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Abstract

Background: Circular RNAs (circRNAs) are those RNA molecules that lack the poly (A) tails, which present

the closed-loop structure. Recent studies emphasized that some circRNAs imply different functions from canonical
transcripts, and further associated with complex diseases. Several computational methods have been developed for
detecting circRNAs from RNA-seq data. However, the existing methods prefer to high sensitivity strategies, which
always introduce many false positives. Thus, in clinical decision-supporting system, a comprehensive filtering
approach is needed for accurately recognizing real circRNAs for decision models.

Methods: In this paper, we first reviewed the detection strategies of the existing methods. According to the features
from RNA-seq data, we showed that any single feature (data signal) selected by the existing strategies cannot
accurately distinguish a circRNA. However, we found that some combinations of those features (data signals) could be
used as signatures for recognizing circRNAs. To avoid the high computational complexity of the combinational
optimization problem, we present CIRCPlus2, which adopts a machine learning framework to recognize real circRNAs
according to multiple data signals captured from RNA-seq data. By comparing multiple machine learning frameworks,
CIRCPlus2 adopts a Gradient Boosting Decision Tree (GBDT) framework.
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from the real ones.

Results: Given a set of candidate circRNAs, reported by any existing detection tool(s), the features of each candidate
are extracted from the aligned reads. The GBDT framework can be trained by a training dataset. By applying the
selected features on the framework, the predictions on true/false positives are reported. To verify the performance of
the proposed approach, we conducted several groups of experiments on both real RNA-seq datasets and a series of
simulation datasets with different preset configurations. The results demonstrated that CIRCPlus2 clearly improved the
specificities, while it also maintained high levels of sensitivities.

Conclusions: Filtering false positives is quite important in RNA-seq data analysis pipeline. Machine learning framework
is suitable for solving this filtering problem. CIRCPlus2 is an efficient approach to identify the false positive circRNAs

Keywords: RNA-seq data analysis, Circular RNA, Detection method, Machine learning, High precision

Background

Circular RNA, a new star in RNA family, is different
from the canonical transcripts, in which they are charac-
terized by a back-splicing event where the downstream
3’ splicing ‘tail’ joins back with the upstream 5" splicing
‘head’ to form a circular RNA structure [1-3]. Accumu-
lated studies have reported and proved that circRNAs
regulate multiple genetic information flows and under-
take various biological functions [4, 5]. For instance, cir-
cRNA is observed a negative correlation of global
abundance and proliferation in some colorectal can-
cer cases [6]. Nonetheless, the functions of the majority
of circRNAs still remain unknown and thus raise the re-
searchers’ curiosity to further investigate them. To solve
the circRNA mystery, identifying circRNAs from various
samples becomes a basic step for any further analyses
[7]. Along with the increasing popularity of RNA se-
quencing (RNA-seq), using the computational ap-
proaches to detect circRNAs from enormous RNA-seq
reads become the major strategy [2, 8]. In the past sev-
eral years, a series of detection algorithms have been de-
veloped. Based on our best knowledge, the existing
algorithms mainly rely on the back-spliced junction
reads (BS] reads), which are considered as a key feature
(data signal) in circRNA detection. However, the occur-
rence of BS]J signal is not sufficient to prove the circular-
ity of the transcript of origin; non-BS] reads may also
yield similar signals because of either sequencing/map-
ping errors or the existence of mutations or repetitive
sequences. The existing detection strategies often en-
counter the difficulties on differentiating BSJ reads from
the non-BS] ones, and may lead to high false
positive rates.

Although the existing detection algorithms are distinct
with each other in detecting and/or filtering strategies,
they always share some basic ideas, which are summa-
rized here first. In general, these algorithms often use
one or more features here: 1) PEM signal: The candidate
junction read is considered to indicate a circRNA only
when the mapping position of its paired is within the

putative circRNA region, according to the reference gen-
ome [9]; 2) Back-splicing signal: Two segments of one
read are mapped to the reference genome respectively.
In addition, if the mapping positions on the reference
genome present a reversed upstream (or downstream)
order, then this read is called a back-spliced junc-
tion (BS]) read. The existing algorithms adopt different
strategies to search BS] reads. For example, CIRI [9]
mainly utilizes the paired chiastic clipping (PCC) signals,
which are captured from the aligned reads find_circ con-
siders a junction read to be a BS] read only if its front
and back parts can be aligned on the reference genome
in a reversed order. Our previous method, CIRCPlus
[10], identifies a set of BS] reads spanning the same
breakpoint by comparing the local similar sequence of
each pair of them. 3) GT-AG signal: The GT-AG signals
are the major structural signals in eukaryotic transcrip-
tions, and often used for de novo circRNA detections
[9].

