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Abstract 

Background  Detecting brain tumors in their early stages is crucial. Brain tumors are classified by biopsy, which 
can only be performed through definitive brain surgery. Computational intelligence-oriented techniques can help 
physicians identify and classify brain tumors. Herein, we proposed two deep learning methods and several machine 
learning approaches for diagnosing three types of tumor, i.e., glioma, meningioma, and pituitary gland tumors, as well 
as healthy brains without tumors, using magnetic resonance brain images to enable physicians to detect with high 
accuracy tumors in early stages.

Materials and Methods  A dataset containing 3264 Magnetic Resonance Imaging (MRI) brain images comprising 
images of glioma, meningioma, pituitary gland tumors, and healthy brains were used in this study. First, preprocessing 
and augmentation algorithms were applied to MRI brain images. Next, we developed a new 2D Convolutional Neural 
Network (CNN) and a convolutional auto-encoder network, both of which were already trained by our assigned 
hyperparameters. Then 2D CNN includes several convolution layers; all layers in this hierarchical network have a 2*2 
kernel function. This network consists of eight convolutional and four pooling layers, and after all convolution layers, 
batch-normalization layers were applied. The modified auto-encoder network includes a convolutional auto-encoder 
network and a convolutional network for classification that uses the last output encoder layer of the first part. Further-
more, six machine-learning techniques that were applied to classify brain tumors were also compared in this study.

Results  The training accuracy of the proposed 2D CNN and that of the proposed auto-encoder network were found 
to be 96.47% and 95.63%, respectively. The average recall values for the 2D CNN and auto-encoder networks were 
95% and 94%, respectively. The areas under the ROC curve for both networks were 0.99 or 1. Among applied machine 
learning methods, Multilayer Perceptron (MLP) (28%) and K-Nearest Neighbors (KNN) (86%) achieved the lowest and 
highest accuracy rates, respectively. Statistical tests showed a significant difference between the means of the two 
methods developed in this study and several machine learning methods (p-value < 0.05).

Conclusion  The present study shows that the proposed 2D CNN has optimal accuracy in classifying brain tumors. 
Comparing the performance of various CNNs and machine learning methods in diagnosing three types of brain 
tumors revealed that the 2D CNN achieved exemplary performance and optimal execution time without latency. This 
proposed network is less complex than the auto-encoder network and can be employed by radiologists and physi-
cians in clinical systems for brain tumor detection.
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Introduction
In medical terms, tumors are known as malignant or 
benign neoplasms, of which there are more than 200 
diverse varieties that may affect humans [1]. Accord-
ing to the American Cancer Society, a brain tumor is a 
severe disease in which irregular brain tissue growth 
impairs brain function. The National Brain Tumor Foun-
dation (NBTF) reported that the number of people who 
have lost their lives due to brain tumors has increased 
by 300% in the last three decades [2]. Brain tumors can 
lead to death if left untreated [3]. The complexity of brain 
tumors poses challenges for healthcare providers in diag-
nosing and caring for affected patients. Early detection of 
brain tumors and initiation of treatment play vital roles in 
the survival rate of these patients [4]. Brain tumor biopsy 
is not as easy as biopsy of other parts of the body, as it 
must be performed with surgery. Therefore, the need for 
another method for accurate diagnosis without surgery is 
crucial. Magnetic Resonance Imaging (MRI) is the best 
and most commonly used option for diagnosing brain 
tumors [5].

Recent advances in machine learning, particularly in 
deep learning, have led to the identification and clas-
sification of medical imaging patterns. Successes in this 
area include the possibility of retrieving and extracting 
knowledge from data instead of learning from experts or 
scientific texts. Machine learning is rapidly becoming a 
helpful tool for improving performance in various medi-
cal applications in various fields, including the prognosis 
and diagnosis of diseases, identification of molecular and 
cellular structures, tissue segmentation, and the classi-
fication of images [6–8]. In image processing, the most 
successful techniques currently used are Convolutional 
Neural Networks (CNNs), as they have many layers and 
high diagnostic accuracy if the number of input images is 
high [9, 10]. Autoencoders are an unsupervised learning 
method in which neural networks are leveraged for rep-
resentation learning. Remarkably, various deep learning 
and machine learning algorithms have been used to iden-
tify tumors (such as lung tumors) and detect cardiovas-
cular stenosis. Moreover, performance evaluations have 
shown that they have high diagnostic accuracy [11–14].

Many studies have been conducted on the detection of 
brain tumors by various methods and models [5, 15–21]. 
However, some of these studies have had a number of 
limitations, such as a lack of a performance comparison 
between the proposed model and traditional machine 
learning methods [5, 22, 23]. The proposed model in one 
study required complex computations [24]. The majority 
of relevant studies have provided models for classifying 
three types of brain tumors without including healthy 
subjects [22–25].

