (https://www.pharmgkb.org) [5] is
a database consisting of drugs, clinical guidelines, and
gene-drug and gene-phenotype relationships. The Uni-
Prot (https://www.uniprot.org/) [6] database aims to
provide comprehensive and high-quality resources on
protein sequences and functional information. This data-
base comprises UniProtKB, UniParc, UniRef, and the
Proteomes dataset. The Kyoto Encyclopedia of Genes
and Genomes (KEGG, https://www.genome.jp/kegg)
database is a professional knowledge base for the bio-
logical interpretation of large-scale molecular datasets,
such as genomic and metagenomic sequences [7]. The
Semantic MEDLINE Database (SemMedDB) [3] (https://
skr3.nlm.nih.gov/SemMedDB/index.html) is a repository
of semantic predications (subject-predicate-object tri-
ples) from MEDLINE citations (titles and abstracts).
This database currently contains approximately 98 mil-
lion predictions from all PubMed citations (approxi-
mately 29.1 million citations, processed using MEDLINE
BASELINE 2019) [8]. Over 3000 papers are added to
MEDLINE every day. Therefore, new semantic relation-
ships are constantly added to SemMedDB.
In recent decades, continuous effort has been directed

to mining semantic relationships from biomedical litera-
ture text with machine learning approaches. Conditional
random field (CRF) and support vector machines (SVM)
have been used to mine relationships [9–11]. In [12], a
new semisupervised learning method based on hidden
Markov models is proposed to extract the disease candi-
date genes from the human genome. This method pre-
dicts genes by positive-unlabeled learning (PU-
Learning). In [13], a verb-centric approach is proposed
to extract relationships without a training dataset. In
[14], Kilicoglu H et al. extend a rule-based,

compositional approach that uses lexical and syntactic
information to predict relationships.
An increasing number of graph-based mining tech-

niques are being applied to characterize the semantic re-
lations in semantic relation extraction tasks [15–17]. In
[18], graph theory and natural language processing tech-
niques are applied to construct a molecular interaction
network to extract relationships automatically.
Deep learning models have been adapted to extract se-

mantic relations for the biomedical domain. Moreover,
this approach achieves high performance on different
biomedical datasets [19]. For example, in [20], unsuper-
vised deep learning models discovered 32% of new rela-
tionships not originally known in the UMLS. In [21],
recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) are fused to learn the features.
RNNs and CNNs are combined for high-quality biomed-
ical relationship extraction.
However, various associations between different datasets

are likely to exist. For example, a gene in KEGG could be
associated with a gene in PharmGKB. Since KEGG stores
data in a different way than PharmGKB, it is time-
consuming and arduous to combine the two databases
directly. Overall, gene, drug, and disorder information has
been stored in different heterogeneous datasets. These dif-
ferent datasets contain essential pieces of information for
the identification of potential disorder biomarkers. Het-
erogeneity and fragmentation of these biomedical datasets
make it challenging to quickly obtain essential information
regarding particular genes, drugs, and disorders of inter-
est. Furthermore, searching these enormous datasets and
integrating the findings across the heterogeneous sources
is costly and complicated [22]. Drug repositioning is one
of the urgent issues that requires semantic relationship
mining among genes, disorders, and drugs from different
biomedical datasets for precision medicine.
Generally, these datasets provide query access for users

