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Abstract 

Background  Intensive Care Unit (ICU) readmissions represent both a health risk for patients,with increased mortal-
ity rates and overall health deterioration, and a financial burden for healthcare facilities. As healthcare became more 
data-driven with the introduction of Electronic Health Records (EHR), machine learning methods have been applied 
to predict ICU readmission risk. However, these methods disregard the meaning and relationships of data objects and 
work blindly over clinical data without taking into account scientific knowledge and context. Ontologies and Knowl-
edge Graphs can help bridge this gap between data and scientific context, as they are computational artefacts that 
represent the entities of a domain and their relationships to each other in a formalized way.

Methods and results  We have developed an approach that enriches EHR data with semantic annotations to ontolo-
gies to build a Knowledge Graph. A patient’s ICU stay is represented by Knowledge Graph embeddings in a contex-
tualized manner, which are used by machine learning models to predict 30-days ICU readmissions. This approach 
is based on several contributions: (1) an enrichment of the MIMIC-III dataset with patient-oriented annotations to 
various biomedical ontologies; (2) a Knowledge Graph that defines patient data with biomedical ontologies; (3) a pre-
dictive model of ICU readmission risk that uses Knowledge Graph embeddings; (4) a variant of the predictive model 
that targets different time points during an ICU stay. Our predictive approaches outperformed both a baseline and 
state-of-the-art works achieving a mean Area Under the Receiver Operating Characteristic Curve of 0.827 and an Area 
Under the Precision-Recall Curve of 0.691. The application of this novel approach to help clinicians decide whether a 
patient can be discharged has the potential to prevent the readmission of 40% of Intensive Care Unit patients, with-
out unnecessarily prolonging the stay of those who would not require it.

Conclusion  The coupling of semantic annotation and Knowledge Graph embeddings affords two clear advantages: 
they consider scientific context and they are able to build representations of EHR information of different types in a 
common format. This work demonstrates the potential for impact that integrating ontologies and Knowledge Graphs 
into clinical machine learning applications can have.

Keywords  Semantic annotations, Ontologies, ICU readmission prediction, Machine learning, Knowledge Graph 
embeddings

Background
ICU admissions are typically associated with severe dis-
ease or trauma. ICU readmissions correspond to a patient 
returning to the ICU after being discharged and are asso-
ciated with below standard clinical outcomes, increased 
length of both ICU and hospital stay, and higher care 
costs [1]. About 1 in every 10 patients discharged from 
ICU units across developed countries end up being 
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readmitted during the same hospital stay [2]. Moreover, 
the rate of readmission has been proposed as a marker to 
measure the quality of care, and it can also impact other 
markers such as length of stay and mortality.

The decision to release a patient from the ICU can 
take into account a variety of data and factors. As hospi-
tals become more data-oriented with the increased and 
incentivized adoption of EHR [3, 4], we have witnessed 
a rise in the development of computational approaches 
to support clinical decision and predictive approaches 
[5–8]. Machine Learning (ML) has been applied to sev-
eral ICU settings [9], such as predicting mortality and 
length of hospital stay [10], sepsis [11], mortality in dia-
betic patients [12], patients survival [13], cardiac arrest 
on sepsis patients [14], risk of acute kidney injury [15], 
and risk of readmission within 30  days after ICU dis-
charge [16–18].

Despite the increasing success of ML approaches, most 
works still explore EHR data directly without taking into 
account its meaning or context. Clinical knowledge, 
although abundant in external sources, is not accessible 
to these methods, who work blindly over the data, with-
out considering the meaning and relationships between 
the data objects. An example of missed context that can 
impair the exploration of EHR data can be seen when 
comparing two diagnoses: ‘Aortic Valve Disease’ and ‘Cor-
onary Artery Disease’. Using categorical analysis these 
two diagnosis have no similarity, and with a string simi-
larity analysis they have low similarity, sharing only the 
less informative word ‘disease’. However, the two diagno-
ses are closely related. When controlled vocabularies are 
used, we gain an extra layer of information given by the 
standardization (two entries with the same code mean 
the same thing) and also by the hierarchy that organizes 
the vocabulary. However, controlled vocabularies are 
limited in their contextual richness, and moreover, in a 
single EHR multiple domains can be covered by differ-
ent controlled vocabularies which makes their concerted 
analysis more difficult.

Ontologies can help bridge this gap between data and 
scientific context, since they are computational artefacts 
that represent the entities in a domain and how they 
relate to each other in a formalized fashion [19]. Biomed-
ical ontologies have become quite popular in the last dec-
ades to support the annotation of the massive amounts of 
data produced by gene sequencing technologies. At the 
same time, clinical ontologies have also been developed 
to tackle the limitations of controlled vocabularies and 
allow for a fuller semantic representation. A core aspect 
of biomedical and clinical ontologies is that they typically 
encode several synonyms for the same concept, address-
ing the issue of synonymy. The opportunity here is that 
by linking EHR data to the ontologies through semantic 

annotations, we can feed this extra later of information 
about the meaning of the data to machine learning sys-
tems. Going back to the example of ‘Aortic Valve Disease’ 
and ‘Coronary Artery Disease’, when these concepts are 
described in an ontology (e.g., Fig.  1) then it becomes 
evident that they are similar, since they both are non-
neoplastic heart disorders, sharing after all a considerable 
amount of similarity as shown by their shared ancestor 
classes, facts that are hidden on raw analysis. An ontol-
ogy can be represented as a graph, where nodes corre-
spond to classes (that describe concepts in the domain) 
or individuals (the actual data entities), and edges corre-
spond to relations between the classes and/or individu-
als. When a relevant portion of the graph corresponds to 
instances, it can be considered a Knowledge Graph (KG).