A couple of comparison studies on circRNA detection
algorithms are conducted on both artificial and real
RNA-seq datasets, which also discuss the multiple as-
pects influencing the performance [11, 12]. Each algo-
rithm presents both strength and weakness, and no one
outperforms others on obtaining both a higher sensitiv-
ity and specificity [11-13]. For example, CIRCPlus had
higher sensitivity than other algorithms because it intro-
duces a strategy to merge the locally re-aligned frag-
ments, which is beneficial for re-using the biased
spanning BSJ reads. However, such a comprehensive de-
tection strategy may lead to relatively high false discov-
ery rates (FDR) [10]. The difficulties in accurately
identifying circRNA may largely fall into one of these
computational challenges: 1) the expression levels of cir-
cRNAs are usually lower than the linear RNAs that share
the same exons or fragments, and thus the reads from
linear transcripts interfere the detection algorithms, as
the data signals of circular junction are diluted [14, 15].
If minor reads support a circular junction, it is difficult
to identify the real circRNAs from the putative ones only
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by limited mapping quality and supporting reads [9, 11].
2) Although most of the algorithms utilize PEM signal
to reduce false positives caused by ambiguous mapping,
we may still capture false positive BSJ reads that origin-
ate from the linear RNAs when both the orientation and
library insert length, by chance, coincide with the gen-
omic region of a putative circRNA. 3) In addition, when
multiple filters are adopted by the algorithms to achieve
a lower FDR, each filter is usually preset a stringent
threshold. It is hard to obtain a best practice for setting
those thresholds. The filters may exist in name only
when the thresholds take into account the first case,
while it may introduce false negatives when they con-
sider the second one.

In this paper, we developed a new approach, called
CIRCPlus2, to recognize circRNAs from a set of candi-
date circRNAs and the RNA-seq data. Different from
the existing circRNA detection algorithms that use mul-
tiple hard filtering strategies, CIRCPlus2 adopts a ma-
chine learning framework to obtain a more
comprehensive combination on multiple features and
their thresholds. Moreover, there are still some ambigu-
ous cases according to the features proposed in the
existing algorithm. For example, the algorithm cannot
determine a junction with low mapping quality or lim-
ited supporting reads is from a circRNA or not. Thus,
additional features are also suggested in our method,
such as the consistency, integrity and the read depth of
which are mapped at the upstream and downstream
splice sites of candidate circRNAs. CIRCPlus2 uses a
Gradient Boosting Decision Tree (GBDT) framework,
which is suggested as more efficient and requires less
training data. To the best of our knowledge, it is the first
tool using the machine learning approach to distinguish
the true and falsely detected circRNAs from the candi-
date set. According to the experiments, CIRCPlus2 can
process the balanced performance with high sensitivities
and low FDRs for circRNA detection on different se-
quencing coverages, different read lengths and other im-
portant configurations.

Methods
Here, we propose CIRCPlus2, an algorithm designed to
precisely differentiate the circRNAs from a set of candi-
date circRNAs using an efficient machine learning
framework. CIRCPlus2 does not detect circRNAs. In-
stead, the candidate set can be detected by any of the
existing methods. It should be noted that, in order to
obtain a better performance, it is suggested to get a more
complete candidate circRNA set by extending the out-
puts of the chosen detection algorithm with less strin-
gent filtering thresholds.

Besides the candidate set, CIRCPlus2 requires two in-
put files, a FASTA formatted reference sequences and

Page 3 of 12

the Sequence Alignment/Map (SAM) alignment file cor-
responding to the candidate set. The BAM file is suggest
to be generated by BWA-MEM, which implements a
local alignment and outputs both the primary and other
major alignments for all segments of a query read that
are separately mapped to the reference genome.

Overall, CIRCPlus2 consists of three major steps: 1)
The candidate circRNAs are collected from the outputs
of one or multiple existing algorithms; 2) The features
are extracted for each candidate circRNA and put into a
Gradient Boosting Decision Tree (GBDT) framework,
which has been already trained by a labelled training set;
3) The GBDT framework reports the label of each candi-
date circRNA, where it is classified into either a real cir-
cRNA or a false positive one. CIRCPlus2 can be
extended by allowing the import the raw circRNAs
which are detected by other/additional features or by in-
corporating other filters. The overall workflow of CIR-
CPlus2 is shown in Fig. 1; each step will be described in
detail respectively.

Extract features of CircRNAs

Collecting features is the key step for filtering out
false positive circRNAs. We intend to extract all the
features which can effectively and comprehensively
represent the properties of circRNAs. We not only
consider the features that indicate the presence of cir-
cRNA, but collect the features that imply the absence
of circRNAs as well. First, when a circular structure
occurs across a genomic region, various features of
the circRNA can be captured from the reads. Besides
the features introduced in the Background section, we
find additional features which are also affected, in-
cluding the numbers of read-pairs, split-reads and
read-depth, etc. Here, we present some interesting
observations. As shown in Fig. 2, a circRNA has two
breakpoints (i.e. the left and right genomic boundar-
ies). For a given circRNA, it can be represented as
[brky, brky], where brk,, brk, are the left and right
breakpoints of the circRNA. It should be further ex-
tended by a detection range added to left and right
breakpoint, respectively. Here, we select range =y +
30, where y and o are the mean and standard devi-
ation of the library, respectively. The paired-end reads
collected in the areas of [brk, - range, brk; + range)
and [brk, — range, brk, + range] are often influenced by
the existence of circRNAs. Other types of circRNAs
are also shown in Fig. 2 and five types of related fea-
tures are able to be calculated from the mapped
reads.