through an application programming interface. Querying
the relationships among genes, drugs, and disorders has
become a research topic of increasing interest. The re-
search on linked datasets capitalizes on the storage, man-
agement, and querying of information and promotes in-
depth data analysis and data mining [23]. Semantic rela-
tionship mining among genes, disorders, and drugs is
widely used, for example, in precision medicine and drug
repositioning. For example, semantic relationships among
diseases, drugs, genes, and variants are used to automatic-
ally identify potential drugs for precision medicine in the
Precision Medicine Knowledgebase (PreMedKB) [24]. The
semantic relationships between any two or more entities
are queried to obtain comprehensive information. The se-
mantic relationships among genes, disorders, drugs, and
other concepts in a knowledge base can also be exploited
for prioritizing drug repurposing or repositioning [25–27].
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Drug repositioning is a relatively inexpensive and fast
alternative to the lengthy and financially onerous task
of new drug development [28]. Semantic relationship
mining between a drug and other molecules or en-
tities can also be used for drug-related knowledge dis-
covery [29] and cooccurring entities analysis [30].
However, because these datasets could be stored in
different places and in different ways, with different
data formats and inconsistent representations of the
same entity, the power of data mining across multiple
datasets is far from being realized.
In this paper, a semantic relationship mining method

among genes, disorders, and drugs from different bio-
medical datasets is presented. Semantic relationship
mining across different biomedical datasets was per-
formed to address this problem.
Parkinson’s disease (PD) is a pervasive neurodegenera-

tive disorder that affects approximately 6 million people
worldwide. Genes play an essential role in the develop-
ment of PD. Monogenic forms account for approxi-
mately 10% of all PD cases [31], while the other cases
are multifactorial. An increasing number of PD loci have
been identified [32]. We used PD as a case study and fo-
cused on mining the putative and most current
disorder-gene-drug relationships of PD from four differ-
ent biomedical datasets. We addressed some of the

current challenges in the field, such as integration with
different existing medical datasets and the exploitation
of semantic relationship mining in real-case scenarios.
This approach transcends the limitations of distributed
heterogeneous data sources and results in more
complete datasets in such a way that medical researchers
can freely access multiple datasets across platforms. This
study will impact future translational medical research.

Methods
Multisource data integration
The following life science datasets were studied in this
paper: SemMedDB, KEGG, Uniprot, and PharmGKB. Dif-
ferent organizations publish these datasets. UMLS Metathe-
saurus was introduced to solve the morphology and
polysemy problems. These datasets contain domain patterns
for disorders (disorder), chemicals and drugs (drug) and
genes and molecular sequences (gene). Figure 1 shows nine
drug-disorder, gene-disorder, and drug-gene relationships.
Before mining, we converted the relational databases

(including PharmGKB, KEGG, Uniprot, and SemMedDB)
into the RDF data format using the D2R tool [33] to ob-
tain the SemMedRDF, KEGGRDF, UniprotRDF and
PharmGKBRDF datasets. We constructed Algorithm I to
mine the semantic relationship types between Sem-
MedRDF and other life science linked open data datasets.

Fig. 1 Gene-Disorder-Drug Relationships

Zhang et al. BMC Medical Informatics and Decision Making Page 3 of 112020, 20(Suppl 4):283



Algorithm I is described step by step as follows.
The first step is variable initializations, where Σ is all

data sets, including SemMedRDF, KEGGRDF, Uni-
protRDF and PharmGKBRDF. Links is a variable that
saves a mined semantic relationship. Variable AllPreds
stores the predicate of the datasets;
A compound index of BMRDFs is built on the predicate,

subject, and object and will reduce the processing time;
The first triple is obtained from BMRDFs;
All of the predicates Allpreds are obtained from BMRDFs;
“Predicates” extension: If a predicate can be found in the

Metathesaurus of UMLS, there will be several concepts
with the same concept unique identifier (CUI), e.g., when
searching the Predicate: “TREATS” in the Metathesaurus.
The results are shown in Fig. 2. All of the concepts are
added to Allpreds marking the CUI;
Allpredsis indexed on predicate;
The first pred of Allpreds is obtained;
If any two triples have the same CUI of the subject, predi-

cate, and object while the namespace of the subject or ob-
ject is different, this predicate will be one of the Links;
All of the Links will be added to BMRDFs. It will link

the SemMedRDF to other biomedical datasets.