The aim of this work is then to investigate how enrich-
ing EHR data with ontology-based semantic annotations 
to build a KG and applying machine learning techniques 
that explore them can impact the prediction of ICU read-
mission risk, i.e., the prediction of whether a patient 
will be readmitted to the ICU or die within 30  days of 
release. We propose a novel end-to-end approach that 
is able to first, select the appropriate biomedical ontolo-
gies to annotate the EHR data, then use them to generate 
semantic representations of patients through KG embed-
dings based on multiple ontologies, which are finally 
given to ML algorithms to learn the predictive model. KG 
embeddings allow a seamless integration of graph-based 
data and vector-based data and are able to capture the 
semantic aspects of the KG. Other approaches, such as 
Graph Neural Networks expect input solely in the form 
of a graph, while more simple techniques such as one-hot 
encoding or graph-based feature extraction, struggle with 
capturing more complex semantics and with high-dimen-
sionality issues. Moreover, we tackle two challenges that 
general applications of KG embeddings for supervised 
learning do not address  [20], namely (1) how to select 
appropriate ontologies to describe the EHR data; (2) how 
to employ multiple ontologies to create a KG embedding 
based representation.

KG embeddings have been successfully employed in 
biomedical ML tasks such as predicting gene-disease 
associations [21, 22], drug-disease association prediction 
[23], drug-drug interaction prediction [23], protein-pro-
tein interaction prediction [23], prediction of drug-target 
interactions and polypharmacy side effects [24], and also 
in clinical applications such as miscarriage risk assess-
ment [25] and EHR classification [17, 18, 26].

Lu et  al. [17, 18] uses the discharge summaries of 
patients to predict ICU readimissions. In a first work 
[18], they employ hyperbolic embeddings of Interna-
tional Classification of Diseases, Version 9 (ICD9) con-
cepts to represent the summaries to support supervised 
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learning. In a second work [17] they represent the sum-
maries with multi-view graphs enhanced by the Unified 
Medical Language System Metathesaurus, which are cou-
pled with a Graph Convolutional neural network (CNN). 
These works however, are limited to a single ontology or 
controlled-vocabulary source and cover just one type of 
feature.

A parallel line of research has focused on embedding 
the EHR data directly, without using ontologies and KGs. 
Choi et  al. [27] explored the natural hierarchical struc-
ture of EHR data to produce multi-level embeddings to 
predict heart failure, while in [28], Graph Convolutional 
Transformers were used to jointly learn the structure of 
EHR data while performing ICU readmission prediction 
and mortality prediction. These works do not explore 
existing KGs and ontologies, or lack the ability to use 
external sources of knowledge like ontologies, and rather 
build them from the EHR data, and as such do not take 
into consideration the context and semantics that ontolo-
gies afford.

However, most ML approaches for EHR data work 
over vector data and ICU readmission prediction is 
no exception [16, 29, 30]. Two of these works [29, 30] 
use unpublished data and a variety of more classical 
ML approaches ranging from Naive Bayes to Gradient 
Boosting. Lin et al. [16] however, use the publicly avail-
able dataset MIMIC-III [31] and incorporate multiple 
types of clinical data features and pre-trained ICD9 
embeddings based on clinical notes coupled with CNN 
and Long short-term memory (LSTM).

Finally, there is an untapped opportunity to build 
models that more closely align with the reality of the 
ICU. To achieve this, we also aim to establish models 
that work with information limited to specific points in 
time of an ICU stay. So instead of making predictions 
only post ICU stay, predictions are made throughout 
the stay, allowing clinicians and health care practition-
ers to keep track of the 30-days risk of readmission and 
update it as more information on the patient becomes 
available.

Fig. 1  Ontology subgraph representing the classes ‘Aortic Valve Disease’ and ‘Coronary Artery Disease’
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Methods
An overview of the methodology is shown in Fig. 2. It 
has 3 main components: (1) data collection and pre-
processing, (2) semantic feature generation, (3) read-
mission prediction. The data collection gathers all 
the ICU information needed for the ML models and 
semantic enrichment from the MIMIC-III database. 
The semantic feature generation step builds the KG 
and generates vector representations (i.e., embeddings) 
that can be processed by the ML models for prediction. 
The process takes as input the MIMIC-III dataset and a 
repository of biomedical ontologies (via BioPortal), and 
outputs a prediction for if a patient will be readmitted 
into the ICU in the 30 days following their release.

To better elucidate the impact of using semantic 
annotations and KG embeddings for ICU readmission 

prediction, we build on the work of Lin et al.  [16], the 
only related work with open source code (see Avail-
ability of data and materials). Our methodology dif-
fers from theirs by both considering additional relevant 
information from the MIMIC-III dataset and by enrich-
ing this information with semantic representations 
of features based on ontology embeddings. While Lin 
et  al. built a readmission prediction model based on 
three specific categories of features in the MIMIC-III 
data set, namely, chart events, ICD9 final diagnosis 
and demographic information for each patient, this 
work also includes prescriptions, initial diagnosis, pro-
cedures information and laboratory events. Lin et  al. 
employed pre-trained ICD9 embeddings based on med-
ical texts to represent the final diagnosis. We do not use 
them, and instead use KG embeddings to represent the 
semantic annotations for all features. Moreover, they 

Fig. 2  Overview of the methodology
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are limited to predictions at the end of an ICU stay, 
since final diagnosis is only available then, whereas this 
work supports predictions at different moments of the 
ICU stay as more data becomes available. Finally, while 
Lin et al. employ sophisticated combinations of LSTM 
and CNN, we focus on more traditional ML algorithms 
to better discriminate the impact of semantic annota-
tions from that of the choice of ML algorithm.

