
Seo et al. BMC Med Inform Decis Mak          (2020) 20:320  
https://doi.org/10.1186/s12911-020-01305-9

TECHNICAL ADVANCE

Evaluation of conditional treatment 
effects of adjuvant treatments on patients 
with synovial sarcoma using Bayesian subgroup 
analysis
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Abstract 

Background:  The impact of adjuvant chemotherapy or radiation therapy on the survival of patients with synovial 
sarcoma (SS), which is a rare soft-tissue sarcoma, remains controversial. Bayesian statistical approaches and propen-
sity score matching can be employed to infer treatment effects using observational data. Thus, this study aimed to 
identify the individual treatment effects of adjuvant therapies on the overall survival of SS patients and recognize 
subgroups of patients who can benefit from specific treatments using Bayesian subgroup analyses.

Methods:  We analyzed data from patients with SS obtained from the surveillance, epidemiology, and end results 
(SEER) public database. These data were collected between 1984 and 2014. The treatment effects of chemotherapy 
and radiation therapy on overall survival were evaluated using propensity score matching. Subgroups that could 
benefit from radiation therapy or chemotherapy were identified using Bayesian subgroup analyses.

Results:  Based on a stratified Kaplan–Meier curve, chemotherapy exhibited a positive average causal effect on sur-
vival in patients with SS, whereas radiation therapy did not. The optimal subgroup for chemotherapy includes the fol-
lowing covariates: older than 20 years, male, large tumor (longest diameter > 5 cm), advanced stage (SEER 3), extrem-
ity location, and spindle cell type. The optimal subgroup for radiation therapy includes the following covariates: older 
than 20 years, male, large tumor (longest diameter > 5 cm), early stage (SEER 1), extremity location, and biphasic type.

Conclusion:  In this study, we identified high-risk patients whose variables include age (age > 20 years), gender, 
tumor size, tumor location, and poor prognosis without adjuvant treatment. Radiation therapy should be considered 
in the early stages for high-risk patients with biphasic types. Conversely, chemotherapy should be considered for late-
stage high-risk SS patients with spindle cell types.
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Background
Synovial sarcoma (SS) is a rare soft-tissue sarcoma that 
accounts for 6% of all soft-tissue sarcomas [1–3]. Its clini-
cal presentations, including tumor size, location, and 

histological subtype, are diverse and significantly affect 
prognoses [4]. Because SS is considered as a high-grade 
sarcoma with poor prognosis, the role of multimodal 
treatment in patients with SS is heavily debated [1–4].

The effects of adjuvant chemotherapy or radiation 
therapy (RT) on survival in patients with SS remain 
controversial because definitive evidence from rand-
omized trials is unavailable [3, 5, 6]. Therefore, treat-
ment benefits for rare types of cancer are challenging to 
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identify based on definitive evidence, because extensive 
randomized clinical trials (RCTs) are difficult to con-
duct [5] and subgroup analyses are often inadequately 
representative due to their small sample sizes.

Significant advances in statistics and data science 
have allowed us to address these issues. First, average 
treatment effects can be inferred from observational 
data using propensity score matching (PSM). PSM [7, 
8] allows us to compare patients with similar distribu-
tions of baseline covariates, thereby minimizing the 
effects of confounders.

Second, statistical approaches have yielded reli-
able results in studies with small sample sizes [9–11]. 
Bayesian statistics infer the posterior distributions 
of treatment outcomes based on current observation 
results and prior beliefs. Thus, using Bayesian statistical 
approaches for subgroup analysis can help realize prac-
tical and credible results.

We aimed to evaluate the average treatment effects 
of RT and chemotherapy in SS patients, using the PSM 
method. Additionally, we attempted to identify specific 
subgroups of patients who could benefit from RT or 
chemotherapy, using Bayesian subgroup analyses.

We obtained the data of SS patients from the surveil-
lance, epidemiology, and end results (SEER) database. 
Subsequently, we (a) evaluated differences between 
the survival outcomes of treated and untreated 

covariate-balanced patients and (b) identified sub-
groups that could benefit from RT or chemotherapy.