Gene-disorder-drug semantic relationship mining
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To fully understand the relationships among genes,
disorders, and drugs, the following algorithm was de-
signed to mine the attribute relationships among the
three.
In Algorithm II, three entity sets are defined first:

Gene, Drug, and Disorder. The relationships are de-
fined among the three: the relational dataset from
gene to disorder is called Relation_gene2disorder;
the relational dataset from a gene to a drug is called
Relation_gene2drug; other relational datasets can be
named similarly. The algorithm to accomplish rela-
tionship querying is described as follows:
Traverse every entity in the Gene dataset;
Traverse the adjacent entity e of each entity and the

predicate relationship p between the two;
If the adjacent entity e belongs to the element of

Gene dataset, add the relationship p to Relation_gen-
e2gene; if it belongs to the Drug dataset, add the re-
lationship p to Relation_gene2drug; if it belongs to
Disorder dataset, add the relationship p to Relation_
gene2disorder.

Traverse each entity in the Drug and Disorder
datasets to obtain the corresponding relational
dataset.

Query pattern design
Nine types of relational query patterns were designed
based on the gene-drug-disorder relationships in Fig. 1.

Fig. 2 The search results extension of Predicate: “TREATS” in UMLS

Table 1 Query patterns

No. Query pattern

Q1 Query all genes related to a specific gene

Q2 Query all disorders caused by a specific gene

Q3 Query all drugs targeting a specific gene

Q4 Query all disorders related to a specific disorder

Q5 Query all genes causing a specific disorder

Q6 Query all drugs treating a specific disorder

Q7 Query all drugs related to a specific drug

Q8 Query all disorders treated by a specific drug

Q9 Query all genes targeted by a specific drug
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These query patterns are used in many research fields
[25, 26, 34]. They are shown in Table 1.
It is necessary to know the possible paths from a

disorder to a drug to query the relevant drugs for a
particular disorder, as shown in the relationship path
in Fig. 1. For example, the algorithm designed for
querying all drugs that treat a specific disorder is
shown in Algorithm III. The remaining query pro-
cesses can be performed in the same manner.

The algorithm to query all drugs that treat a specific dis-
order is described as follows:
Take the disorder name entered by the user as the

object, and use the customized myprop: Label as the
predicate to find the subject URI set S;
The relational set from disorder to drug analyzed in

the previous section is the following: Traverse each URI
in set S, and use each element in as predicate to query.
The object set of the query is Temp;
Traverse temp to remove the elements that are not in

myclass: Drug;
Output the remaining results in Temp.
Other algorithms for related queries are similar, except

that the relational set changes.

Experiments and results
Experiment dataset
Overall, any biomedical datasets can be used to mine the
semantic relationships among them. Here, we demon-
strated how semantically integrated RDF datasets, ex-
tracted from structured biomedical databases or linked

open data, can be used to automatically mine the seman-
tic relationships among them. SemMedDB, KEGG, Uni-
prot, and PharmGKB were used in the experiment.

Semantic relationship mining results
As shown in Table 2, 25 new relationships between the
gene, disorder, and drug were mined from the Sem-
MedRDF, KEGGRDF, UniprotRDF, and PharmGKBRDF
datasets. As there are many relationships, the relationships
in Fig. 1 were replaced by numbers, and each relationship
set is represented by nine predicate relationship groups
(PRG1-PRG9) in Table 3. For example, in row 2 of Table 3,
the new relationships R1, R2, R11, R13, R14, R22, and R23
belong to PRG1. These relationships are also associated
with the query patterns Q1. The new relationships can
help us to mine more semantic relationships.