Data collection and pre‑processing
MIMIC-III [31] is an extensive, freely available database 
possessing records related to 53,  423 distinct hospital 
admissions of adult patients (aged 16 years or above) 
who stayed in the Beth Israel Deaconess Medical Center 
intensive care units between 2001 and 2012 [32]. The 
MIMIC-III database contains de-identified and compre-
hensive health-related intensive care data. It comprises 
relevant information such as demographics data, vital 
sign measurements, diagnosis, caregiver notes, proce-
dures endured on the stay, laboratory tests and findings, 
prescriptions, and mortality.

Data acquisition and filtering
Four features were extracted from the MIMIC-III data 
set:

•	 Patients’ demographics extracted are age, gender, eth-
nicity and insurance type, following [16].

•	 Chart events are 17 features including notes, labo-
ratory tests, fluid balance, etc., for each patient and 
normal median values extracted following [16].

•	 Prescriptions include the drug name and National 
Drug Code (NDC) code (not considered in [16]).

•	 Diagnosis includes two features: initial diagnosis, 
recorded at admission in free text (not considered in 
[16]), and final diagnosis coded in ICD9 at discharge 
with a matching label.

•	 Procedures are coded as ICD9 procedures (not con-
sidered in [16]).

•	 Laboratory Tests are coded using Logical Obser-
vation Identifier Names and Codes (LOINC), we 
extract the label and code as features (not considered 
in [16]). We do not use other data such as value, unit, 
etc.

Fig. 3  Patient’s records distribution according to the selection criteria on Lin et al. [16]
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Following Lin et  al. [16] we remove patients under 
the age of 18 years old, resulting in a total of 35,334 
patients with 48,393 ICU stays. Figure  3 represents 
the patient classification into negative and positive 
instances. According to the criteria for patient’s selec-
tion, the following cases are considered to be ICU read-
missions [16]: (1) The patients that were transferred to 
low-level wards from ICU, but returned to ICU again; 
(2) The patients that were transferred to low-level 
wards from ICU, and died later; (3) The patients that 
were discharged, but returned to the ICU within the 
next 30 days; (4) The patients that were discharged and 
died within the next 30  days. This results in a balance 
of 3:1 between records without readmission (negative) 
and records with readmission (positive). The total is 
37,102 negative records and 11,290 positive records.

Data cleaning and pre‑processing
For initial and final diagnosis, we exclude entries that 
have missing labels or labels containing unreadable 
characters. For the prescriptions, lab events and pro-
cedures, the features correspond to controlled vocabu-
laries codes. However, there are still issues of missing 
data or codes in the wrong format. Entries with missing 
labels are excluded. Codes in the wrong format occur 
only in the International Classification of Diseases, 
Version 9-Clinical Modification (ICD9CM) controlled 
vocabulary. The MIMIC-III does not include the period 
character that is a part of ICD9CM codes, which cre-
ates ambiguity for the annotators between codes from 
different branches. Since MIMIC-III distinguishes 
between codes used for procedures and codes for diag-
nosis, we were able to reconstruct correctly formatted 
codes since procedures include the period after the sec-
ond character, and diagnosis after the third.

ICU timeline snapshot split
An ICU stay has multiple stages from the moment a 
patient enters the unit, undergoes diagnosis exams and 
procedures, receives care, all leading ideally to a success-
ful discharge and recovery. This means that throughout a 
patient’s ICU stay new information is generated, as drugs 
are prescribed, tests are prescribed and done, or proce-
dures are performed.

To capture the evolution of an ICU stay we consider 
three moments (snapshots) for which to make predic-
tions: Pre-ICU, In-ICU and Post-ICU [33]. Figure  4 
represents this timeline and the information that is avail-
able for each moment. Pre-ICU corresponds to the data 
available when the patient enters the ICU: demographic 
information and initial diagnosis. In-ICU includes Pre-
ICU data as well as laboratory tests, prescribed drugs and 
chart events. Post-ICU includes all previous information 
as well as the information that is recorded at discharge: 
final diagnosis and procedures. Although procedures 
correspond to the In-ICU moment, since they are only 
recorded in the MIMIC-III EHR for billing purposes 
at the end of the stay we only include them in the final 
moment.

Semantic feature generation
An ontology provides a specification of the meaning of 
the concepts in a domain and an associated vocabulary 
[34]. This specification means the context and the seman-
tic rules that apply to concepts, allowing for their inter-
pretation through their logical axioms. Using ontologies 
to represent domains reduces ambiguity and facilitates 
machine understanding. Clinical text is rich in synonyms, 
contributing to a high degree of ambiguity in analysis. 
Ontologies define multiple synonyms to represent the 
same concept and afford precise semantics for each con-
cept, allowing the identification of synonyms in the text 
they annotate.