Methods
Study population
In the SEER database, we identified all patients with a 
pathologically confirmed diagnosis of SS (ICD-O-3 codes 
9040, 9041, 9042, and 9043) between 1984 and 2014.

For the analysis, we collected data regarding age at 
diagnosis, sex, primary tumor site (axial or extremity), 
tumor size (large or small with a cutoff of 5 cm, accord-
ing to the protocol of the American Joint Committee 
on Cancer), histologic subtype [spindle cell type, bipha-
sic type, or not otherwise specified (NOS)], SEER stage 
(localized, regional, or distant), surgical treatment, RT, 
and chemotherapy as baseline covariates. The overall sur-
vival time in months and event (death or alive) data were 
also collected. We excluded patients with missing treat-
ment information. Our cohort selection was conducted 
as follows. A total of 2249 patients were identified from 
1984 to 2014. Among these patients, 712 with missing 
treatment information were excluded. Therefore, 1537 
patients were included for the analysis (Table  1.). The 
missing variables were imputed using K-nearest neigh-
bors imputation.

For external validation, we compared the survival out-
comes between treated and untreated patients in sub-
groups of Korean SS patients. Between March of 2001 

Table 1  Baseline covariates of the dataset

Total cases 
(1537)

Radiation treatment Chemotherapy treatment

Unmatched Matched Unmatched Matched

RT (913) No RT (624) Factual RT 
(560)

Counter 
factual RT 
(560)

Chem (736) No Chem 
(801)

Factual 
Chem (720)

Counter 
factual Chem 
(720)

Age 38.23 
(± 18.27)

37.35 
(± 17.55)

39.51 
(± 19.22)

39.89 
(± 18.54)

38.57 
(± 17.82)

35.08 
(± 15.52)

41.11 
(± 20.06)

35.25 
(± 15.41)

34.05 (± 13.92)

Sex (female, 
%)

51.20 50.49 52.24 49.46 52.14 52.31 50.19 52.78 50.56

Size (%) 61.48 62.87 59.46 58.04 58.75 76.90 47.32 76.67 79.31

Primary site 
(%)

76.84 77.22 76.28 76.43 77.50 74.86 78.65 74.86 72.78

SEER (%)

 Blank 1.82 1.31 2.41 0.00 0.00 1.09 3.31 0.00 0.00

 1 61.74 67.36 53.61 50.00 57.32 52.85 65.01 54.03 46.53

 2 23.49 22.89 24.40 26.07 26.25 25.54 21.76 25.97 27.08

 3 12.95 08.43 19.58 23.93 16.43 20.52 09.92 20.00 26.39

Surgery (%) 89.92 93.54 84.62 82.14 88.21 86.14 93.38 86.11 82.78

ICD_NOS (%) 47.89 38.55 45.35 47.68 43.75 39.54 42.95 39.72 36.81

ICD_Spindle 
(%)

41.31 36.47 32.53 29.11 33.04 36.82 33.08 36.67 41.53

ICD_bi (%) 34.87 25.08 22.44 23.21 23.57 23.64 24.34 23.61 21.81
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and February of 2013, data from 242 SS patients were 
collected from three different institutes: Seoul National 
University (107 patients), Samsung Medical Center (83 
patients), and the National Cancer Center (52 patients). 
Data usage was approved by the institutional review 
boards of the involved institutions [Seoul National Uni-
versity Hospital (H-1701-084-823), Samsung Medical 
Center (No. 201701136), and the National Cancer Center 
(No. 201700190001)] (Table 2).