Speaking scientifically, tumor diagnosis by medical 
images is erroneous and depends heavily on the radi-
ologist’s experience. Because of widespread pathology 
variation and the possible fatigue of human specialists, 
researchers and physicians can benefit from computer-
assisted interventions [6], and computational intel-
ligence-oriented techniques can assist physicians in 
identifying and classifying brain tumors [5]. Machine 
learning approaches, especially deep learning, can also 
play a vital role in the analysis, segmentation, and clas-
sification of cancer images, especially brain tumors [26]. 
Furthermore, the use of such methods paves the way for 
accurate and error-free identification of tumors to rec-
ognize and distinguish them from other similar diseases. 
In the present study, we have tried to propose models 
that consider the suggestions and limitations presented 
in studies and suggest suitable solutions for them. Eight 
modeling methods have been compared to determine 
whether a significant difference exists between these 
methods in terms of performance.

Contributions of this work
The significant contributions of this work are detailed 
below:

(1)	 Our networks are performed on an extensive data-
set of 3264 T1-weighted contrast-enhanced MRI 
images, which are desirable for the training and 
testing phases.

(2)	 The internal architecture of the modified 2D CNN 
and convolutional auto-encoder neural network are 
adjusted in terms of the number of layers, how the 
layers are positioned next to each other, the type 
of parameters and hyperparameters, and their val-
ues that can be varied to fine-tune our models to 
enhance accuracy.

(3)	 Extracted essential features are utilized to classify 
three types of brain tumors and healthy brains (no 
tumor) by 2D CNN, auto-encoder network, and six 
common machine learning techniques.

(4)	 In the modified 2D CNN, several convolution lay-
ers are considered; all layers in this hierarchical net-
work have a 2*2 kernel function. This network con-
sists of eight convolutional layers and four pooling 
layers; after all convolution layers, batch-normaliza-
tion layers were applied. The training process was 
accomplished over 100 training epochs, and the 
batch size was 16. Each epoch last 7 s.

(5)	 The auto-encoder network includes a convolutional 
auto-encoder network and a convolutional network 
for classification that uses the last output encoder 
layer of the first part. The encoder part has a con-
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volutional layer of 32-filter length, two continuous 
convolutional layers with a filter length of 128, and 
two continuous convolutional layers with a filter 
length of 64. The decoding part of the network con-
sists of a convolutional layer with a filter length of 
32, two continuous convolutional layers with a filter 
length of 64, and two continuous convolutional lay-
ers with a filter length of 128 as well as a convolu-
tional layer with a filter length of 128. For all convo-
lution layers, the 2*2 kernel function was applied.

(6)	 The developed networks achieved optimal accuracy 
of approximately 95% to 96%, and areas under the 
receiver operating characteristics curves (AUROC) 
are 0.99 or 1. Performance analysis proposes a ren-
ovation of our proposed techniques by comparing 
related papers.

(7)	 One-way ANOVA for three parameters of preci-
sion, recall, and F-measure in eight modeling meth-
ods showed a statistically significant difference 
between the methods (p-value < 0.001).

(8)	 Our architectures attain competitive undertakings 
analogized with other state-of-the-art approaches 
on the MRI dataset and demonstrate a heightened 
generalization.

Related works
In recent years, many methodologies for classifying brain 
tumors by MRI images have been developed (Table 1).

A study conducted by Badža and Barjaktarovic´ in 
2020 used a CNN to classify glioma, meningioma, and 
pituitary tumors. The network architecture applied in 
this study consisted of an input layer, two blocks “A,” two 
blocks “B,” a classification block, and an output layer, with 
22 layers in total. Network performance was evaluated by 
employing the k-fold cross-validation method. The best 
value for the tenfold cross-validation method, which was 
obtained in this study, was 96.56%. The image dataset 
used in this study comprised 3064 T1-weighted contrast-
enhanced MRI images from the Nanfang Hospital, Gen-
eral Hospital, and Tianjin Medical University in China 
[5].

In 2018 [24] developed capsule algorithms networks 
(DCNet) and diverse capsule networks (DCNet++). 
DCNet essentially adds a deeper convolutional network, 
leading to learning distinctive feature maps. DCNet++ 
uses a hierarchical architecture for learning, which makes 
it more efficient for learning complex data. They used a 
dataset comprising 3064 MRI images of 233 brain tumor 
patients for classification and considered only images of 
three types of brain tumors; a dataset of healthy people 
was not considered for classification. The DCNet model 
was developed by changing the eight initial convolutional 

layers to four layers with 16 kernels and was trained with 
eightfold cross-validation. The accuracy of the DCNet 
algorithm test was 93.04%, and the accuracy of the 
DCNet++ algorithm was 95.03%.