Fig. 4  Prediction moments during an ICU stay with corresponding information
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Ontologies serve as the semantic layer of smart infor-
mation systems or more recently, as the schema layer of 
KGs [35]. When a substantial amount of data instances 
are structured in a graph, where nodes represent 
instances and edges the relations between them, and that 
graph follows a schema provided by an ontology to define 
the classes and relations of the instances, we can call it a 
KG.

The knowledge that ontologies (and controlled vocab-
ularies) provide may be used in predictive models with-
out prior data analysis or mining, to enrich or expand 
features, increasing the information available to the ML 
methods that would otherwise be unavailable [36]. This 
is especially true in the life science domain where there 
are more than nine-hundred ontologies available, span-
ning cross several fields of research on biological and bio-
medical domains [36]. Biomedical ontologies are able to 
provide controlled vocabularies for characterizing most 
biological phenomena with formalized domain descrip-
tions and provide interaction by link them to other 
related domains [37].

We define a KG as a graph-representation of knowl-
edge that describes entities and their relations defined 
according to classes and relations in an ontology. The 
approach to build a KG by linking the data extracted 
from the EHR to ontologies and using it to generate fea-
tures includes three steps (see Fig. 2 step 2): (1) Ontology 
Selection, where ontologies that provide adequate cov-
erage of the feature’s domains are selected; (2) Seman-
tic Annotation, where textual features are mapped to 
ontology classes that describe them; and (3) Annotation 
Embedding, where each feature’s annotation is processed 
using a KG embedding approach that represents it in a 
numerical vector that reflects the meaning of the particu-
lar class within the ontology.

Ontology selection
The BioPortal Recommender platform [38] was used to 
support ontology selection. This service receives a bio-
medical text corpus or a list of keywords, for instance 
a set of EHR terms and for the set suggests ontologies 
appropriate for reference [38]. Despite the low num-
ber of studies describing the Bioportal recommender 
accuracy, we know it relies on the NCBO annotator for 
ontology annotations scoring and to provide a recom-
mendation [39]. The annotator uses Mgrep for concept 
recognition [40], an extremely accurate system that for 
disease name recognition ensures a 95% or higher accu-
racy [40]. These high accuracies ensure that the bio-
portal recommender has a high accuracy for diagnosis 
annotation. We used a pre-selected group of ontologies 
of interest: National Cancer Institute Thesaurus (NCIT), 
Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMEDCT), Medical Subject Headings Thesaurus 
(MeSH) and RxNORM were selected based on relevance 
attributed in a previous work [41]; LOINC, The Drug 
Ontology (DRON) and ICD9CM were selected due to 
their presence on the MIMIC-III data set; Medical Dic-
tionary for Regulatory Activities Terminology (MedDRA) 
and Experimental Factor Ontology (EFO) were selected 
as extra relevant biomedical ontologies.

Semantic annotation
Semantic annotation is the process of describing an 
object by associating it with concepts that have well-
defined semantics in an ontology [42]. Given the results 
obtained for the Ontology selection, we considered two 
annotation strategies: one using the NCIT and one using 
four different ontologies (NCIT, LOINC, ICD9CM and 
DRON).

For the single ontology scenario all textual labels (diag-
noses, lab events,procedures and prescriptions) were 
mapped to a single ontology, NCIT.

For the multi-ontology scenario, the semantic annota-
tion procedure is simpler because MIMIC-III already 
includes the codes (i.e., class identifiers) for the labora-
tory events (LOINC) and final diagnosis and procedures 
(ICD9CM). To cover the drug prescriptions, since NDC 
is not openly available, we mapped its classes to DRON 
using the BioPortal Annotator. Initial diagnoses were 
mapped via their textual labels to NCIT.

The text based annotations to NCIT were performed 
with ElasticSearch [43]. For each term in our dataset, a 
list of the six best scoring matched ontology classes is 
retrieved, and the one with the smallest Levenshtein Dis-
tance between the label of each class and the input term 
is selected.

A patient is thus initially represented by a vector of all 
their annotations, i.e. the ontology classes that describe 
their features.

The annotations are then used to build a KG that defines 
patients as instances that are related to the ontology 
classes that annotate them:

where Vc are the vertexes that represent ontology classes, 
Vi represent instances, Ec the edges between classes, Ea 
the edges between an instance and the class that anno-
tates it.

KG embeddings
To represent patients through their semantic annota-
tions for each feature in a way that machine learning 
algorithms can process, we employed KG embeddings. 

(1)Pa = {c1, . . . , cn}

(2)KG = {Vc,Vi,Ec,Ea}
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An embedding is a technique that transforms a higher 
dimensional space into a lower dimensional one [44]. 
KG embeddings represent the KG components in 
continuous vector spaces, so that their manipulation 
is simplified but at the same time preserve the inher-
ent structure of the KG [45]. A typical KG embed-
ding techniques has three steps [45]; the first specifies 
the entities and relations representation on the vector 
space, with entities usually represented as vectors and 
relations taken as operations represented as vectors or 
matrices; the second step defines a scoring function to 
measure the plausibility; and on the final step, to learn 
useful entity and relation representations, based on the 
score function, an optimization is done to maximize 
plausibility [45].

KG embeddings are learned for each annotated class 
of each ontology used, resulting in five sets of vector 
embeddings (one for the single ontology scenario one 
and four for the multi-ontology scenario two). The full 
graph is given as input to the KG embedding methods, 
with all types of relationships being considered. However, 
the majority of these are hierarchical relations, which is a 
consequence of the nature of the ontologies employed in 
our strategy.