Identification of treatment effects
In observational data, treatments are not assigned equally 
because variables known as confounders can affect the 
assignment of treatments. For example, late-stage cancer 
patients are more likely to be administered chemotherapy; 
however, these patients are also more strongly associated 
with poor prognoses. If the stages are unequally matched, 
we may derive a biased conclusion that chemotherapy 
is closely associated with poor prognoses. Therefore, we 
need to compare outcomes between treated and untreated 
individuals only when they have similar variables or are in 
the same unit ( ui , as defined by Pearl with the backdoor 

criterion). For this purpose, we divided the study popula-
tion into units or subgroups with identical variables ( ui ). 
Thereafter, we evaluated treatment effects based on the 
covariates of each unit. Such effects are referred to as con-
ditional treatment effects (CTEs). Under the stable unit 
treatment value assumption [12], the CTE (X) of a unit 
subgroup ( ui ) can be defined as follows:

The treatment effect of a subgroup ( ui ) can be denoted 
as a CTE assuming that x ∼= x′,

(

x, x′ ∈ ui
)

. The CTE 
τ ( x ∈ ui ) of a subject (T = 1, x ∈ ui ) can be defined as 
follows:

Therefore, treatment outcomes can be compared among 
the subjects within a unit. Here, we randomly selected sub-
jects from each unit and compared their outcomes using 
win probabilities.

Subgroup clustering
We divided the study population into units or subgroups 
with identical variables using a hierarchical cluster-
ing  method. By considering all possible combinations of 
nine variables—age, sex, tumor size, location, SEER stage, 
surgery, RT or chemotherapy, spindle cell type, and bipha-
sic type—we divided the patients into 512 subgroups ( 29).

Bayesian subgroup analysis
The outcome of a treatment (Y) was defined as the win 
probability (i.e., chance of a treated patient to live longer 
than untreated patients). The survival times of treated and 
untreated patients in each subgroup ( ui ) were compared 
using the concordance method, which is a ranking method 
for identifying survival winners by matching each patient 
with the other patients in the same group. The win prob-
ability of the observed patients followed a binomial likeli-
hood distribution P(X|Y), and the beta distribution was 
the conjugate prior to the binomial likelihood distribu-
tion. Prior knowledge P(Y) was defined as a beta distribu-
tion Beta (α,β). As we did not possess any prior knowledge 
regarding the treatment outcomes of each subgroup, we 
considered a uniform prior (α = 1, β = 1) for the prior P(Y). 
The expected posterior probability of treatment outcomes 
in a subgroup ( ui ) can be updated by observing  data, as 
follows:

Y (T = 1,ui),Y (T = 0,ui)⊥ui,ui ∈ S
(

subgroups
)

.

ŴCTE(.|ui) = E[Y (T = 1|x)− Y (T = 0|x
′

)|x, x
′

∈ ui].

Table 2  Population of the external dataset

Patient population 242

Age Mean 37.6 ± 2.1

Sex (%) Male 47.93

Female 52.07

Size (%) Less than 5 cm 45.87

Greater than 5 cm 54.13

Tumor location (%) Trunk 31.82

Extremity 68.18

SEER tumor stage (%) 1 75.62

2 10.33

3 14.05

Surgery (%) No surgery 0.00

Surgery 100.00

Radioactive treatment (%) Untreated 38.84

Treat 61.16

Chemical treatment (%) Untreated 44.21

Treat 55.79

Pathological subtype (%) Mono 25.62

Bi 44.63

Unclassified 29.75
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Subgroups for which the Bayes factor (BF) was higher 
than three (substantial evidence according to Kass and 
Raftery [13]) were selected as the credible subgroups. The 
most credible subgroup for the treatment was defined as 
the group for which the lower bound of the 95% cred-
ibility interval [95% confidence interval (CI) of treatment 
benefit] was the highest.

The net treatment benefits of optimal subgroups (S
*) can be estimated by comparing the CTEs of optimal 
groups and other subgroups ( S  = S*), as follows:

Pairs of distributions ( CTES∗ vs. CTE(S =S∗) ) were com-
pared by plotting 2D bivariate distributions. If approxi-
mately 95% of the area of a bivariate distribution is 
located on the upper-left side of the neutral line, then this 
indicates that a treatment has a more significant benefit 
for the optimal subgroups compared to that for other 
subgroups.