Gumaei et al. [23] introduced an automated approach 
to assist radiologists and physicians in identifying dif-
ferent types of brain tumors. The study was conducted 
in three steps: brain image preprocessing, brain feature 
extraction, and brain tumor classification. In the pre-
processing step, brain images were converted into inten-
sity brain images in the range of [0, 1], using a min–max 
normalization rule. In the next step, the PCA-NGIST 
method (a combination of normalized GIST descriptor 
with PCA) was adopted to extract features from MRI 
images. In the final step, Regularized Extreme Learn-
ing Machine (RELM) classification was applied to iden-
tify and classify the tumor types. The dataset provided 
by Cheng was used by the researchers in their study and 
consisted of 3064 MRI images from 233 patients divided 
into two subsets, 70% was used for training and 30% for 
classifier testing; a fivefold cross-validation method was 
utilized. The results reported 94.23% accuracy. The study, 
however, performed no comparative evaluation with 
other techniques, which can be considered as a study 
limitation [23].

Pashaei et al. [27] developed different methods to iden-
tify meningioma, glioma, and pituitary tumors. In their 
model, a CNN was used to extract hidden features from 
images and select features. The proposed model consisted 
of four convolutional layers, four pooling layers, one fully 
connected layer, and four batch normalization layers. The 
authors used ten epochs, 16 iterations per epoch, and the 
learning rate in this model was 0.01. The dataset provided 
by Cheng was also used in this study. The performance of 
the proposed model was evaluated using a tenfold cross-
validation method, and 70% and 30% of the data was 
applied for training and system testing, respectively. The 
study compared the proposed method with MLP, Stack-
ing, XGBoost, SVM, and RBF, and the results showed the 
high accuracy of the proposed method (93.68%) [27].

A CNN was also used by Abiwinanda in 2018 to diag-
nose the three most common types of brain tumors. In 
the learning process, the “adam” optimizer was used, 
which is a method for stochastic optimization using 
the stochastic gradient descent principle. In the study, 
the CNN was trained by 3064  T-1 weighted CE-MRI 
from brain tumor images provided by Cheng. The data-
set included 1426 images of meningiomas, 708 images 
of gliomas, and 930 images of pituitary tumors. Of all 
the available images, 700 images from each class were 
applied, of which 500 were used for the training phase, 
and another 200 images were considered for the valida-
tion phase. In this model, all convolutional layers in the 
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architectures used 32 filters, ReLu was used as an activa-
tion function, the maxpool kernel size was 2 × 2, and all 
the fully connected layers used 64 neurons. There were 
three neurons in the output layer, and the softmax activa-
tion function was employed at the output layer. The best-
reported accuracy rates for training and validation were 
98.51% and 84.19%, respectively [28].

In another study (2018), CNNs were applied to diag-
nose brain tumors using magnetic resonance images 
automatically. This study aimed to differentiate between 
healthy brains and brain tumor images. A two-stage 
multi-model system made the diagnosis. In the first stage, 
preprocessing and feature selection were performed by 
a CNN, and in the second stage, classification was done 
by an Error-Correcting Output Codes Support Vector 
Machine (ECOC-SVM). In the first stage, three algo-
rithms, namely AlexNet, VGG-16, and VGG-19, were 
employed, among which AlexNet had the best perfor-
mance with 99.55% accuracy. BraTS (2013 dataset) was 
used for the brain tumor localization phase, and images 
extracted from the standard Reference Image Database 
to Evaluate Response (RIDER) neuro MRI database were 
used for performance evaluation in the first phase [15].

Rehman et  al. [22] studied three CNNs, namely 
AlexNet, GoogLeNet, and VGGNet. The study’s pri-
mary purpose was to differentiate three brain tumor 
types, meningioma, glioma, and pituitary, using deep 
learning techniques and MRI images processing. Auto-
mated features were classified in the last phase using 
a linear classifier. Data augmentation techniques were 

applied to increase the sample size and reduce the pos-
sibility of over-fitting. The evaluation results showed 
that the VGG16 technique had the highest accuracy 
(98.69%) compared to other methods [22].

Mittal et al. [29] used the combination of Stationary 
Wavelet Transform (SWT) and a new Growing CNN 
(GCNN) to automate the segmentation process. In fact, 
they utilized these effective methods to identify brain 
tumors by MRI images. The evaluation results showed 
that the technique proposed in the study had the high-
est accuracy compared to the genetic algorithm; K-NN, 
SVM, and CNN [29, 30].