We hypothesize that random-walk-based embedding 
techniques such as RDF2Vec are better suited to embed-
ding instances based on their ontology annotations, 
because they are better at capturing long distance hier-
archical relations than translational strategies like TransE 
[46]. Additionally, we also wanted to investigate whether 
methods that also take advantage of the ontology axi-
oms and lexical component of the ontologies, such as 
OPA2Vec [22] would represent an improvement.

RDF2Vec [44] is a random-walk based strategy fit to 
handle specific semantics of RDF graphs (a language used 
to encode KGs and ontologies) [44]. For a given graph 
G = (V ,E) , for every single vertex v ∈ V  , RDF2Vec gen-
erates all graph walks Pv of depth d rooted in the vertex 
v. These sequences are the input to word2vec [47], a two-
layer neural net model to learn word embeddings from 
raw text (or in this case, sequences of graph entities).

OPA2Vec [22] produces a triple representation of the 
ontology based on formal axioms both materialized and 
inferred by reasoning and annotation axioms that cap-
ture the lexical component. It then applies a PubMed 
pre-trained Word2Vec model [48] to produce the embed-
dings vectors.

TransE [46] uses translations to represent relations in 
the embedding space, where for each entity and relation, 
if a triple of subject, predicate, and object (s, p, o) holds, 
the embedding of the object must be close to that of the 
subject plus a vector of the predicate (relation) [46]. This 
can than be generalized for every triple on the KG.

All embedding vectors have 300 dimensions, follow-
ing the baseline embedding parameters used by Lin et al. 
[16] and after empirical evaluation of 200 and 400 dimen-
sions showed no performance gain. Other parameters are 
set to default in both TransE and OPA2Vec. RDF2Vec 
employed the Skip-Gram algorithm, 500 walks and a 
maximum depth of 4. An ontology class is now repre-
sented as a vector with 300 dimensions.

If an ICU stay of a patient is annotated by more than 
one class (vector) within an ontology, then the vectors 
for each annotated class are summed. This aggrega-
tion approach follows the one used by [16] for the ICD9 
embeddings. More formally, the embedding vector that 
represents a patient p under a given ontology o is given 
by the sum of each embedding vector vc that represents 
each annotation of the patient in o to a class c.

Since in the multi-ontology scenario each ICU stay fea-
ture is annotated by a different ontology, this results in 
four different embeddings vectors each corresponding 
to the sum of the individual vectors for each annotation. 
These four vectors are then concatenated (i.e., appended) 
instead of summed to preserve the distinct dimensions.

This results in a single vector describing an ICU stay 
of a patient with 300 dimensions for the single ontology 
scenario and 1200 dimensions for the multi-ontology 
scenario.

Readmission prediction
The prediction task is formulated to correctly predict if a 
patient will be readmitted to an ICU unit within 30-days 
after release (or die). Each instance corresponds to a 
patient and their ICU stay, represented by a concatenated 
vector that includes demographic data ( vd ) and chart 
events ( vc ) (similarly to [16]) as well as the KG embed-
dings vector ( vpo):

Predictions at different points of the ICU timeline stay 
include only the embeddings for the data available at that 
time.

Four classical machine learning methods are used: 
Logistic Regression (LR), Random Forest (RF), Naive 
Bayes (NB), and Support Vector Machine (SVM). These 
are the same methods used by [16] as baseline models. 
The LSTM and CNN models were not reproducible, pos-
sibly due to an incompatibility of libraries. No hyperpa-
rameter optimization is applied, to ensure a more direct 
comparison to [16]. The choice of using classical methods 

(3)vpo =

n

c=1

vc

(4)P = {vd + vc + vpo}
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allowed us to focus our analysis on the impact of the KG 
embeddings.

Results and discussion
Data cleaning results
737 patients ( 2%) in the Pre-ICU setting do not have an 
initial diagnosis and were removed from that experiment, 
but all patients are retained for both In-ICU and Post-
ICU, since they all have at least one initial diagnosis, drug 
prescription or lab test.

After the data cleaning procedures there are 12,737 dif-
ferent unique terms that can be annotated (see Table 1), 
representing a total of 85.4% of the original set. The losses 
were as expected more pronounced for the Initial Diag-
nosis because as a free text variable it is more likely to 
suffer from issues such as meaningless characters (e.g., a 
single dash or period instead of alphabetical characters).

Semantic feature generation results
After running the BioPortal recommender for all terms 
extracted from our dataset, the NCIT ontology is the 
most suitable (Fig.  5), with the best overall coverage 
reaching about 35% coverage. Although NCIT is the best 
ontology for this prediction scenario, the MIMIC-III data 
set has mappings to specific ontologies according to the 
type of feature, LOINC for laboratory events, ICD9CM 

for procedures and final diagnosis, and NDC for drug 
prescriptions, which can also be used for annotation.

Table  1 presents the number of terms that served as 
input for annotation from each type (row Cleaned Data) 
and how many were annotated in the NCIT only and 
Multi-Ontology scenarios. The Multi-ontology annota-
tion provides annotations for all input terms. However, 
the NCIT annotation results in a loss of information 
that is more pronounced for Drug Prescriptions and Pro-
cedures and Final Diagnosis since NCIT does not cover 
these aspects in as much detail.

The semantic annotations were used to build two KGs, 
one for each ontology scenarios. The resulting number 
of triples ((subject,  predicate,  object) statements) is pre-
sented on Table 2.

Experimental design
The experimental design includes different components:

•	 Reproduction results a reproduction of the baselines 
established by [16].

