
Cascarano et al. BMC Med Inform Decis Mak          (2021) 21:300  
https://doi.org/10.1186/s12911-021-01650-3

RESEARCH

A neural network for glomerulus 
classification based on histological images 
of kidney biopsy
Giacomo Donato Cascarano1,2, Francesco Saverio Debitonto1, Ruggero Lemma1, Antonio Brunetti1,2, 
Domenico Buongiorno1,2, Irio De Feudis1,2, Andrea Guerriero1, Umberto Venere3, Silvia Matino3, 
Maria Teresa Rocchetti3, Michele Rossini3, Francesco Pesce3, Loreto Gesualdo3 and Vitoantonio Bevilacqua1,2*   

From Fifteenth International Conference on Intelligent Computing (ICIC 2019) Nanchang, China. 3-6 
August 2019

Abstract 

Background:  Computer-aided diagnosis (CAD) systems based on medical images could support physicians in 
the decision-making process. During the last decades, researchers have proposed CAD systems in several medical 
domains achieving promising results.

CAD systems play an important role in digital pathology supporting pathologists in analyzing biopsy slides by means 
of standardized and objective workflows. In the proposed work, we designed and tested a novel CAD system module 
based on image processing techniques and machine learning, whose objective was to classify the condition affecting 
renal corpuscles (glomeruli) between sclerotic and non-sclerotic. Such discrimination is useful for the biopsy slides 
evaluation performed by pathologists.

Results:  We collected 26 digital slides taken from the kidneys of 19 donors with Periodic Acid-Schiff staining. Expert 
pathologists have conducted the slides preparation, digital acquisition and glomeruli annotations. Before setting the 
classifiers, we evaluated several feature extraction techniques from the annotated regions. Then, a feature reduction 
procedure followed by a shallow artificial neural network allowed discriminating between the glomeruli classes.

We evaluated the workflow considering an independent dataset (i.e., processing images not used in the training 
procedure). Ten independent runs of the training algorithm, and evaluation, allowed achieving MCC and Accuracy of 
0.95 (± 0.01) and 0.99 (standard deviation < 0.00), respectively. We also obtained good precision (0.9844 ± 0.0111) and 
recall (0.9310 ± 0.0153).

Conclusions:  Results on the test set confirm that the proposed workflow is consistent and reliable for the inves-
tigated domain, and it can support the clinical practice of discriminating the two classes of glomeruli. Analyses on 
misclassifications show that the involved images are usually affected by staining artefacts or present partial sections 
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Background
Chronic Kidney Disease (CKD) is a pathological condi-
tion characterized by a functional degeneration of the 
kidney. CKD is the 12th cause of death, with up to 1.1 
millions cases worldwide; the increased mortality related 
to CKD of the last years makes it one of the fastest ris-
ing causes of death, alongside diabetes and dementia [1, 
2]. Kidney transplantation is the best renal replacement 
therapy as revealed to be more effective than dialysis 
treatment in terms of long-term mortality risk and, at the 
same time, has a reduced impact on the public health sys-
tem [3, 4].

Liyanage et  al. estimated that 2.6 million people, in 
the face of 4.9 million patients, received renal replace-
ment therapy worldwide in 2010, suggesting that at least 
2.3 million people might have died prematurely because 
appropriate therapy could not be accessed [5].

Due to the increasing necessity of kidney transplants 
[6], different studies tried to widen the criteria for accept-
ing kidneys for being transplanted, which are generally 
excluded based on the donor’s age and other characteris-
tics related both to the quality and dimension of kidneys 
[7, 8].

Moore et  al. performed a comparison between dual 
kidney transplantation from Expanded Criteria Donors 
(ECDs) and single kidney transplantation from concur-
rent ECDs and standard criteria donors. The authors 
assessed that the use of dual kidney transplantation from 
marginal donors is a viable option and that renal function 
can be achieved, provided that both kidneys are trans-
planted into a single recipient [9].