Paul et  al. [25] used deep learning methods to clas-
sify brain images related to meningioma, glioma, and 
pituitary tumors. In this research, the same dataset, i.e., 
3064 T1-weighted contrast-enhanced MRI brain images 
of 233 patients, was applied; two types of neural net-
works, i.e., fully connected and CNNs, were designed. 
Moreover, a fivefold cross-validation technique showed 
that the general methods, with an accuracy of 91.43%, 
worked better than the specific methods, which 
required image dilation [25].

Material and methods
The methodology of the present study is illustrated 
in Fig.  1. Major steps in the present study comprise 
brain tumor dataset selection, pre-processing MRI 
images, feature extraction, and classification by various 
classifiers.

Fig. 1  Stages of the proposed methodology
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Dataset
The applied image-based dataset comprised 3264 
T1-weighted contrast-enhanced MRI images [31]. 
There were four types of images in this dataset: glioma 
(926 images), meningioma (937 images), pituitary gland 
tumor (901 images), and healthy brain (500 images). All 
images were in sagittal, axial, and coronal planes. Fig-
ure 2 presents examples of the various types of tumors 
and different planes. The segment of tumors has been 
branded with a red outline. The number of images is 
different for each patient.

Data augmentation and image pre‑processing
Magnetic resonance images from this dataset had distinct 
sizes. These images represented the networks’ input layer, 
so they were resized to 80*80 pixels. Each image was con-
verted in two directions to augment the dataset. The first 
change included image rotation by 90°, and the second 
was flipping images vertically. Our chosen dataset was 
augmented three times, which resulted in 9792 images.

Proposed solutions
2D CNN
Figure  3 shows the proposed architecture for the two-
dimensional CNN. A set of 9792 data was used in this 
study, 90% (8812) of which was employed as the train-
ing data and 10% (980) as the testing data. The proposed 
network had several layers, including convolution, which 
possessed two convolutional layers with 64 filters. More-
over, two convolution layers included 32 filters, and the 
others have 16. The final two convolutional layers make 
the desired network filters with a length of 8. The layers 
in this network have a 2*2 kernel function.

The convolutional network, which is also referred to as a 
neural network, has a hierarchical structure. This network 
creates a link between convolution layers, alternate pooling 
layers, and fully connected layers. One factor that should be 
noted here is that there is no need to use a pooling layer 
after each convolution layer. Figure  3 shows that the net-
work has eight convolutional and four pooling layers. The 
final pooling layer with 2D output is changed to a 1D layer 
by flattened layers so it can be sent to the fully connected 

Fig. 2  Description of normalized MRI images presenting diverse 
varieties of tumor in a different plane

Fig. 3  The architecture of the 2D convolution network
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layers. Also, a type of padding is needed to manage and 
control the convolutional layer’s output size. This study 
showed that the padding in adjacent cells is used for all 
networks to manage the edges of input data with the same 
values. To classify the data into categories by softmax acti-
vation function, a total of 1024 fully connected layer and a 4 
fully connected layer were used. In this process, the batch-
normalization layers were used to prevent overfitting. A 
dropout layer with a rate of 0.1 was also used following the 
max-pooling and fully connected layers.

For the activation function, the ReLU function was 
used in all layers apart from the last fully connected layer. 
To increase the efficiency, the Adam was used as an opti-
mizing function. Different values, including 0.01, 0.001 
and 0.0001, were used to test the learning rate parameter. 
Also, the best value with minimum learning error was 
found to be 0.001.

After 100 epochs, the training process was confirmed. 
The batch size was determined to be 16, and each epoch 
lasted about 7  s. The features extracted from the con-
volutional layer included input from the first layer fully 
connected to Ufc = 1024 hidden layers. The number of 
weights (Wconv) depended on the output size of the prior 
convolution layer (y1*y2), the number of filters (k), and the 
number of hidden layers in fully connected layers. Thus, 
the convolutional layer’s weight was determined as fol-
lows [32]: Wconv = y1*y2*k*Ufc = 5*5*8*1024 = 204,800, 
where the number of existing parameters to the first fully 
connected layer equals 204,800 + 1024 (biases) = 205,824.

A summary of learning parameters for the proposed 
network can be seen in Table 2. As seen in this table, the 
value of all parameters used to determine the four cat-
egories of this network are calculated by summing up 
the values in cited in the param column in Table 2. The 
consequent value is 243,924, where all parameters are 
trainable.