Statistical methods
PSM is used to match sets of patients who share the 
same propensity score (27 units of score with a standard 
deviation of 0.2). Because a propensity score represents a 
probability of treatment assignment, we can assume that 
patients in a matched set are independent of treatment 
conditions [14]. We adopted a logistic regression method 
whereby treatment assignments were regressed based on 
the nine baseline variables. Survival outcomes were eval-
uated using Kaplan–Meier survival analyses. A stratified 
log-rank test was used to compare the survival curves 
of matched patients. Statistical analysis was performed 
using the Statistical Package for the Social Sciences soft-
ware version 23 (IBM Corp., La Jolla, CA, US). Bayes-
ian statistical modeling was conducted using a Python 
package called PyMC3. The Scikit-learn library was 

P(Y |X)P(X |Y )P(Y )

Prior P(Y ) ∼ Beta (, )

Posterior P(Y |X) ∼ Beta (+,+n−)

P(X|Y) : likelihood or win probability

X ∈ ui : a patient in the subgroup with the same covariates

Y ∈ R, 0 ≤ Y ≤ 1 : treatment benefit

γ : number of wins

n : number of observations

Beta (, ) : prior beta distribution

Y : treatment outcome.

Treatment Benefit = CTES∗ − CTE(S�=S∗)

= E[Y (T = 1|x)−Y (T = 0|x′)|x, x
′

∈ S
∗]

− E[Y (T = 1|x)− Y (T = 0|x′)|x, x
′

/∈ S
∗].

used for preprocessing data. The results are presented as 
mean ± 95% CI, unless otherwise specified.

Results
Average treatment effects on the survival of SS patients
Impact of chemotherapy on the survival of SS patients
Data from all treated and untreated patients were used 
to approximate the propensity function of chemother-
apy. The baseline covariates in the dataset are listed in 
Table  1. Systemic differences in terms of baseline vari-
ables can be observed between the treated and untreated 
patients, as shown in Fig.  1a. Each of the 736 patients 
who underwent chemotherapy were matched with the 
801 untreated patients with propensity scores similar to 
those of chemotherapy, in order to estimate the average 
treatment effect for the entire population. The results 
indicate that chemotherapy is significantly beneficial for 
survival in all patients (p = 0.0001; Fig. 1b, c).

Impact of RT on the survival of SS patients
Data from all treated and untreated patients were used to 
approximate the propensity function of RT. Each of the 
913 patients who were treated with RT were matched 
with the 624 untreated patients with propensity scores 
similar to those of RT, to estimate the average treatment 
effect for the entire population. The baseline characteris-
tics and standardized differences of the matched samples 
for RT are presented in Table 1 and Fig. 2a. These results 
indicate that RT is not significantly beneficial for survival 
in all patients (Fig. 2b, c).

CTEs on the survival of SS patients in subgroups
Patients were divided into 512 subgroups using the 
hierarchical clustering method discussed earlier. The 
win probability [ ŴCTE(X |ui ∈ S)] of each patient was 
updated in the beta prior distribution of each subgroup 
( ui) . Subsequently, we identified the optimal subgroup 
(S∗) for which BF was greater than three and the lower 
bound (95% CI) of the win probability distribution for 
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the treatment group was greater than 0.5 (50% win 
probability).

Impact of chemotherapy on the survival of SS patients 
in subgroups
One subgroup was identified as the optimal subgroup 
for chemotherapy, where BF was greater than three and 
the win probability (CTE) of chemotherapy was greater 
50% (95% CI) (Fig.  3a). This subgroup includes male 
patients who are older than 20 years and have large 
tumors (longest diameter > 5  cm) in their extremities, 
an advanced stage of cancer (SEER 3), and spindle cell 
type of SS. Based on the corresponding Kaplan–Meier 
curves, the treated patients exhibited significantly bet-
ter prognoses than the untreated patients in the optimal 
subgroup S* (p = 0.003) (Fig.  3b). In this subgroup, the 
untreated patients have a 5.8 times greater risk of death 

compared to the treated patients [hazard ratio: 5.8 (95% 
CI: 0.29–17.8)]. However, the Kaplan–Meier curves indi-
cated an insignificant difference between the prognoses 
of treated and untreated patients in the other subgroups 
(p = 0.352). The two distributions ( CTES∗ vs. CTE(S =S∗) ) 
were compared by plotting a 2D bivariate distribution. 
Approximately 95% of the area of the bivariate distri-
bution was located on the upper-left side of the neutral 
line. Therefore, the results indicate that chemotherapy 
significantly enhanced the benefit for this subgroup, as 
compared to the other subgroups (Fig.  3d). The worst 
subgroup for chemotherapy was also isolated, where BF 
was greater than three and 95% of the win probability 
distribution for chemotherapy was below 50% (Fig.  4a). 
This subgroup includes male patients who are older than 
20 years; underwent RT; and have large tumors (longest 
diameter > 5  cm) located in their trunks, an early stage 
of cancer (SEER 1), and spindle cell type of SS. In this 