Remuzzi et al. proposed a technique to assess the kid-
ney condition by evaluating histological biopsies [10]. 
The evaluation criterion, known as the Karpinski score, 
considers the evolution (in percentage) of a pathologi-
cal condition of four main functional areas: glomerulo-
sclerosis, tubular atrophy, interstitial fibrosis and arterial 
sclerosis. This score ranges from 0 to 12, and the higher 
the number, the worse is the kidneys’ condition [10–12]. 
Kidneys with a Karpinski score from 0 to 3 and from 4 to 
6 are considered suitable for single and dual transplant, 
respectively.

To assess the Karpinski score, pathologists perform the 
visual evaluation of the histopathological Whole-Slide 
Images (WSIs). This process is usually time-consuming, 
prone to error and also subjective.

To overcome these drawbacks, the development of 
Computer-Aided Diagnosis (CAD) systems based on his-
topathological tissue image analysis for supporting the 
computation of the score is a valuable headway.

Recent literature works show the application of image 
processing and machine learning techniques to analyze 
kidney histopathological WSIs for glomeruli detection 
and classification. Image processing approaches aim to 
extract meaningful features, e.g., those based on shape 
and texture analysis; then, machine learning algorithms, 
such as shallow or deep Artificial Neural Networks 
(ANNs), make decisions based on extracted features.

Simon et  al., for example, proposed a texture-based 
features set as a simple but effective automatic method 
for glomeruli localization [13]. The authors applied the 
algorithm on renal tissue sections and biopsies of large 
histopathological WSIs. The features extracted from an 
adaptation of the Local Binary Pattern (LBP) algorithm 
were used to train a Support Vector Machine (SVM) 
model. The authors reported high precision (> 90%) and 
reasonable recall (> 70%) as results.

To perform a comprehensive detection of glomeruli 
in images of whole kidney sections, Kato et al. proposed 
a new descriptor called Segmental HOG (Histogram 
of Oriented Gradients) [14]. The authors claimed the 
robustness of the solution and high-quality segmentation 
outputs; furthermore, the authors compared Segmen-
tal HOG with Rectangular HOG showing that the first 
approach reached significant improvements in detection 
performance.

Several authors, instead, focused on the analysis of glo-
meruli’s shape and colour. Kotyk et al. proposed a novel 
solution to face the wide intensity variation and the 
inconsistency in terms of shape and size of the glomer-
uli in the renal corpuscle. The proposed approach, based 
on Particles Analyzer technique, allowed the detection 
of the renal corpuscle and the following measurement 
of glomerulus diameter and Bowman’s space width. The 
authors assess that the approach was robust to glomeruli 
deformations even with glomerular hypertrophy [15]. An 
analysis of the effects of significant diversity of colour 
and tissue shape on whole slide images was performed by 
Zhao et al. [16]. The authors focused on the extraction of 
Bowman’s capsule width to design an automated glomer-
ulus extraction framework from the micrograph of the 
entire renal tissue. The system was tested on non-human 

due to slice preparation and staining processes. In clinical practice, however, pathologists discard images showing 
such artefacts.
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primates renal tissues with Haematoxylin and Eosin (HE) 
staining.

Bukowy et  al. proposed a different analysis workflow. 
In [17], the authors developed a convolutional neural 
network to detect glomeruli in trichrome-stained kid-
ney sections. The procedure was tested on rat kidneys 
and the reported results, regarding the classification of 
healthy and damaged glomeruli, show average precision 
and recall of 96.94% and 96.79%, respectively.

In a previous work by Bevilacqua et al., a CAD system 
for segmentation and discrimination of blood vessels ver-
sus tubules from biopsies in the kidney tissue has been 
designed and tested [18]. Histological images with Peri-
odic Acid–Schiff (PAS) staining have been used to seg-
ment Regions of Interest (ROIs) and extract Haralick 
features allowing a subsequent classification procedure 
using algorithms based on ANNs. Test results deter-
mined that the supervised ANN approach was consist-
ent, allowing obtaining good classification performance.

This work focuses on the automatic evaluation of 
kidney biopsies, dealing with a specific pathological 
condition considered by the Karpinski score: glomerulo-
sclerosis, i.e. the ratio between sclerosed glomeruli and 
the overall number of glomeruli. To do this, the detec-
tion and discrimination of the sclerotic condition affect-
ing the glomeruli from those non-sclerotic are crucial. As 
already reported in works from the state-of-the-art, this 
is a challenging task due to the glomeruli wide intensity 
variations and inconsistencies in shape and size.