We further refine these features and give out a series
of more detailed features. Table 1 lists all the symbols
used by feature extraction of this work, and they are ex-
plained in subsequent sub-sections.
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Fig. 1 The CIRCPlus2 pipeline for recognize circRNAs from RNA-seq data

Refined features with concordant and discordant pair-end
read

The discordant and concordant paired-end reads signals
have been generally used in many variation detection
methods. Discordant paired-end reads also support the
existence of circRNA. For a given candidate, we collect

the read pairs which encompass the potential circRNA
region. The insert sizes of the read pairs may be discord-
ant with the library insert size. We define a threshold
value of m + 3v. Here, m and v are the mean and stand-
ard deviation of library insert size respectively. For any
RNA-seq data with well quality-controlled library, the
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Fig. 2 The examples of different types of circRNAs and the related features. Split-read: a read that span one or multiple covalent linkages.
Discordant read pair: a read pair with both ends mapped, but the locations are too far from or close by each other comparing to the library

insert size. FSJ: forward-spliced junction read. BSJ: back-spliced junction read
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Table 1 List of features

Category Symbol Meaning
Insert size of Concord  Concordant pair
read pair Discord Discordant pair
BSJ reads Mapping_ Mapping quality
quality
Support  Supporting read count
Breakpoint I Left breakpoint
r Right breakpoint
Mapping situation SM CIGAR value in the form of xS/HyM
in breakpoint MS CIGAR value in the form of xMyS/H
SMS CIGAR value in the form of x5/
HyMzS/H
Splicing signal GTAG GT-AG signal
Depth Depth Average read depth
Cov Average read base count
Region (circRNA Up Up of circRNA region
length) Down Down of circRNA region

insert sizes often follow a normal distribution. A mapped
read pair is considered to be discordant if its mapped in-
sert size is larger than this threshold. Otherwise, we con-
sider that this read pair is concordant. Figure 2 shows
discordant read pairs occurred on both circRNA
breakpoints.

CircRNAs often drive the local distributions different
from the normal one. For example, 1) if there is a read
from the region of circRNA and its mate read comes
from the flanking region of the circRNA, it increases the
insert size when mapped these reads to the reference
genome. In another case, 2) if the length of a circRNA is
smaller than the insert size or even the read length, it
could narrow the insert size. According to the data ana-
lysis, we also observe that the circRNA may also drive
the local distribution of insert sizes different from the
linear RNA drives. Thus, we count the numbers of
the concordant and discordant read pairs encompassing
the circRNA breakpoint, which are marked as concord
and discord. In detail, the discordant or concordant
paired-end reads should be collected in the areas of
[brky — range, brk, + range] —and  [brk, — range, brk, +
rangel].

Another important features are related to the cover-
age. Coverages of training and testing datasets may be
quite different. Coverages around different circRNAs
may also be significantly different. Suppose that there is
one circRNA, whose local coverage is quite low. Even
though there are only few of discord, these read pairs
still strongly support the presence of the circRNA. On
the contrary, if the coverage around another circRNA is
quite high, a small number of discord should not be
a strong signal of the presence of a circRNA. Thus,
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another four features are collected, and named as dis-
cord_brkl, discord_brk2, concord_brkl, concord_brk2,
respectively.

Refined features according to read depth and bed coverage
Read depth is a widely used feature for sequencing data,
which refers to the number of reads mapped to a par-
ticular site or genomic region. A large proportion of cir-
cRNAs have relatively low abundance compared with
their linear counterparts [14, 15]. Therefore, the read
depth may indicate the existence or absence of cir-
cRNAs. Moreover, the left and right breakpoints should
be treated separately, which could contribute to
recognize the false positive circRNAs with inaccurate
breakpoint locations. A region on the reference genome
with a smaller average mapped read depth or an ex-
tremely higher one than the expected read depth may
support the existence of circRNAs. We calculate average
read depth of one region via

depth =3 (di)/ly

Where [, is the length of the region and d; is the
mapped read depth of any position i. SAMtools can
compute the d; values at each position across the region.
In addition, we also calculate the total read base count
(i.e. the sum of per base read depths) for each genomic
region specified in the supplied BED file by SAMtools.
The bed coverage of one region can be calculated by

cov = Ziil(ci)/ld

Where [, is the length of the region and c; is the
mapped read base count of any position i. The average
read depths and bed coverages for a circRNA region and
the upstream and downstream regions can be collected
for eight features, which are cov_brkl_Up, cov_brkl_
Down, cov_brk2_Up, cov_brk2_Down, depth_brkl_Up,
depth_brkl_Down, depth_brk2_Up, depth_brk2_Down,
respectively.