Query results

1. Q1: Query all of the genes that are related to a
specific gene, PARK2. There were 95 results (genes,

Table 2 Predicates and their corresponding numbers

No. Predicates

R1 sem:coexists_with

R2 sem:interacts_with

R3 sem:causes

R4 sem:prevents

R5 sem:manifestation_of

R6 sem:affects

R7 sem:occurs_in

R8 sem:associated_with

R9 kegg:hasDisease

R10 kegg:hasDrug

R11 uniprot:externalLink

R12 pharmgkb: Related_Genes

R13 pharmgkb:associated

R14 sem:stimulates

R15 sem:inhibits

R16 sem:disrupts

R17 sem:treats

R18 sem:complicates

R19 sem:predisposes

R20 sem:augments

R21 sem:produces

R22 kegg:hasPathway

R23 kegg:hasGene

R24 pharmgkb: Related_Drugs

R25 pharmgkb:c2b2r_Related_Diseases
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proteins, and molecular sequences) related to
PARK2, including PARK7, GCH1, PACRG,
FBXW8, PINK1, and NBR1 (Table 4). Among
them, 61 results were from SemMedDB, 23 results
belonged to PharmGKB, and 11 results were from
Uniprot.

2. Q2: Query all of the disorders caused by a specific
gene, PARK2. There were 123 results (disorders)
caused by PARK2. Some results were autosomal
recessive juvenile Parkinson disease, leukemia,
chronic myeloid leukemia, carcinoma of the large
intestine, chronic obstructive airway disease, and
chromosomal translocation. SemMedDB yielded 81
results, and another 42 results belonged to
PharmGKB.

3. Q3: Query all drugs that target a specific gene,
PARK2. There were 68 results (Chemicals & Drugs)
that target PARK2. Some results were Cholesterol,
multicatalytic endopeptidase complex, ubiquitin-
protein ligase, FBXW8, and Reactive Oxygen
Species. SemMedDB yielded 55 results, and another
13 results belonged to PharmGKB.

4. Q4: Query all disorders involved in a specific
disorder, Parkinson’s. There were 66 results
(disorders) involved in Parkinson’s. Some results
were encephalitis, tremor, depressive disorder,
hypokinesia, cognitive deficit, respiratory failure,
equilibration disorder, and Lewy body disease. All
of the results belonged to SemMedDB.

5. Q5: Query all of the genes that cause a specific
disorder, Parkinson’s. There were 28 results
(Genes, protein, and molecular sequences)
involved in Parkinson’s. Some results were
PARK1, PARK2, and CHCHD2. PharmGKB
yielded 25 results, and another 3 results belonged
to SemMedDB.

6. Q6: Query all of the drugs that treat a specific
disorder, Parkinson’s. There were 51 results
(Chemicals & Drugs) involved in Parkinson’s. Some
results were dopamine, levodopa, dopamine
transporter, and multicatalytic endopeptidase
complex. SemMedDB yielded 40 results, and
another 11 results belonged to PharmGKB.

7. Q7: Query all of the drugs involved in a specific
drug, Levodopa. There were 79 results (Chemicals
& Drugs) involved in Levodopa. Some results were
Reserpine, Acetylcholine, Antipsychotic Agents,
Monoamine Oxidase, Serotonin, and Isoproterenol.
SemMedDB yielded 67 results, and another 12
results were from KEGG.

8. Q8: Query all of the disorders treated by a specific
drug, Levodopa. There were 47 results (disorders)
involved in Levodopa. Some results are Parkinson’s
Disease, Seborrheic dermatitis, Hepatic
Encephalopathy, Hepatic Coma, Hypotension,
Secondary hyperprolactinemia due to prolactin-
secreting tumor, Striatonigral Degeneration,
nervous system disorder, and Hypokinesia.

Table 3 Query patterns

No. Related predicates PRG (Predicates relationship group) No.