A combination of different feature extraction algo-
rithms has been designed and evaluated for discriminat-
ing the condition of glomeruli. The reported literature 
shows specific and unique image processing algorithms 
applied on different types of staining and non-human 
WSIs. The set of features proposed in this work, instead, 
comes from a collection of two wide-used, well-known 
and general-purpose features extractor algorithms fami-
lies, i.e. morphological and texture features. These feature 
families are also included in some of the algorithms pro-
posed in literature, but in this work they were extracted 
from human WSIs with PAS staining. In addition, the 
classification pipeline, detailed in Methods, includes also 
procedures for features reduction allowing the design of 
a shallow Artificial Neural Network. The overall work-
flow proposed in this work, and the integration with the 
procedure presented in [18], will allow us to build-up a 
complete CAD system for the analysis of histopathologi-
cal WSIs.

Results
The results obtained by evaluating the proposed classifi-
cation workflow on the test set are reported. In particu-
lar, results refer to the performance obtained considering 

the reduced set of features classified by using the cross-
validated shallow ANN. As reported in Table 1, the test 
set was constituted by 579 glomeruli images: 87 sclerot-
ics, 492 non-sclerotics.

To evaluate the workflow stability, 10 runs of the entire 
process were performed. The achieved results are sum-
marized in Table 2. In particular, the results are reported 
in terms of mean and standard deviation of several met-
rics, i.e. Accuracy (Eq. 1), Precision (Eq. 2), Recall (Eq. 3) 
and Matthews Correlation Coefficient (Eq. 4) [19], eval-
uated according to the confusion matrix reported in 
Table 3.

Table 1  Dataset configuration

Dataset Sclerotic glomeruli Non-sclerotic 
glomeruli

Total

Train set 341 1852 2193

Test set 87 492 579

Total 428 2344 2772

Table 2  Metrics comparison of 10 network initializations

Mean ± std

Accuracy 0.9874 ± 0.0018

Precision 0.9844 ± 0.0111

Recall 0.9310 ± 0.0153

MCC 0.9501 ± 0.0074

Table 3  Confusion Matrix for metrics computation

True condition

Positive 
(sclerotic)

Negative (non-
sclerotic)

Predicted 
condition

Positive (sclerotic) True positive (TP) False positive (FP)

Negative (non-
sclerotic)

False negative 
(FN)

True negative (TN)

Table 4  Metrics comparison of 10 network initializations

Metric Performance

Accuracy 0.9914

Precision 1.000

Recall 0.9425

MCC 0.9659
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Among the iterations, the best results are reported in 
Table  4, whereas the corresponding confusion matrix is 
reported in Table 5.

The implemented workflow allows the classification of 
sclerotic and non-sclerotic glomeruli with good perfor-
mances (mean MCC = 0.95 and mean Accuracy = 0.99) 
and low variability (MCC std = 0.01 and Accuracy 
std < 0.00) (see Table  2). Precision and Recall are equal 
to 0.98 and 0.93, respectively, thus showing that the pro-
posed system achieves a better performance in the non-
sclerotic evaluation (all the non-sclerotic glomeruli were 
detected in the best case).

Discussion
Evaluating the proposed approach on an independ-
ent test set, the classification workflow achieved a mean 
MCC and Accuracy of 0.95 and 0.99, respectively, and 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)

MCC =
TP*TN − FP*FN

2
√
(TP + FP)*(TP + FN )*(TN + FP)*(TN + FN )

low variability over 10 independent iterations (MCC 
std = 0.01 and Accuracy std < 0.00). Good precision and 
recall were also obtained (Precision: 0.9844 ± 0.0111, 
Recall: 0.9310 ± 0.0153). The proposed approach thus 
leads to an improvement of the classification perfor-
mance if compared to the reported literature [13, 17].