Fig. 1  Overall treatment effects of chemotherapy. a Standard difference in baseline covariates between treated and untreated patients. The 
covariates of unmatched patients (red dot) represent significant differences between the treated and untreated groups. The treated patients are 
more likely to be younger and have a larger tumor size and higher SEER stage compared to the untreated patients. Following propensity matching, 
the covariates are well balanced (black star). b Kaplan–Meier survival curves representing the overall survival rate of patients with SS. The treated 
group exhibits worse prognoses compared to the untreated group [p = 0.003, hazard ratio: 1.32 (95% CI: 1.10–1.59)]. The x-axis represents time in 
months. c Kaplan–Meier survival curves of matched patients with SS. The treated group exhibits significantly better prognoses than the untreated 
group (p = 0.0001). The x-axis represents time in months
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subgroup, chemotherapy patients exhibited significantly 
poorer prognoses than untreated patients (p = 0.015) 
(Fig.  4b). However, chemotherapy generally improved 
prognoses in the other subgroups (p = 0.019) (Fig.  4c). 
Approximately 95% of the area of the corresponding 
bivariate distribution was located on the lower-right side 
of the neutral line (Fig. 4d). Therefore, these results indi-
cate that treatment without chemotherapy has a signifi-
cantly enhanced benefit for this subgroup, as compared 
to the other subgroups. For this subgroup, the risk of 
death increased by nine times when patients underwent 
chemotherapy [hazard ratio: 9.0 (95% CI: 0.48–169.2)].

Impact of RT on the survival of SS patients in subgroups
One subgroup was identified as the optimal subgroup 
for RT, where BF was greater than three and the win 
probability (CTE) of RT was greater than 50% (95% CI) 

(Fig.  5a). This subgroup included male patients who 
were older than 20 y and have large tumors (longest 
diameter > 5 cm), early stages of cancer (SEER 1) in their 
extremities, and a biphasic type of SS. The Kaplan–
Meier curves indicate that treated patients have signifi-
cantly better prognoses compared to untreated patients 
in the optimal subgroup S* (p = 0.000) (Fig. 5b). In this 
subgroup, untreated patients have a 5.1 times greater 
risk of death compared to treated patients [hazard 
ratio: 5.1 (95% CI 0.31–85.3)]. However, the Kaplan–
Meier curves do not indicate any significant differ-
ences between the prognoses of treated and untreated 
patients in the other subgroups (p = 0.0802).

To estimate the net treatment benefits for the optimal 
subgroups S*, we compared the two probability distribu-
tions ( CTES∗ vs. CTE(S =S∗) ) using a 2D bivariate distri-
bution. We found that 95% of the area of the bivariate 

Fig. 2  Overall treatment effects of RT. a Standard difference in baseline covariates between the treated and untreated patients. The covariates of 
unmatched patients (red dot) represent significant differences between the treated and untreated groups. The treated patients are more likely 
to have a lower SEER stage and be surgically treated compared to the untreated patients. Following propensity matching, the covariates are well 
balanced (black star). b Kaplan–Meier survival curves for the overall survival of patients with SS. The treated group exhibits significantly better 
prognoses compared to the untreated group (p = 0.0014). The x-axis represents time in months. c Kaplan–Meier survival curves of matched patients 
with SS. The treated group exhibits similar prognoses compared to the untreated group (p = 0.56). The x-axis represents time in months
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distribution was located on the upper-left side of the 
neutral line. This indicates that treatment has a more sig-
nificantly enhanced benefit for the optimal subgroup, as 
compared to that for the other subgroups (Fig. 5d). The 
worst subgroup for RT satisfying the required evidence 
level (BF greater than three and 95% of the win probabil-
ity distribution below 50%) could not be identified from 
the available data.