Q1 R1, R2, R11, R13, R14, R22, R23 PRG1

Q2 R1, R2, R3, R13, R14, R15, R21 PRG2

Q3 R3, R6, R8, R13, R16, R19 PRG3

Q4 R1, R2, R13, R14, R15, R22 PRG4

Q5 R2, R13, R14, R15 PRG5

Q6 R13, R21 PRG6

Q7 R1, R2, R5, R6, R7, R13, R18, R19, R20 PRG7

Q8 R3, R4, R13, R17, R25 PRG8

Q9 R8, R12, R13 PRG9

Table 4 Some genes related to PARK2
No. Predicate Object

1 <http://www4.wiwiss.fu-berlin.de/semdb/PREDICATE#COEXISTS_WITH> <http://www4.wiwiss.fu-berlin.de/semdb/OBJECT_NAME#PARK7>

2 <http://www4.wiwiss.fu-berlin.de/semdb/PREDICATE#COEXISTS_WITH> <http://www4.wiwiss.fu-berlin.de/semdb/OBJECT_NAME#GCH1>

3 <http://www4.wiwiss.fu-berlin.de/semdb/PREDICATE#COEXISTS_WITH> <http://www4.wiwiss.fu-berlin.de/semdb/OBJECT_NAME#PACRGgene|PACRG>

4 <http://www4.wiwiss.fu-berlin.de/semdb/PREDICATE#COEXISTS_WITH> <http://www4.wiwiss.fu-berlin.de/semdb/OBJECT_NAME#FBXW8>

5 <http://www4.wiwiss.fu-berlin.de/pharmgkb/ASSOCIATION#ASSOCIATED> <http://www4.wiwiss.fu-berlin.de/pharmgkb/Entity2_NAME#PINK1>

… … …

95 <http://www4.wiwiss.fu-berlin.de/uniprot/EXTERNALLINK> <http://www4.wiwiss.fu-berlin.de/uniprot#NBR1>
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SemMedDB yielded 36 results, and another 11
results belonged to PharmGKB.

9. Q9: Query all of the genes that are targeted by a
specific drug, Levodopa. There were 26 results
(Genes, protein, and molecular sequences) involved
in Levodopa. Some results were PARK1, PARK2,
and CHCHD2. All of the results belonged to
SemMedDB.

For the nine relationships between genes, disorders,
and drugs, nine queries (Q1-Q9) were designed. Tables 5
and 6 record the source and respective proportions of
each query result. To evaluate the results to improve the
accuracy, we invited three professionals as domain ex-
perts to evaluate the query results. Two of these experts
evaluated the results independently. The three experts
provided their confidence levels (“Yes,” or “No”) in the
query results. Each query result received the label “the
correct query result” if it received more than two “Yes”.
Otherwise, it was labeled “a false query result”. The ana-
lysis of the query results is shown in Tables 5 and 6: the
column of “No” represents the nine queries. In the col-
umn of “(The number of correct queries results): (The
number of queries results),”, for example, in Table 4,
“48: 56” means that there were 56 query results from
SemMedDB for Q1 in total. Forty-eight of them received
the “correct results” label. The column “Precision”
means that the “The number of correct query results”
out of the total “The number of query results.” For ex-
ample, in Table 4, “91.11” means that the “The number
of correct query results” of Q1 was 91.11% (82/90).
In Tables 5 and 6, the results are mainly from Sem-

MedDB and PharmGKB. Furthermore, some of the re-
sults are from KEGG and Uniprot. The precision of
PharmGKB, KEGG, and Uniprot was 100%. The preci-
sion of SemMedDB using the method in the paper pub-
lished in the ISWC SEPDA 2019 workshop [35] was
83.08% (329: 396). The precision of SemMedDB using

the method in this paper was 86.44% (376: 435), which
was an increase of 4.04%.
The precision of the method published in the ISWC

SEPDA 2019 workshop [35] was 87.68% (477/544). The
precision of the method presented in this paper was
89.88% (524/583). The precision increased by 2.51%.
Furthermore, the number of query results increased by
7.7% ((583–544)/583), and the number of correct query
results increased by 9.5% ((524–477)/524). That means
that the method in this paper can help mine more re-
sults with increased precision.