While implementing and evaluating the reported work-
flow, we faced and tested the common data unbalancing 
problem, that has been solved by using MCC as perfor-
mance comparison coefficient and ROC curve for select-
ing the optimal classification threshold. The reported 
results suggest that the proposed workflow set-up is reli-
able for the investigated domain, supporting the clinical 
practice of discriminating the two classes of glomeruli.

Analyzing misclassified glomeruli, we found also that 
the input images corresponding to the misclassified sam-
ples showed staining artefacts or partial parts (mostly on 
the edges); common examples are mentioned in Fig. 1. In 
the clinical practice, however, pathologists discard such 
images which could also be excluded in the proposed 
workflow by designing strategies for detecting in advance 
images affected by such problems.

Conclusions
In the presented work, we proposed an entire workflow 
for the classification of sclerotic and non-sclerotic glo-
meruli. Several feature extraction algorithms were exam-
ined and evaluated, with two feature typologies being 
chosen: morphological and texture features. We collected 
150 features: 2 morphological features and 148 texture 
ones that have been computed using the mrcLBP and 
Haralick algorithms. The number of features was then 
reduced to 95 using the PCA. A cross-validated artifi-
cial neural network was trained, and unbalanced dataset 
and network tuning problems were faced. The obtained 
results improved the state-of-the-art in performing such 
kind of classification task.

In the future, we will investigate how to minimize the 
number of empirical assumptions in the feature extrac-
tion process and incorporate a weighted classification 
among the folds; additionally, a feature analysis will be 
performed to identify the best ones.

Table 5  Confusion matrix of the best model

True condition

Positive 
(sclerotic)

Negative (non-
sclerotic)

Predicted 
condition

Positive (sclerotic) True positive 
(82)

False positive (0)

Negative (non-
sclerotic)

False negative 
(5)

True negative (492)

Fig. 1  False Negative misclassified by the best model
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Moreover, novel techniques to face the dataset unbal-
ancing problem and based on oversampling methods 
might be investigated [20]. It would also be interesting to 
evaluate deep learning approaches [21–24] and perform 
a direct comparison with the methodology proposed in 
this paper. A preliminary study regarding different deep 
learning semantic segmentation techniques applied to 
WSIs have been already conducted [25]. Finally, the pre-
sented workflow will be integrated into a complete CAD 
tool for kidney biopsies analysis.

Methods
In this study, we present a CAD framework that allows 
the classification of the glomerulus condition using a 
feature-based approach. The proposed solution, that 
is based on image processing and machine learning 
techniques, has been designed to automatic label each 
glomerulus as sclerotic or non-sclerotic. A detailed rep-
resentation of the full workflow for glomeruli classifica-
tion is depicted in Fig. 2. The processing pipeline can be 
organized into three main steps: (i) feature extraction; (ii) 
feature reduction; (iii) classification.

Data description
Whole Slide Images were collected between July 2011 
and February 2015 by physicians from the Department of 
Emergency and Organ Transplantations of the Bari Uni-
versity Hospital (Italy). All the kidney biopsies with PAS 
staining were scanned by using the Aperio ScanScope CS 
at 20× with a resolution of 0.50 µm/pixel. The WSIs that 
have been considered within this study were collected 
from a total of 26 kidney digital biopsies of 19 donors 
and stored at full resolution in SVS file format (an Aperio 
file format consisting of pyramidal tiled TIFF with non-
standard metadata and compression).

Each WSI contains a different number of biopsy sec-
tions (from one to seven). The whole used dataset counts 
an average of four biopsy sections per WSI and a total 
amount of 105 sections. The collected images of the used 
dataset are characterized by wide differences in terms of 
color and saturation, even if all of them have been treated 
with PAS staining. Examples of saturation differences are 
reported in Fig. 3.

Dataset creation
All the glomeruli were manually identified and labelled by 
two medical graduands. Then, one expert renal patholo-
gist validated the final annotations. The procedure con-
sisted in outlining the real glomeruli region and labelling 
each glomerulus as sclerotic or non-sclerotic by using the 
Aperio ImageScope tool.

Due to the variability introduced with the manual 
annotation, each labelled region was surrounded by a 
rectangular bounding box with a 1.1 overestimation 
factor for each dimension. Then, all the detected and 
labelled glomeruli regions were extracted and used for 
creating the dataset.