External validation
Based on SEER data, we identified the optimal subgroup 
for chemotherapy, worst subgroup for chemotherapy, 
and optimal subgroup for RT. For external validation, 
we isolated the same subgroups from an external data 
set (Table  2) and compared the outcomes between the 
treated and untreated patients in each subgroup using 
Kaplan–Meier survival analyses. All the patients in the 

Fig. 3  Bayesian inference of the CTEs of chemotherapy for the optimal subgroup. a Win probability distribution of the optimal subgroup. In 
subgroup 30, the patients who were treated with chemotherapy exhibit a significantly greater probability of survival compared to the untreated 
patients (lower bound of 95% CI > 0.5). b Kaplan–Meier survival curves of optimal subgroups. The treated patients exhibit significantly better 
prognoses than the untreated patients in the subgroups (p = 0.003). c Kaplan–Meier survival curves of other subgroups outside the optimal 
subgroup. The treated patients do not exhibit significantly better prognoses than the untreated patients in these subgroups (p = 0.352). d Bivariate 
win probability distribution for visualizing treatment benefits. To compare the distributions of win probabilities between the optimal and control 
subgroups, we visualized the joint distribution of these two groups. The blue contour represents the density of probability and the end of the 
contour (margin of the graph) represents a 95% CI. The upper triangle represents the area of treatment benefit
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optimal subgroup for chemotherapy in the validation set 
underwent chemotherapy. Therefore, we compared the 
treated patients from this dataset with the patients in the 
SEER dataset. The treated patients in the validation set 
did not exhibit any significant differences in terms of sur-
vival time compared to the treated patients in the SEER 
dataset (p = 0.221), but did exhibit significant differences 
in terms of survival time compared to the untreated 
patients in the SEER dataset (p = 0.039) (Fig. 6a).

Moreover, all the patients in the worst subgroup 
for chemotherapy in the validation set underwent 

chemotherapy. Therefore, we compared these treated 
patients to the patients in the SEER dataset. The treated 
patients in the validation set did not exhibit any signifi-
cant differences in terms of survival time compared to 
the treated (p = 0.889) and untreated (p = 0.128) patients 
in the SEER dataset. Although the differences were not 
statistically significant due to the small sample size of 
the validation set, the survival curve of the validation set 
indicated poorer prognoses compared to the untreated 
patients in this subgroup (Fig. 6b). The optimal subgroup 
for RT in the validation set contained only one patient 

Fig. 4  Bayesian inference of the CTEs of chemotherapy for the worst subgroup. a Win probability distribution of the worst subgroup. In subgroup 
89, patients who were treated with chemotherapy exhibit a significantly greater probability of survival compared to the untreated patients (lower 
bound of 95% CI > 0.5). b Kaplan–Meier survival curves of the worst subgroup. The treated patients exhibit significantly better prognoses than the 
untreated patients in this subgroup (p = 0.015). c Kaplan–Meier survival curves of other subgroups outside the worst subgroup. The treated patients 
do not exhibit significantly better prognoses than the untreated patients in these subgroups (p = 0.019). d Bivariate win probability distribution 
for visualizing treatment benefits. To compare the distributions of win probabilities between the optimal and control subgroups, we visualize the 
joint distribution of these two groups. The blue contour represents the density of probability and the end of the contour (margin of the graph) 
represents a 95% CI. The upper triangle represents the area of treatment benefit
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who underwent RT. Therefore, we could not compare the 
outcomes for this group.

Discussion
The effects of adjuvant treatment on patients with SS 
are difficult to evaluate because the incidence of this 
type of sarcoma is considerably low. Therefore, the use 
of adjuvant treatments, such as chemotherapy or RT, 
for patients with SS remains controversial. Based on our 
results, we conclude that, for the unbalanced baseline 

covariates, chemotherapy appears to be associated with 
poor prognoses. However, based on the balanced data, 
we determined that chemotherapy has a positive effect 
on survival rates. Propensity matching allows us to bal-
ance covariates between the two groups at the complete 
sample level, which enables us to estimate average treat-
ment effect [15].