Refined features of partially mapped reads and one-end
splitting reads

Split-read is another important feature for detecting and
recognizing circRNAs. Split-reads are the reads spanning
the splice site and may be clipped mapped to the refer-
ence genome. When it is properly mapped, each read
has three possible cases, which are fully mapped, clipped
mapped or unmapped. Fully mapped means a read
is mapped as a whole, which supports the absence of
any circRNAs at the mapping locations. Clipped mapped
means a read cannot be mapped as a whole, but one seg-
ment (prefix or suffix) is able to be mapped (as soft or
hard clip), which supports a potential presence of
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a circRNA. Clipped mapped reads are usually helpful to
find the exact breakpoints of the circRNAs. In addition,
unmapped reads means there are no suitable mapping
locations on the reference genome, regardless of how
the reads are splitted, which can be temporary ignored
in circRNA detection. Therefore, we focus on extraction
the feature of split-read in this step.

Split-read of different circRNAs often have different
alignment features, and present in different CIGAR
values. A typical junction is separately mapped to the
reference in a corresponding two-segment style, as
shown in Fig. 2. The split reads locate at 5 splice site
show the CIGAR values in the form of xS|HyM, while
the split reads locate at 3" splice site show the CIGAR
values in the form of xMyS|H. In addition, some cir-
cRNAs have complex alignment features. These junction
reads may be mapped in an inconsecutive order to the
reference genome. For example, in a three-segment style,
the CIGAR values present the alignment features in the
form of xS|HyMzS|H at 5’ splice site and 3" splice site.
Here, CIRCPlus2 first extracts the split reads from the
BAM file, and then calculates the read counts with dif-
ferent CIGAR types each of which implies a correspond-
ing alignment pattern. Therefore, six features around the
left and right breakpoints of a candidate circRNA are
obtained, which are represented as SM_l, MS_I, SMS_],
SM_r, MS_r, SMS_r, respectively.

Refined features of GT-AG signal

GT-AG signal is the major splicing signal in eukaryotic
transcription and is used for circRNA detection in many
existing algorithms. CIRCPlus2 loads the reference se-
quences to check whether the AG and GT dinucleotides
(or reverse complementary disnucleotiides CT and AC)
have the flank segments of a junction (Fig. 2). Due to
the ambiguity of the junction boundaries identified from
the alignments, GT and AG signals are accepted if both
of the deviations are acceptable from the tentative
boundaries along the reference sequence. The candidate
junction reads not supported by splicing signals or exon
boundaries are still further detected even they are lack
of the GT-AG signals.

Refined features of BSJ read

Finally, other features including the supporting read
count and average mapping quality also contribute to
distinguish the candidates. We analyze the basic read
mapping situations in, up and down (5' or 3' direction)
of the circRNA regions. The supporting read count
means the number of back-spliced junction reads which
are detected by a circRNA detection algorithm. Mean-
while, the mapping quality also has contribution to call
the real circRNAs. The higher the mapping quality pre-
sents, the more accurate the alignment achieves.
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Especially for some junction reads, which have a much
shorter segment flanking the junction compared to the
other segment, the short segment (< 19 bp using the de-
fault parameter of BWA-MEM) is always ignored by the
aligner to prevent the algorithm from further report-
ing multiple mapping locations or erroneous mapping lo-
cations. Such junction reads may have quite low
mapping quality in the SAM alignment. Therefore, the
BS] reads have higher mapping qualities are more reli-
able for recognizing circRNAs. Here, we calculate
the average mapping quality of one breakpoint by

Mapping_Quality = Zfil (mi)/la

Where m; is the mapping quality of the supporting BS]
read and [, is the supporting read count. Existing cir-
cRNA detection algorithms usually set a high and overall
cutoff for the supporting read count and mapping qual-
ity of BSJ reads to filter false positives, while in CIR-
Cplus2 we divide them into four features, which are
Support_l, Mapping_Quality I, Support_r, Mapping_
Quality_r, for the left and right breakpoints respectively.

Gradient boosting decision tree framework

After collect the proper features that can distinguish
these two types, the next step is the machine learning
framework chosen for the classification problem. Gradi-
ent boosting is a widely used machine learning frame-
work for classification problems, which produces a
prediction model in the form of an ensemble of a series
of weak prediction models, typically the decision
tree models. It builds the model in a stage-wise fashion
like other boosting methods do, and then it generalizes
them by allowing optimization of an arbitrary differenti-
able loss function. Notably, Gradient Boosting Decision
Tree (GBDT) is the most popular algorithm in gradient
boosting model family, which is used for classifying or
regressing the data by implementing an additive model
and continuously reducing the residuals generated in
multiple iterations. Through multiple iterations in
GBDT, each weak classifier is trained on the basis of the
residuals of the previous classifier to improve the accur-
acy of the final classifier. GBDT is an ensemble learning
algorithm that does not require the data preprocessing
and is reported to be less sensitive to the outliers. For
linear inseparable data, GBDT often achieves good per-
formance than other popular machine learning models,
especially in prediction accuracy. In addition, as a tree-
based framework, GBDT is suggested to be generally
more resistant to the mass noise, which is suitable for
the candidate circRNA datasets. Therefore, GBDT is a
good choice for the classification problem of candidate
circRNAs.
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Given a candidate circRNA, all of the features are col-
lected and the values are extracted. Consider a vector,
where each element represents a feature. Then, for each
candidate circRNA, it should be represented as a point
in a k dimension space, where k is the number of fea-
tures and each feature indicates a dimension. An optimal
panel is learned from the training data, and the frame-
work is then used to classify the testing data.