The obtained initial dataset was composed of 428 scle-
rotic glomeruli and 2344 non-sclerotic glomeruli, with a 
ratio between the two classes of 1/5.5. In detail, a total 
of 2772 glomeruli were labelled and, on average, each 
biopsy and each section contained 106 and 26 glomeruli, 
respectively.

The dataset was subsequently divided into the train and 
test sets. In particular, the 20% of the original dataset has 
been used as test set, and the information of the test-set 
target has been used to assess final performances only. 
The selection has been randomly performed with the 
constraint that if a glomerulus appeared in the test-set, 

Fig. 2  Full features extraction and classification work-flow
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all the other glomeruli belonging to the same biopsy must 
appear in the test-set, meaning that the train/test division 
has been performed at biopsy level. The latest dataset 
configuration is reported in Table 1.

Features extraction
The features extraction is the first step of the workflow 
that allows to define of a set of characteristics used to dis-
criminate between the two different types of glomeruli. 
Based on the human reasoning used by the physicians 
able to address the problem, the best features to face the 
problem are those related to two main image processing 
techniques: morphological and texture-based features.

As suggested by the pathologist involved in the study, 
the main differences between sclerotic and non-sclerotic 

glomeruli are about the shape of the Bowman’s capsule, 
the dimension and the texture due to blood vessels. Non-
sclerotic glomeruli usually are characterized by an elliptic 
shape and the presence of the Bowman’s capsule that is 
separated from the capillary tuft with the mesangium by 
the Bowman’s space. The ensemble of the nuclei of cells 
(blue points in Fig. 4), the capillaries lumen (white areas 
in Fig. 4) and the mesangial matrix (regions with similar 
tonality and different levels of saturation in Fig. 4) show 
a particular texture commonly called “pomegranate tex-
ture”. Sclerotic glomeruli, instead, are characterized by 
an increase in the extracellular matrix that obliterates the 
capillaries lumen and by a reduced or absent Bowman’s 
space due to collagenous material.

Fig. 3  Examples of glomeruli with different saturations levels in PAS stain kidney biopsy
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Figures  4 and 5 report an example of non-sclerotic 
and sclerotic glomerulus, respectively. It is worth noting 
that the fine-tuning of the image processing algorithms, 
including the parameter values and the algorithm con-
figurations have been done on train set only.

Morphological features
Regarding the morphological features, we have consid-
ered two features that are related to the Bowman’s capsule 
and the Bowman’s space. The first feature is computed as 
the sum of the areas related to the Bowman’s capsule, the 
blood vessels areas and the inter-capillary spaces that are 
characterized by a whiteness coloration due to the PAS 
staining. The detection of the mask describing the region 
is based on three parallel image processing procedures 
that took into account the channels of three different 
color space: RGB, CMYK and Lab. In detail:

•	 the green channel of RGB colour space, since it is the 
most representative of the glomerulus structure;

•	 the complementary of magenta from the CMYK 
colour model has been chosen due to the detect-
able empirical significance of this colour component 
(Figs. 3, 4 and 5);

•	 a and b components of Lab colour space due to the 
link with the human colour vision.

An example of the application of the processes on non-
sclerotic and sclerotic glomeruli is reported in Figs. 6 and 
7, respectively.

The extraction of the masks for green channel from 
RGB colour space and for magenta channel from the 
CMYK colour model, follows the same image processing 
steps:

Fig. 4  Main non-sclerotic glomerulus sections

Fig. 5  Example of sclerotic glomerulus
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Fig. 6  Example of application of morphological features work-flow on non-sclerotic glomerulus

Fig. 7  Example of application of morphological features work-flow on sclerotic glomerulus
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1.	 Binarisation: to keep the pixels related to white 
regions a threshold value has been empirically set to 
190 [16];

2.	 Morphological operators: to clean the image obtained 
from the previous step, erosion, dilation and median 
filtering have been used with a disk of radius ranging 
from 1 to 3 as structuring element;

3.	 Active contour: to clean the shape of the obtained 
mask, active contour algorithm [26] has been used 
with 200 iterations (the chosen number of itera-
tions avoid an extreme smoothing of the glomerulus 
shape).