•	 NCIT embeddings for diagnosis an evaluation of the 
impact of considering NCIT RDF2Vec embeddings 
for initial diagnosis information, coupled with the 
demographic information and chart events.

•	 NCIT embeddings for all features an evaluation of the 
impact of considering embeddings for all the features 
we extracted. Each feature set is represented by an 
NCIT RDF2Vec embedding vector.

•	 Embeddings using multiple ontologies a compari-
son of using embeddings based on different ontolo-
gies: NCIT for the initial diagnosis and the MIMIC-
III proposed ontologies for each respective feature 
type. Each feature set is represented by an RDF2Vec 
embedding made with the specific ontology.

Table 1  Number of terms for each feature type before and after the cleaning process, and after semantic annotation

Initial diagnosis Lab tests Drug prescriptions Procedures & Final 
diagnosis

Total

Original data 3567 574 2782 7993 14916

Cleaned Data 2709 568 2782 6678 12737

Multi ontology annotated terms 2709 568 2782 6678 12737

NCIT annotated terms 2709 263 856 1118 4946

Fig. 5  Number of terms annotated with each individual ontology 
proposed by BioPortal

Table 2  KG statistics

Triples Subjects Objects Predicates

One ontology 6921258 519583 607819 83

Multiple ontologies 8288250 519583 618193 83
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•	 ICU stay simulation a simulation of an ICU stay. 
Predictions are made for each of the three moments 
where new information becomes available (Fig. 4).

•	 Other KG embeddings approaches a comparison 
of the best performing model using representative 
methods of distinct KG embeddings approaches.

•	 Ablation study an assessment on the impact the KG 
completeness has on predictive performance.

We performed a five-fold cross-validation and meas-
ured the AUROC to assess the trade-off between sensi-
tivity and specificity and AUPRC to better analyse the 
performance over the positive instances without having 
to establish a threshold. We also performed statistical 
Kruskal–Wallis tests over the AUROC and AUPRC val-
ues to evaluate the significance of the results. To illustrate 
the results, we also present Receiver Operating Charac-
teristic (ROC) and Precision-Recall Curve (PRC) for sin-
gle folds.

Reproduction results
The reproduction results on Fig. 6a are somewhat lower 
than the ones reported, likely due to differences in the 
cleaning and pre-processing steps. The results obtained 
were mean AUROC values of 0.591 ±0.009 for SVM, 
0.571 ±0.009 for LR, 0.617 ±0.009 for RF and 0.557 
±0.004 for NB, meaning that all four prediction mod-
els are relatively poor in terms of performance. Mean 
AUPRC values are also low (0.257 ±0.011 for SVM, 0.237 
±0.009 for LR, 0.263 ±0.012 for RF and 0.319 ±0.008 for 
NB).

NCIT embeddings for diagnosis
The performance of the NCIT Embeddings for diagnosis 
approach (see Fig. 6b) slightly improves on the reproduc-
tion results, with RF achieving the best result with an 
AUROC of 0.661 ±0.006 , and all methods above 0.610 
except NB . The AUPRC is also increased compared to the 
baseline. This indicates that there is valuable information 
in the initial diagnosis, which when semantically enriched 
is able to outperform the baseline that has access to the 
final diagnosis, which one could hypothesize has better 
predictive value for the readmission risk.

The Kruskal–Wallis analysis between the baseline and 
NCIT diagnosis embeddings resulted in p-values for the 
AUROC analysis ranging from 0.009 to 0.016, and from 
0.008 to 0.009 for the AUPRC, which further indicates 
that NCIT initial diagnosis embeddings represent an 
improvement over the ICD-9 final diagnosis embeddings.

NCIT embeddings for all features
This experiment targeted the prediction of readmission 
at the end of the ICU stay and used all information col-
lected and annotated with NCIT (see Fig. 7a).

Performance improved not only over the reproduction 
baselines but also significantly over the previous experi-
ment, with RF as the best performing method achieving 
mean AUROC of 0.826 ±0.009 and all models achiev-
ing values above 0.8, with exception of the NB model. 
However, the largest improvement was on the AUPRC 
where the trade-off between precision and recall is 
now improved with the best performing model achiev-
ing a 0.685 ±0.019 mean AUPRC value. These results 

Fig. 6  ROC and PRC comparison of the baseline and using NCIT embeddings for diagnosis instead of ICD9 embeddings. The boxes present mean 
and standard deviation of AUROC and AUPRC for the four ML algorithms
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clearly showcase the benefit of considering semantically-
enriched information throughout the ICU stay.

The statistical analysis produced p-values between 
0.008 and 0.009 for both AUROC and AUPRC when 
comparing both against the baseline and the NCIT 
embeddings for diagnosis. These results further support 
the significance of the observed improvements in both 
cases.

Embeddings using multiple ontologies
The results of the multiple ontologies embeddings 
experiment on Fig. 7b show that overall the performance 
decreases when compared to using only NCIT. Although 
RF presents a mean AUROC value of 0.825 ±0.005 , a 
clear improvement over the corresponding baseline 
(0.617 ±0.009 ), the rest of the models under-perform 
when compared to the single ontology approach. The 
AUPRC results also highlight the decrease in perfor-
mance, with all the models performing under 0.5. These 
results demonstrate that employing multiple ontologies 
tailored to different domains is not a better approach 
over using a single general purpose ontology. This is 
likely due to the fact that learning embeddings in a sin-
gle semantic space that can be readily combined afford 
a more holistic representation than training separate 
embeddings for each feature type using different ontolo-
gies. We hypothesize that this holistic representation can 
be better explored by the ML methods, and thus achieve 
better performance.