Average causal effects do not necessarily indicate 
that the same treatment effects can be expected for 
all patients. In fact, treatment effects may vary for a 

Fig. 5  Bayesian inference of the CTEs of RT. a Win probability distribution of the optimal subgroup. In subgroup 32, the patients who were treated 
with chemotherapy exhibit a significantly greater probability of survival compared to the untreated patients (lower bound of 95% CI > 0.5). b 
Kaplan–Meier survival curves of the worst subgroup. The treated patients exhibit significantly better prognoses than the untreated patients in 
this subgroup (p = 0.000). c Kaplan–Meier survival curves of other subgroups outside the worst subgroup. The treated patients do not exhibit 
significantly better prognoses than the untreated patients in these subgroups (p = 0.436). d Bivariate win probability distribution for visualizing 
treatment benefits. To compare the distributions of win probabilities between the optimal and control subgroups, we visualize the joint distribution 
of these two groups. The blue contour represents the density of probability and the end of the contour (margin of the graph) represents a 95% CI. 
The upper triangle represents the area of treatment benefit
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substantial subgroup. Bayesian subgroup analysis is a rea-
sonable method for determining the optimal subgroups 
for a given treatment, because we can compare treat-
ment effects within subgroups, wherein the covariates 
of patients are similar [16]. Therefore, we can estimate 
the CTEs and credibility (or credible intervals) for each 
subgroup, which are crucial for clinical decision making. 
We define a CTE as a binary outcome (effect = 1 and no 
effect = 0) and measure the posterior beta distribution of 
each CTE, where the win probability is updated based on 
the individuals in each subgroup. Because the number 
of cases in each subgroup determines the correspond-
ing credible intervals, we can quantify the evidence level 
and uncertainty of treatment effects for each subgroup. 
Therefore, we can identify an optimal subgroup with 
credible evidence by considering ranges of uncertainty. 
For other subgroups, SEER data is insufficient and addi-
tional evidence must be obtained.

Bayesian subgroup analysis is useful for identifying 
an optimal experimental subgroup for a clinical trial, 
which is called an adaptive clinical trial, instead of sim-
ply enrolling all patients. This method does not enroll a 
subgroup of patients for which the evidence of treatment 
effects is clear based on past data; instead, it selects only 
a subset of patients for which the evidence is still weak 
[17]. Therefore, we can reduce the number of partici-
pants required for RCTs and improve the likelihood of 
detecting treatment effects, which can help overcome the 
ethical issues of RCTs.

We should note some limitations of this study. 
Although the SEER data that we used in this study may 

represent the largest dataset of SS patients, the number 
of variables is still limited and some of the treatment 
information is unclear. Furthermore, some unmeasured 
confounding variables that were not corrected by PSM 
may be present.

The large sample size used in our study may overcome 
the limitations of selection bias and a lack of generaliz-
ability, which are potential weaknesses of single-institu-
tion studies.

The probability of incorrect specifications of the sub-
groups is low, because SEER data provide large sample 
sizes, which enables more precise subgroup clustering 
considering all the possible risk factors. SEER data also 
overcome any lack of generalizability, which is a potential 
weakness in single-institution studies.

Another limitation is that the sample size of our exter-
nal data is smaller than that of SEER data, and there is 
lack of samples for a few subgroups. In the external 
observation data, the high-risk group tends to be treated 
using chemotherapy, and there are no untreated cases for 
comparison. Therefore, we could not directly compare 
the outcomes of treated patients to those of untreated 
patients within a subgroup using the external dataset. 
However, the outcomes of the SEER data and external 
data were not significantly different under similar condi-
tions, such as similar subgroups and treatments.

In this study, we determined that chemotherapy is 
effective for an optimal subgroup with characteristics 
of ages greater than 20 years, male, large tumors (long-
est diameter > 5  cm), extremity locations, SEER stage 3, 
spindle cell type, and treated with surgery, without RT. 