The third mask was computed from a and b compo-
nents of Lab colour space. The ab matrix has been used as 
input to k-means clustering algorithm [27]. In particular, 
the number of clusters was empirically set to 5, and the 
number of repetitions of the clustering process was set to 
3 in order to set different initial cluster centroid positions 
for avoiding local minima. The mask was computed sub-
sequently by retaining only those pixels belonging to the 
cluster with the greatest mean grey-scale intensity value. 
Then the steps 2 and 3 of the green-magenta segmenta-
tion process were applied.

Finally, the three masks have been used to compute the 
final mask by using a majority criterion: only the pixels 
belonging to at least two masks were kept. The obtained 

mask was processed to remove artifacts and not interest-
ing regions. In detail, too small regions (lesser than 1000 
pixels), and a logical AND with a circle of radius equal to 
the smaller dimension of the image subtracted by 1/8 of 
its value was performed. Figure 8 shows the overview of 
the Bowman’s space segmentation workflow.

Starting from the final mask (Figs. 6 and 7), the feature 
of interest was the sum of Bowman’s space, blood ves-
sels and the inter-capillary region of the glomerulus, that 
is, in our workflow, the area corresponding to the white 
region. This value was finally normalized considering the 
image area. Figure 9 shows a comparison of the results of 
the workflow mentioned above applied on sclerotic and 
non-sclerotic glomeruli.

The second morphological feature considers the radius 
of the glomerulus. As first step, the convex hull con-
taining all these regions was computed. Then, consider-
ing the convex hull ROI as a circle, the radius of a circle 
with the equivalent area was computed. As a result of 
the morphological workflow, a total of two features were 
computed: the area and the radius.

Texture features
Due to the particularity of the glomerulus texture and 
the differences in blood vessels and inter-capillary space 
between sclerotic and non-sclerotic, two well-known 

Fig. 8  Work-flow of Bowman’s space segmentation
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texture analysis algorithms were used: Local Binary Pat-
tern (LBP) and Haralick features.

As already proposed in [13], multi-radial colour LBP 
(mrcLBP) is a suitable variation of classical LBP to face 
the glomerulus identification problem. In detail, it con-
siders the application of the LBP algorithm to the three 
RGB colour channels with different radius values (1, 3, 9 
and 27) and with invariance to rotation. Such configura-
tion was applied to the raw RGB glomerulus images. The 
obtained features were ten for each radius, thus obtaining 
a total number of 120 features (10 features per radius, 4 
radius, three channels).

The second set of texture-based features were based 
on the Haralick features. The four Grey-Level Co-occur-
rence Matrix, one for each direction, has been computed; 
then, the 14 Haralick indexes were computed, leading 
to 56 features. To reduce this number, the mean and the 
range among the four directions was then computed. 
Hence, the final number of features was 28 (14 mean and 
14 range, one for each Haralick feature). As a result of the 
texture features extraction, a total of 148 features were 
computed.

Features preprocessing
As described above, the feature extraction process gen-
erated 150 features that considered both the morpho-
logical and texture-based characteristics of the glomeruli. 
The Principal Component Analysis (PCA) was applied 
as feature reduction algorithm to reduce the correlation 
among the different features that will be used as inputs 
of the classification step. Before PCA, each feature was 
z-score normalized.

As stated before, the fine-tuning of the image process-
ing and the classification algorithms has been conducted 
only on the train set. The feature reduction algorithm, 
instead, did not need or use the label information. For 
this reason, the application of PCA could be executed on 
the entire dataset or on the train dataset only, with differ-
ent advantages and drawbacks. Both the solutions were 
applied on the dataset, and due to the complexity of the 
classification problem, 99.9% of variance has been chosen 
as the threshold value. Finally, 95 and 93 features where 
obtained when the PCA have been applied to the whole 
dataset and the train set only, respectively. Since the two 
approaches led to a similar number of features, we have 
chosen to take into account all the information inside the 

Fig. 9  Results Comparison between the application of Bowman’s space segmentation on non-sclerotic (left) and sclerotic (right) glomeruli
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dataset, thus the number of features considered for the 
classification phase was 95.