As a supervised machine learning framework, a train-
ing set is needed to train the GBDT framework. The
training set consists of thousands of candidate circRNAs
with labels. Each training candidate has a binary label,
where the label denotes the candidate is either a real cir-
cRNA or a false positive. It is not difficult to find a train-
ing set from public database. On the other hand,
simulation datasets are more helpful if the existing train-
ing sets are different from the testing set. Here, we use
CIRI-simulator, a popular software, to generate the
simulation datasets. CIRI-simulator requires a reference
and an annotation file. We use chromosome 1-22 from
hgl9 as reference genome and its GTF annotation file
(Gencode version 18) is downloaded from [16]. We use
default settings of CIRI-simulator to generate numerous
circRNAs and linear RNAs with different lengths.
Some transcripts share the exons. We applied CIRI2,
find_circ and CIRCPlus to detect candidate circRNAs.
These candidates are further labeled according to the
benchmark data provided by CIRI-simulator.

Collecting candidates by existing tool

There are several existing tools can be used to detect cir-
cRNAs to get the candidate circRNAs. The existing state
of the art tools, e.g. CIRI, CIRI2, find_circ, CIRCPlus can
be used. Certainly, this step is modifiable so that users
can also use other tools. Each tool has a set of internal
parameters, whose settings usually significantly affect the
outputs. In order to obtain a high sensitivity on circRNA
detection, we suggest to keep a more comprehensive set
of the candidate circRNAs, although it usually intro-
duce more false positives.

In addition, as a partner tool, here we introduce the
process that CIRCPlus2 collects candidate circRNAs
from the outputs of CIRCPlus, a circRNA detection al-
gorithm previously published. Overall, CIRCPlus2 uses
the paired similar sequence (PSS) signals which are cap-
tured by CIRCPlus to obtain the candidate circRNAs
without other filter steps. It is previously reported that
the PSS signal can identify more BS] reads, some of
which are usually ignored or misclassified by the existing
algorithms. Moreover, the PSS signal has advantages
over other approaches on detecting different types of cir-
cRNAs with better performance on different features of
data (e.g. low or high coverages, short or long read
lengths) [10]. Briefly, a pair of reads that indicate a
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circRNA junction should be both aligned to the refer-
ence genome with a local similar sequence. The CIGAR
values reflect the junctionare in the form of upstream x
1S/HylM and downstream x 2My2S/H, respectively,
where x 1, x 2, y1 and y2 represent the numbers of map-
ping (M), soft clipping (S) or hard clipping (H) bases, re-
spectively. Some specific types of circRNAs, such as the
short-exon flanking circRNA and small circRNA, may
have different CIGAR values for one junction read.
These junction reads may be inconsecutively mapped to
the reference genome in a three-segment style and bring
the CIGAR values in another form of upstream or
downstream xS/HyMzS/H. Thus, in these cases, there
isusually a pair of junction reads located in the upstream
and downstream splice site of the circRNA, which
often have a local similar sequence named paired similar
sequence signal. As the PSS signal is not restricted by
the read length or mapping segment counts and is also
independent with the annotation, it should be more sen-
sitive and reliable for the junction detection. CIRCPlus2
searches the CIGAR values from the pairs of reads. If it
is considered to be located in upstream and downstream
splice site of a circRNA as described above, CIRCPlus2
then checks the strand information and mapping loca-
tions. If the pair of reads are aligned to the same
chromosome, and both the strand and insert-size are
reasonable, the pair of reads are considered as the candi-
date junction reads with positive PSS signals. Because
the pair of reads represent the boundaries where all of
the reads from the same circRNA are mapped, a candi-
date junction read is considered to indicate a circRNA
only when its paired read is mapped within the region of
the putative circRNA range on the reference genome. If
both of the conditions are satisfied, the region is consid-
ered as a candidate circRNA.

Classification with collected features

For the machine learning framework, a 23-dimension
vector is extracted for each candidate circRNA, where
each dimension represents a feature. In particular, we
use GBDT to train the models, and then use the trained
model to filter false positive circRNAs. The training
dataset need to be labeled and scaled, and then a grid
search and a 10-fold cross validation are suggested to
find the optimal parameters The Random trees kernel
function is used. CircRNAs classified as true ones are
the output of CIRCPlus2.

In summary, we proposed the CIRCPlus2 to recognize
real circRNAs according to multiple data signals cap-
tured from RNA-seq data combined with CIRCplus,
these two algorithms are able to balance the perform-
ance with high sensitivity and low FDR. In CIRCPlus,
certain BS] reads are detected based on PSS signals due
to the split alignment strategy of BWA-MEM, the short
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splice reads may introduce false positive BS] reads. Thus,
CIRCPlus compares the supporting read counts and the
mapping qualities of the reads to filter the false positives.
However, these threshold-based filtering strategies are
difficult to preset and optimize, and thus often loss sen-
sitivities because of the structure complexity of cir-
cRNAs, expression levels, mutations, which may expose
different features spanning the junctions. In contrast,
CIRCPlus2 achieves this by a machine learning frame-
work, which is able to handle more complicated cases.