The Kruskal–Wallis test comparing the one ontology 
approach with the multiple ontologies approach revealed 
that for SVM and LR both AUROC, and AUPRC have 

low p-values ( ≈ 0.009 ), whereas RF and NB display val-
ues above 0.05. These results support that there is not a 
clear advantage to using specialized ontologies.

ICU timeline snapshot prediction
To investigate prediction performance at the three ICU 
stay moments, pre-ICU, in-ICU and post-ICU, we use 
the best overall performing approach: all the information 
mapped to the NCIT ontology. The results obtained for 
this experiment are shown in Fig. 8.

The Pre-ICU approach is equivalent to the first experi-
ment but without chart events. The results reveal that 
the improvement observed in the first experiment is due 
to an interplay between the initial diagnosis and chart 
events. However, since chart events are unavailable at 
the moment of admission, the initial diagnosis proves to 
be insufficient to achieve acceptable readmission predic-
tion. The statistical analysis results in p-values below 0.05 
for the AUROC and for the AUPRC) for all ML methods 
except NB.

During the stay, more information becomes available 
and the In-ICU experiment corresponds to all informa-
tion gathered up to the discharge event. Here, we observe 
the largest performance improvement with AUROC 
values for RF achieving 0.827 ±0.011 and AUPRC 0.692 
±0.018 , when all data is considered. The statistical test 
comparing Pre-ICU and In-ICU produces p-values below 
0.009 for AUROC and AUPRC, supporting the conclu-
sion that the additional information captured during the 
ICU stay contributes to a better predictive performance.

When chart events are not considered, performance 
is only slightly decreased, indicating that it is indeed the 

Fig. 7  Comparison of ROC and PR curves with AUROC and AUPRC (mean and standard deviation values) for the two semantic annotation strategies: 
using one or multiple ontologies
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Fig. 8  Comparison of ROC and PR curves with AUROC and AUPRC (mean and standard deviation values) for the different stages of an ICU [33], with 
the data mapped to the NCIT ontology, with and without chart events
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laboratory information and drug prescriptions embed-
dings that positively impact performance. In fact, none of 
the statistical achieve p-values below 0.05.

Finally, at Post-ICU we observe a slight decrease in 
mean performance both in AUROC and AUPRC. This is 
a curious effect, which indicates that final diagnosis and 
procedures do not have an additive contribution to ICU 
readmission prediction.

The results indicate that it is possible to predict ICU 
readmission with good performance with the informa-
tion that is collected during an ICU stay, without needing 
the final diagnosis and procedures. The confusion matrix 
in Table 3 shows a high average true negative rate clearly 
showing that the In-ICU model is capable of prevent-
ing the unnecessary readmission of more than 90% of 
the patients. Additionally, for about 55% of patients who 
need to stay in the hospital, the model can prevent early 
discharge. It is especially interesting to note that these are 
carried out while just unnecessarily prolonging the stay 
of 10% of the patients who would not require it.

Other KG embedding methods
The TransE embeddings outperform the baseline, but 
do worse than both OPA2Vec and RDF2Vec, which 
confirms our initial hypothesis (see Fig.  9). OPA2Vec 
achieves much better performance with mean AUROC 
of 0.822 ±0.007 and AUPRC of 0.677 ±0.014 . Although 
these values are somewhat lower than those achieved by 
RDF2Vec, the Kruskal–Wallis test produced values well 
above 0.05 (0.590 and 0.207 for AUROC and AUPRC 
respectively), indicating no significant differences in 

the performance of both methods. One can argue that 
whatever advantages OPA2Vec gains by considering 
the lexical portion of the ontology, are compensated by 
RDF2Vec’s long random walks over the graph.

Ablation study
We designed further experiments to assess how the KG 
completeness, in terms of the number of annotations 
and coverage of the ontologies impacts predictive perfor-
mance. Although MIMIC-III contains real data and thus 
represents the completeness of data achieved at one real 
hospital, data completeness is expected to vary consider-
ably between different institutions.

Figure 10a showcases the effect that randomly reducing 
the number of annotations for each patient down to 50 
and 25% has on performance. The impact is more notice-
able in terms of AUPRC, but AUROC remains above 
0.7 even with just 25% of the annotations available. Fig-
ure 10b supports a global analysis of all annotations avail-
able across the different scenarios and ontology sets. For 
this experiment, we did not use the cumulative annota-
tions for each moment, but rather used the annotations 
available only for a specific moment and composed them 
into different combinations. This allows us to test the sce-
nario where we have the Pre-ICU and Post-ICU annota-
tions but not the In-ICU. These experiments show that in 
general performance grows with annotation numbers as 
expected, however the best overall performance is actu-
ally achieved for the Preo + Ino scenario where fewer 
annotations are available compared to Preo + Ino + Posto , 
and that the multi-ontology scenario performs worse 
than the single-ontology scenario despite having a more 
comprehensive KG and more annotations. Furthermore, 
the lower number of annotations present at Preo + Posto 
are capable of achieving a good performance in terms of 
AUROC. These results highlight that although the com-
pleteness of the data does have an impact on predictive 
performance, not all annotations are created equal and 
that performance is influenced by the interplay between 

Table 3  Confusion matrix of average RF In-ICU test fold records 
distribution

Predicted negative Predicted 
positive

Actual negative 3400 510

Actual positive 380 600

Fig. 9  Comparison of KG embedding techniques coupled with RF using the best performing strategy (In ICU with NCIT ontology)
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annotation number, type of information covered by the 
annotations, and ontologies used.