Glomeruli classification
The glomeruli classification steps are based on ANN 
and specifically on a shallow ANN architecture. The 
design of the ANN architecture and the tuning of its 
parameters were taken considering the train set only, 
whereas all the reported results and performance 
discussions refer to the test set (see Results and Dis-
cussion). K-fold (k was set to 10) was used as cross-
validation technique to generalize, avoid overfitting 
and obtain a classifier independent from the specific 
input dataset. Several network initializations for each 
fold and hard voting among the folds were used both 
to obtain independency from a particular network ini-
tialization and to compute the overall fold class label.

The fixed training parameters were the following: 
one hidden layer, tansig and softmax as activation 
functions for the hidden and output layer, respectively; 
crossentropy as loss function; scaled conjugate gradi-
ent as backpropagation algorithm. A training early 
stop criterion, based on the validation set, was imple-
mented to promote generalisation and to avoid over-
fitting; the stop criterion occurs if performance on 
validation set did not decrease inside a sliding window 
of 6 epochs.

The number of neurons of the hidden layer has been 
selected as follow. The performance of 95 networks 
were compared. In detail, several networks with the 

hidden layer size ranging from 1 to 95 were trained 
(it worth remembering that 95 is the number of the 
input features). Among the 95 evaluated topologies, 
the one with a hidden layer size equal to 27 has been 
selected based on the best MCC value computed as the 
mean MCC of the folds. A graphical representation of 
the trend of MCC and accuracy indexes is shown in 
Fig. 10; the final Artificial Neural Network configura-
tion is summarized in Table 6.

Unbalanced dataset problem
As reported above, the training set was affected by a 
heavy unbalanced distribution between sclerotic and 
non-sclerotic glomeruli (5.5 non-sclerotic glomeruli for 
each sclerotic glomerulus). In order to avoid overfitting 
in the training phase, data augmentation was not con-
sidered a suitable solution since the selected features are 

Fig. 10  MCC and accuracy trend based on number of neurons

Table 6  Artificial neural network configuration

*An in-depth explanation about the neurons number choice and early stop 
criterion is reported in Section Glomeruli Classification

Parameter name Value

# input 95

Topology [27*, 1]

Activation functions [tansig, softmax]

Loss function Cross-entropy

Backpropagation algorithm Scaled conjugate gradient

Early stop criterion Validation fail*

Cross-validation method k-fold (k = 10)
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invariant to the main image transformations. Hence, we 
considered the following approach.

Firstly, we have considered the use of the MCC as a 
general performance comparison among the folds. As 
reported in Eq.  4, MCC takes into account false nega-
tives and false positives, and computes a correlation 
coefficient between predicted and target classes. This 
coefficient can range within the interval [− 1; 1], where 
1 indicates perfect prediction, − 1 complete disagreement 
and 0 is equivalent to the random predictor. As stated in 
[28], among the usual performance scores, MCC is the 
only one that takes into account the ratio of the confu-
sion matrix size, and it revealed to be a better index of 
performance than accuracy or F1 score on unbalanced 
datasets.

Concerning the selection of the correct classification 
threshold value, the Receiving Operating Characteristic 
(ROC) curve has been used. Two approaches were ana-
lyzed. The first one (Approach A) assumes the optimal 
value as the first intersection point between the ROC 
curve and a line with slope equal to the ratio between the 
total number of negative and positive samples and slid-
ing from the upper left corner of the ROC plot ((FPR, 
TPR) = (0, 1)). Whereas, the second approach (Approach 
B) [29] evaluates the point of minimum distance (see 
Eq. 5) from the point (0, 1) of the ROC plot.

The comparison of the two methods (Approach A and 
Approach B) in terms of different performance indexes 
(Eq.  1, 2, 3 and 4) is reported in Table  7. Since in the 
medical domain, a correct prediction of positives to a dis-
ease is more important than the prediction of negatives, 
a higher recall is preferred, thus the Approach B was 
chosen.
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