Results and discussion

To validate the performance of the proposed approach,
we first compared CIRCPlus2 to CIRI2, CIRI, find_circ
and CIRCPlus on a set of artificial datasets with different
configurations. We also compared the outputs of CIR-
CPlus2 with the outputs that were identified on the re-
sistance samples with RNase R treatment which was
known to specifically enrich circRNAs. The raw sequen-
cing data was mapped by BWA-MEM under default pa-
rameters. In the following experiments, two metrics,
sensitivity and precision, were calculated for evaluations.
The sensitivity and precision are defined as:

Sensitivit i
Vity = ————
ensitivity TP L EN
Precisi TP
recision = ——
TP + FP

Where TP denotes the number of true positives, FP de-
notes the number of false positives and FN denotes the
number of false negatives. To evaluate the performance
on balancing the sensitivity and precision, Fl-score is
also employed, which is calculated by the following
formula:

2 x Sensitivity X Precision

F1l-score = — —
Sensitivity + Precision

Generating simulation datasets

CIRI-simulator is a specific simulation tool for non-
canonical transcripts. Here, we used CIRI-simulator to
generate the simulated reads and evaluate the perform-
ance of CIRCPlus and CIRI2. CIRI-simulator requires
two input files: a FASTA formatted reference sequence
and a GTF or GFF formatted annotation file. A list of
simulated circRNAs and the FASTQ formatted files are
then generated. The list is the benchmark for perform-
ance evaluation, while FASTQ formatted files are the in-
puts of the detecting algorithms. The parameters,
including the read length, read depth (for circRNAs and
linear RNAs, respectively), sequencing error rate, and in-
sert size, can be customized by users.
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To test the performance of CIRCPlus2, we first gener-
ated the simulation datasets under different configura-
tions. We selected the read lengths of 60, 100, 125 and
150 bp, and altered the average read depths of 10-, 30-
and 50-fold to simulate sequencing reads, respectively.
For each dataset, the read amount was determined by
the sequencing coverage and read length. As it is re-
ported that fusion events in circRNAs are rare, we
applied the whole hgl9 genome as the reference se-
quence, but simply used chromosome 1 (length of 249,
250,621) to generate simulated sequencing data. In de-
tail, chromosome 1 from hgl9 and its GTF annotation
file (Gencode version 18) were downloaded from [16].
For each dataset, the outputs were compared to the list
to calculate the sensitivity and precision using a custom
script. It has been demonstrated that CIRCPlus has al-
most the highest sensitivities over the other de novo
methods [10]; therefore, we concentrate on the improve-
ment on the precisions and comprehensive performance
in the following experiments. We evaluated the perform-
ance from the following aspects.

Analysis of comprehensive performance of classification
model

Detection performance under different read coverages of
linear transcripts

We first focused on how the classification model im-
proved the detection performance under different read
depths of linear transcripts. Paired-end reads (read
length of 100bp) were generated from the reference
genome with an increasing average read coverages of lin-
ear transcripts, which altered from 10-, 30- to 50-fold,
while the average read coverage of circRNA transcripts
was kept on 10-fold. The sensitivity, precision and F1-
Score of CIRCplus2 and CIRCplus_initial (the initial
detection results for CIRCplus2 without the classification
step) were calculated for each dataset. The sensitivity of
CIRCplus and CIRCplus_initial were shown in Fig. 3a,
they were remained stably around 75% when the average
sequence coverages of linear transcripts varied ranging
from 10- to 50-fold. Notably, there was almost no loss of
sensitivities of CIRCplus2 compared to CIRCplus_initial
(less than 3% in most of the cases), which suggested that
the trained model could accurately classify the candidate
circRNA set of CIRCplus_initial into true positives and
false positives. At the same time, the precision of CIR-
Cplus2 and CIRCplus_initial were quite different, as
shown in Fig. 3b. CIRCplus2 held the higher precisions
under different read coverages of linear transcripts than
CIRCplus_initial. It also could be seen that the precisions
of CIRCplus_initial were largely affected by the increasing
of the read coverages of linear RNA, where the precisions
decreased from 64 to 43%. On the other hand, CIRCplus2
improved the precision up to 98% with the help of the
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Fig. 3 a Sensitivity analyses under different linear transcripts coverages (the read length was fixed to 100 bp). b Precision analyses under different
linear transcritps coverages. ¢ F1-Score analyses under different linear transcripts coverages

classification model. Therefore, the true and false positives
in the candidate circRNA set could be accurately distin-
guished by the trained model of CIRCplus2 and obtained
higher precisions without significant loss of sensitivities.
From Fig. 3c, CIRCplus2 increased the F1-Score com-
pared to CIRCplus_initial from 60 to 84%.