Discussion
Strengths
It is crucial to integrate SemMedDB with other data-
bases in this method. SemMedDB is a database of se-
mantic predictions (subject-predicate-object triples)
from MEDLINE citations (titles and abstracts). Sem-
MedDB currently contains approximately 98 million pre-
dictions from all PubMed citations (approximately 29.1
million citations, processed using MEDLINE BASELINE
2019) [8]. Over 3000 papers are added to MEDLINE
every day. Therefore, new semantic relationships are
added continuously to SemMedDB. The latest relation-
ships can help to discover new relationships for related
research. Some potential recommended drugs reported
in the recent literature for PD have been found in the
preliminary step work on drug repositioning based on
this method.
In this paper, the semantic relationship mining

method is used to explore interesting, hidden, or previ-
ously unknown biomedical relationships. Twenty-five
new relationships are extracted in the verification experi-
ment. It helps to improve the results with quantity and
quality. Furthermore, interesting, hidden, or previously
unknown biomedical relationships can help to detect the
potential relationships between drugs and diseases [20, 36].

Table 5 Analysis of the query results from [35]

No. (The number of correct query results): (The number of query results) Precision
(%)SemMedDB PharmGKB KEGG Uniprot Total

Q1 48: 56 23: 23 – 11:11 82: 90 91.11

Q2 56: 73 42: 42 – – 98: 115 85.22

Q3 44: 52 13: 13 – – 57: 65 87.69

Q4 54: 63 – – – 54: 63 85.71

Q5 – 25: 25 – – 25: 25 100

Q6 29: 36 11: 11 – – 40: 47 85.11

Q7 54: 61 – 12: 12 – 66: 73 90.41

Q8 25: 32 11: 11 – – 36: 43 83.72

Q9 19: 23 – – – 19: 23 82.61

Total 329: 396 125: 125 12: 12 11: 11 477: 544 87.68
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The nine types of common query patterns are pro-
posed in the baseline method. This approach covers all
semantic relationships between genes, disorders and
drugs. Compared with the other models, our method
can be extended to be used in more applications without
a training dataset. Moreover, the method can also meet
the requirements of processing large-scale data without
high computational cost. The processing time increases
with the size of the data linearly. It is more effective than
the machine learning method, such as SemRep. In Sem-
MedDB, the weighted average precision of the predic-
tions is based on the number of predictions evaluated,
which was approximately 0.79 [37–40]. In this paper, we
used the approach in [34] to extract high-quality triples
from SemMedDB. The precision increased by 2.27%.

Limitations and future effort
Since the fact that the quality of the datasets will affect
the semantic relationship mining, the method has some
limitations: (1) The quality of the SemMedDB should be
improved in future research. (2) The quality of the other
datasets depends on their creators. Thus, high-quality
datasets will be selected carefully. Alternatively, we will
try our best to improve the quality of the datasets se-
lected. (3) Currently, mining semantic relationships
among genes, disorders, and drugs from different bio-
medical datasets is the first step for precision medicine
and drug repositioning. It would be desirable to mine re-
positioning drugs based on semantic relationships for
more disorders, such as PD, Alzheimer’s Disease, cancer.

Conclusions
In this paper, a semantic relationship mining method
among genes, disorders, and drugs was developed. In
this method, data from various biomedical datasets were
first converted into RDF triples and then integrated into
a system for querying nine types of common query pat-
terns. We focused on mining the putative and latest

gene-disorder-drug relationships about PD. The experi-
ment was conducted on four different datasets. The re-
sults showed that our method has significant advantages
in integrating multisource heterogeneous biomedical
data. Twenty-five new relationships among genes, dis-
order, and drugs were identified, and most of them came
from different datasets. Moreover, the precision of our
method increased by 2.51%. The number of query results
increased by 7.7%, and the number of correct queries in-
creased by 9.5%. These findings demonstrate that our
method is robust and reliable in mining important gene-
disorder-drug relationships.
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