Fig. 6  Survival outcomes in the subgroups of the external data. a Kaplan–Meier survival curves of the optimal subgroup for chemotherapy. The 
treated patients in the validation set and untreated patients in the SEER data exhibit significant differences in terms of survival rates (p = 0.039). 
b Kaplan–Meier survival curves of the worst subgroup for chemotherapy. The treated patients in the validation set and untreated patients in the 
SEER data exhibit no significant differences in terms of survival rates (p = 0.128). However, the treated patients exhibit a similarly poor prognosis 
compared to the treated patients in the same subgroup in the SEER dataset
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Previous studies have found that sex (male) [18] and a 
non-biphasic subtype [18, 19] are strongly associated 
with poor prognoses. However, the association between 
these factors and the treatment effects has not been eval-
uated. Although we could not identify specific regimes of 
chemotherapy from the SEER data, our results highlight 
the importance of systemic chemotherapy in such poor 
prognostic subgroups.

In a study on national practice patterns for soft-tissue 
sarcoma, it was determined that SS patients have a rela-
tively high likelihood of receiving chemotherapy [20]. 
This study highlighted the fact that multimodal therapy, 
including chemotherapy, may increase the severe toxic-
ity in adults and limit any incremental benefits in terms 
of long-term outcomes. Therefore, an appropriate selec-
tion of patients for chemotherapy is crucial. Our Bayes-
ian subgroup analysis isolated the worst subgroup for 
which chemotherapy significantly reduced the survival 
time compared to untreated patients. This subgroup 
exhibits prognostic factors such as old age (> 20 years), 
male, large tumors (> 5 cm), and spindle cell type, which 
are the same as those of the optimal subgroup. How-
ever, this subgroup also includes the early stages of can-
cer (SEER stage 1), tumors located in the trunk or pelvis, 
and patients treated with both surgery and RT. Our study 
provides the first evidence that chemotherapy may not 
be suitable for all patients with poor prognostic factors. 
If the SS is located in the trunk or pelvis and in the early 
stages, chemotherapy may increase mortality or morbid-
ity. Therefore, surgery combined with RT should be con-
sidered as an optimal treatment for this subgroup.

Other studies have shown that RT is associated with 
good prognoses in patients with high-grade sarcoma [21, 
22]. Adjuvant RT reportedly improves five-year local-
recurrence-free survival rates [23]. Other studies have 
also revealed improved local control and disease-free 
survival with RT [24, 25]. However, the effects of RT on 
survival gains have been controversial because RT only 
controls local diseases and may have limited effect on 
systemic metastasis. Yang et al. failed to identify signifi-
cant benefits of RT in terms of the overall survival rate 
among extremity SS patients [26]. Canter et  al. did not 
identify RT as a significant factor in terms of survival 
outcomes [27]. Based on our results, we also could not 
determine the average treatment effects of RT in terms 
of the survival of patients with SS in propensity-score-
matched cases. However, there may be a subgroup that 
can benefit from RT in terms of survival time. Through 
our Bayesian subgroup analysis, we identified an opti-
mal subgroup with a significantly enhanced CTE. Our 
results indicated that RT is more effective in a subgroup 
with characteristics of old age (age > 20 years), male, large 
tumors (> 5 cm), extremity locations, early stages (SEER 

1), and biphasic subtypes. Although the patients in this 
subgroup are all in the early stages, their survival rate is 
significantly lower without RT.

Although underlying biological mechanisms require 
additional research, our study is the first to address the 
treatment effects and CTEs of chemotherapy and RT in 
subgroups of SS. Our results are expected to be useful 
for clinical decision making in terms of selecting optimal 
subgroups for chemotherapy or RT.

Conclusions
In this study, we identified high-risk patients whose vari-
ables include old age (age > 20 years), male, large tumors 
(> 5 cm), and extremity locations, and who have signifi-
cantly poorer prognoses without adjuvant treatment. 
RT should be considered in the early stages of cancer for 
high-risk patients with biphasic types. Contrarily, chem-
otherapy should be considered for late-stage high-risk SS 
patients with spindle cell types.
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