Detection performance under different read lengths

The detection improvement of CIRCplus2 on variable read
lengths was also analyzed in a group of experiments. We in-
creased the read lengths from 60 to 150 bp, while the aver-
age read depths of circRNAs and linear RNAs were set to
10-fold. The results were shown in Fig. 4. From Fig. 4a, it
could be seen that the sensitivities of CIRCplus2 were a lit-
tle lower than the ones of CIRCplus_initial. The sensitivity
losses between CIRCplus2 and CIRCplus_initial became
smaller with the increasing of read lengths. In detail, CIR-
Cplus2 maintained a high level of sensitivities (around
80%), which demonstrated that the trained model imple-
mented in CIRCplus2 had satisfied performance on predict-
ing the true positives. At the same time, the precision of
CIRCplus_initial decreased a lot with the increasing of read
lengths, and it only reached 53% when the read depth was
set to 150bp (Fig. 4b). In comparison, CIRCplus2 still
remained a high precision (around 95%) for each dataset
after it filtered a large false positives in the candidate set,
and it improved the precision up to 93% when the read
length was set to 150 bp. In addition, from the F1-Score
analysis shown in Fig. 4c, we could conclude that CIR-
Cplus2 improved the comprehension performance of

CIRCplus_initial under different read lengths, especially for
the datasets with longer read length (above 100bp). It
should be noted that the trained model used in CIRCplus2
had good generalization ability and could distinguish the
two types of candidates with different data with a high level
of accuracy.

Analysis of comprehensive performance of detection
Detection performance under different read coverages of
linear transcripts

We then focused on how the expression levels of cir-
cRNAs affected the performance of different detecting
methods. Paired-end reads were generated from the
reference genome with an increasing average read
depths of linear transcripts, which altered from 10-,
30- to 50-fold, while the average read depths of cir-
cRNA transcripts was kept on 10-fold. For each data-
set, we calculated the sensitivity, precision and F1-
Score of CIRCPlus2, CIRI2, CIRI, find_circ and CIR-
CPlus (Fig. 5). For read length of 100 bp, the sensitiv-
ity results were shown in Fig. 3a, where CIRCplus
and CIRCPlus2 always had a higher sensitivity than
others. In detail, the sensitivity of CIRCPlus2
remained stably around 74% when the average read
depths of linear transcripts varied ranging from 10-
to 50-fold, while CIRI2 was around 66%. The sensitiv-
ity of find_circ fluctuated greatly along with the in-
creasing of read depths of linear transcripts, e.g. it
only detected 30% circRNAs when the read depths of
linear transcripts was 30-fold. Combined with the
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read lengths
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Fig. 5 a Sensitivity analyses under different read depths of linear transcripts (the read length was fixed to 100 bp). b Precision analyses under
different read depths of linear transcritps. ¢ F1-Score analyses under different read depths of linear transcripts

precision of different detecting methods, shown in
Fig. 3b, it was obvious that CIRCPlus maintained the
highest sensitivities than others; however, it ex-
posed relatively low precisions. CIRCPlus2 largely im-
proved the precisions of CIRCPlus, which were
increased from 80 to 98%, and obtained the similar
high precisions as CIRI2. Therefore, it demonstrated
that filtering the false positives in the candidate cir-
cRNAs by machine learning in CIRCplus2 was more
reliable than the strategy of setting a high cutoff value
in CIRCPlus. From Fig. 3¢, CIRCPlus2 held the high-
est F1-Score under different read lengths comparing
to others. In detail, the F1-Score of CIRCPlus2
remained stably around 84%, at the same time, CIRI2
remained around 79% and find_circ showed a lower
performance.

Detection performance under different read lengths

We also tested the performance of CIRCPlus2 on vari-
able read lengths and compared to the other four detec-
tion methods. In this group of experiments, the read
lengths varied from 60 to 150 bp, while the average read
depths of circRNAs and linear transcripts were all set to
10-fold. The results were shown in Fig. 6. From Fig. 6a,
the sensitivities of different methods were gradually in-
creasing along with the increasing of read length. CIR-
CPlus2 and CIRCPlus had the higher sensitivities
than others and they reported almost the same detection
outputs in each dataset. From Fig. 6b, CIRCPlus2 signifi-
cantly improved the precisions compared to CIRCPlus
especially when the read length was 150bp (63-93%),
and the precisions of CIRCPlus2 were almost as high as
CIRI2, which still reached above 95%. Thus, CIRCPlus2

greatly improved the precision with no sacrifice on sen-
sitivity compared with CIRCPlus. Specifically, when the
read length was set to 60 bp, CIRCPlus2 identified 61%
of the pre-set circRNAs, while CIRI2 and CIRI only
reached around 13%. CIRCPlus2 was efficient for differ-
ent read lengths, and still achieved stably high F1-score
compared to other methods (Fig. 6¢).