Comparison with the state of the art
Although this work has several parallels to Lin et al. [16] 
since they use the same dataset and target the same pre-
diction task, both works differ substantially in the fea-
tures they employ, how they generate those features and 
the ML algorithms applied. The work by Lin et al. has a 
strong focus on chart-events, which are the main input 
to their recurrent neural network model, whereas in 
our case chart events do not actually impact predictions 
made by our models. Our experiments revealed that pre-
dictions made with or without chart events result in the 

same performance for our method. They use fewer non-
numerical features, extracting only demographics and the 
ICD9 final diagnosis codes, whereas in our work we con-
sider initial diagnosis (text), laboratory events, prescrip-
tions and final diagnosis (codes). To tackle the difficulties 
in comparing the ICD9 codes taking into account their 
meaning, Lin et  al. use pre-trained word embeddings 
for ICD9 codes that were trained on a dataset of clinical 
notes. Our work, on the other hand, not only represents 
a lot more textual and categorical features, but it does so 
by employing embeddings based on biomedical ontolo-
gies. The KG embeddings allow us to tackle a consider-
able challenge faced by EHR mining approaches: how 
to adequately compare categorical and textual features. 

Fig. 10  Evaluation of the impact of KG completeness
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The embeddings not only allow for a representation that 
can be explored by ML algorithms, but also, and perhaps 
more importantly they allow us to tap sources of informa-
tion in the EHR that would otherwise not be accessible. A 
direct comparison between the performance obtained in 
the two works is not feasible, however, since we repro-
duced their baseline, we can compare the improvement 
they achieved over their baseline, to the improvement 
we obtained over our corresponding baseline. Lin et al.’s 
AUROC for the baseline using RF was 0.712 (ours was 
0.617 ±0.009 ), whereas their best result (using LSTM + 
CNN) was 0.791 (ours was 0.827 ±0.011 ). The marked 
improvement our approach achieved clearly supports the 
advantages of scientific data contextualization.

Lu et  al. [17] also targeted ICU readmission predic-
tion, but employed text mining approaches over the 
text of discharge summaries. They reported an AUROC 
of 0.825 (our best approach, NCIT + RF, reached 0.827 
±0.011 ) and a AUPRC of 0.632 (our best approach, NCIT 
+ RF, reached 0.692 ±0.018 ). The results are not directly 
comparable to ours in purely methodological terms, but 
they highlight that considering more features and enrich-
ing them with semantic annotations can have a positive 
impact of ICU readmission risk prediction.

Conclusion
The growing adoption of EHR and the recent develop-
ments in ML applied to clinical data present an opportu-
nity to address ICU readmission by generating accurate 
risk predictions that can help to reduce the number of 
readmissions and improve health outcomes. Clinical data 
has a rich background knowledge, but this is not acces-
sible in EHRs and typical ML approaches are unable to 
explore it. We have developed an approach that enriches 
EHR data with semantic annotations to ontologies, and 
then generates KG embeddings to represent patient’s fea-
tures in a contextualized manner.

We evaluated our approach in the MIMIC-III EHR 
data set, and experimented with different ontologies 
and controlled vocabularies (NCIT, LOINC, DRON 
and ICD9CM), KG embeddings techniques and ML 
algorithms. The best results were obtained using 
RDF2Vec embeddings of the NCIT ontology coupled 
with a Random Forest, achieving a mean AUROC of 
0.827 ±0.011 and AUPRC of 0.692 ±0.018 . These results 
represent a gain in more than 0.2 in AUROC and 0.4 in 
AUPRC over the baseline. We also experimented with 
making predictions at different moments of the ICU 
stay and with different levels of annotation complete-
ness, and learned that the maximum predictive power 
is achieved without considering information only avail-
able at the moment of discharge. These results highlight 

that performance is influenced by data completeness 
but also by data domain and ontology appropriateness.

The general methodology developed in this work 
can be generalized to other clinical data sets and even 
other predictive targets, as long as the data therein is 
adequately covered by existing ontologies. Given the 
abundance and diversity of biomedical ontologies avail-
able, adequate coverage is highly likely for most appli-
cations. This work focused on classical ML approaches, 
given the small size of the data. However, there is also 
an opportunity to explore KGs using deep learning 
approaches, especially for larger datasets and a greater 
amount of features. A particular avenue for future work 
lies in exploring deep learning methods that are able to 
explore the temporal aspects of the features (e.g. [49]), 
and couple this with their semantic representations.

The coupling of semantic annotation and KG embed-
dings affords two clear advantages for ML applica-
tions in EHR: they consider scientific context by using 
ontology annotations that can then be explored by KG 
embeddings methods; they are able to build repre-
sentations of EHR information of different types in a 
common format, since embeddings can represent any 
number of diagnosis, tests, procedures, etc, in a numer-
ical vector that is easily processed by ML methods.

This work demonstrates the potential for impact 
that integrating ontologies and KGs into biomedi-
cal machine learning applications can have. Moreo-
ver, by having the clinical data semantically annotated 
with ontologies, this work also paves the way for more 
explainable approaches that explore the meaning 
encoded in ontologies to better explain predictions to 
clinicians [50, 51].
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