According to Fig. 5 and Fig. 6, CIRCPlus2 had the
highest F1-Scores in the datasets under different simula-
tion parameter settings across all five algorithms. After
applied different simulation configurations, we could say
that CIRCPlus2 often had a more comprehensive per-
formance advantage than CIRI2, CIRI, find circ and
CIRCPlus, especially when the reads were trimmed, or
the read depths of linear transcripts were higher than
the read depths of circular transcripts. Therefore, we
could conclude that CIRCPlus2 performed better in bal-
ancing the sensitivity and precision under different con-
figurations, and thus it was suggested to have
comprehensive performance on circRNA detection.

Benchmarking CircRNA detection using CIRCPlus2

We used a similar criteria with a previous study [12] to
evaluate candidate circRNAs detected with BS] reads
count >3 in the datasets without RNase R treatment. In
detail, if candidate circRNAs detected by each tool were
obviously enriched after RNase R treatment (at least 3-
fold increased of BS] reads count), they were labeled as
true positives. In contrast, candidate circRNAs did not
detect or largely deplete (with fewer BSJ read counts)
after RNase R treatment were labeled as false positives.
The ratio of false positives in all of the predictions by
each tool was calculated as FDR of the method. We next
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summed true positives predicted by all tools as the esti-
mated total circRNAs in the datasets. The ratio of true
positives detected by each tool in the above total cir-
cRNAs was used to evaluate the sensitivity of the
method. To compare performances among all methods,
we applied a single metric F1 score that simultaneously
considered sensitivity and precision of the method.

To quantify the performance improvement of CIR-
CPlus2 compared with CIRI2, we applied both tools to
previously generated RNA-seq data sets of 150bp
HEK293 [17] without RNase R treatment. In detail, the
No.1-22 chromosome of the HEK293 dataset was se-
lected for detecting circRNAs (X/Y chromosomes were
not considered), and 70% candidate circRNAs (2100 out
of 2943) detected by CIRCPlus2 were used for training
data, and other 30% candidates were used for evaluating
our detecting method. In detail, the detection results of
CIRCplus2 were equally divided into three groups, each
group was used for training data (900 circRNAs), and
the other two groups were used as testing data corres-
pondingly, the classification results of these three testing
data were shown in Table 2.

Using the criteria described above, CIRCplus2 totally
predicted 1465 circRNAs by combining the results of
the three testing sets, and of which 1119 were verified as
true positive circRNAs after RNase R resistance evalu-
ation. All true positive circRNAs detected by CIRCplus2
and CIRI2 were used as total circRNA (total 2013 cir-
cRNAs). As shown in Fig. 7, CIRCplus2 had a similar
sensitivity with CIRI2 and simultaneously achieved a
higher precision, thus it could be concluded that CIR-
CPlus2 had much more balanced performance. To better
understand the overall performance of two methods, we
defined an evaluation metric, F1 score. As shown in Fig.
7, CIRCPlus2 had the higher F1 score in HEK293 data
set than CIRI2. Taken together, the above performance
evaluations demonstrated that CIRCPlus2 outperformed
CIRI2 on detecting circRNAs.

Conclusions

In this paper, we proposed a novel algorithm, named
CIRCplus2, which focused on the computational prob-
lem that identifying circRNAs with a balanced perform-
ance of sensitivity and precision from RNA-seq data. It
adopts a machine learning framework to accurately iden-
tify the true positives in candidate circRNA set which
are detected by the existing methods. In detail, CIR-
CPlus?2 first collects the output of one or more existing
circRNA detection tools to get a candidate set of cir-
cRNAs. Then, CIRCPlus2 captures a series of features
for each candidate circRNA from the BAM/SAM
file. Here, 23 features are suggested to be related to a
circRNA. A GBDT model is trained by the benchmark
data. CIRCPlus2 identifies the circRNAs by classifying

Page 11 of 12

Table 2 List of Three Confusion Matrixes
Testing group

Confusion Matrix

1 297 (TP) 159 (FN)
97 (FP) 347 (TN)
2 349 (TP) 148 (FN)
92 (FP) 311 (TN)
3 473 (TP) 155 (FN)
157 (FP) 358 (TN)

the candidate circRNA set by the trained model into a
subset of true positives and a subset of false positives. In
addition, the framework of CIRCplus2 is extensible in
each module. CIRCplus2 does not strongly rely on the
aforementioned detection tools or the GBDT framework,
or is limited to the 23 features. These can be easily ex-
tend to additional tools, features and models in
applications.

We tested CIRCPlus2 on both simulation datasets and
real dataset. A series of experiments show that CIR-
CPlus2 performed better in most cases comparing to
four existing tools. CIRCPlus2 not only shows that the
concept of adding a comprehensive filtering step for cir-
cRNA detection is effective, but also suggests that
the machine learning approach is an effective way of
combining features from different sources to distinguish
true and falsely detected circRNAs. CIRCPlus2 signifi-
cantly improves the FDR and F1-Score for identifying
the circRNAs under different coverages and read lengths
than the existing tools. Therefore, the proposed ap-
proach performs both the high sensitivity and high ac-
curacy for the circRNA identifying problem.
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Fig. 7 F1-Score of CIRI2 and CIRCPlus2 on the HEK293 dataset
.
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