Convolutional auto‑encoder neural network
This study was conducted to design the architecture of a 
convolutional auto-encoder network. In this network, in 
order to predict the target value (Y) for the input (X), an 
auto-encoder was trained to predict the input (X) rather 
than training the network. The auto-encoder network 
was used to train and classify the data set instead of cre-
ating input images. Figure 4 shows the designed architec-
ture of the convolutional auto-encoder network.

The network architecture designed in this study had 
two main parts. The first part included the convolutional 
auto-encoder network for data training, and the second 
part contained a convolutional network for classifica-
tion, which utilizes the last output encoder layer of the 
first part. The first part of the architecture also consisted 
of 2D multilayer convolutional networks for both the 

encoder and the decoder. A total data set of 9792 was 
used in this study, 90% (8812) of which was used as the 
training data and 10% (980) as the test data.

The encoder part included a convolutional layer with 
a 32-filter length, two continuous convolutional lay-
ers with a 128-filter length, and two continuous convo-
lutional layers with a 64-filter length. In the encoder, no 
pooling layer existed after each convolutional layer, but 
a second stage 2*2 max-pooling layer was considered 
after a sequence of two convolutional layers. The net-
work’s decoder also included a convolutional layer with 
a 32-filter length, two continuous convolutional layers 

Table 2  Modified parameters in the convolution network to 
classify the 4 categories

Model: “sequential”

Layer (type) Output shape Param #

Conv2d (Conv2D) (None, 80, 80, 64) 832

Batch_normalization (BatchNormalization) (None, 80, 80, 64) 256

Conv2d_1 (Conv2D) (None, 80, 80, 64) 16,448

Batch_normalization_1 (BatchNormaliza-
tion)

(None, 80, 80, 64) 256

Max_pooling2d (MaxPooling2D) (None, 40, 40, 64) 0

dropout (Dropout) (None, 40, 40, 64) 0

Conv2d_2 (Conv2D) (None, 40, 40, 32) 8224

Batch_normalization_2 (BatchNormaliza-
tion)

(None, 40, 40, 32) 128

Conv2d_3 (Conv2D) (None, 40, 40, 32) 4128

Batch_normalization_3 (BatchNormaliza-
tion)

(None, 40, 40, 32) 128

Max_pooling2d_1 (MaxPooling2D) (None, 20, 20, 32) 0

Dropout_1 (Dropout) (None, 20, 20, 32) 0

Conv2d_4 (Conv2D) (None, 20, 20, 16) 2064

Batch_normalization_4 (BatchNormaliza-
tion)

(None, 20, 20, 16) 64

Conv2d_5 (Conv2D) (None, 20, 20, 16) 1040

Batch_normalization_5 (BatchNormaliza-
tion)

(None, 20, 20, 16) 64

Max_pooling2d_2 (MaxPooling2D) (None, 10, 10, 16) 0

Dropout_2 (Dropout) (None, 10, 10, 16) 0

Conv2d_6 (Conv2D) (None, 10, 10, 8) 520

Batch_normalization_6 (BatchNormaliza-
tion)

(None, 10, 10, 8) 32

Conv2d_7 (Conv2D) (None, 10, 10, 8) 264

Batch_normalization_7 (BatchNormaliza-
tion)

(None, 10, 10, 8) 32

Max_pooling2d_3 (MaxPooling2D) (None, 5, 5, 8) 0

Dropout_3 (Dropout) (None, 5, 5, 8) 0

Flatten (Flatten) (None, 200) 0

Dense (Dense) (None, 1024) 205,824

Dropout_4 (Dropout) (None, 1024) 0

Dense_1 (Dense) (None, 4) 4100
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with a 64-filter length, two continuous convolutional lay-
ers with a 128-filter length, and a convolutional layer with 
a 128-filter length. A 2*2 kernel function was used for all 
convolutional layers, and there was no up-sampling layer 
after each convolutional layer. However, after a sequence 
of two convolutional layers, a 2*2 up-sampling layer was 
applied. The same padding was used for this network, 
and a batch normalization layer after each convolutional 
layer was considered. A dropout of 0.1 was also operated 
after each max-pooling layer, apart from the last layer, to 
prevent overfitting. Values of 0.01, 0.001 and 0.0001 were 
used to examine the learning rates, and the best value 
with minimum learning error was found to be 0. 001. The 
designed network was trained after 100 training epochs, 
and data was transmitted to the network in batches of 16 
(batch-size), while each epoch ran in 14 s.

The critical features of the input data were removed by 
the automatic encoder network, and the output of the 
encoder layer was used for the classification (Fig. 5). For 
accurate classification, the output of the encoder layer 
was trained by two continuous convolution layers with 
64-filter length, a 2*2-kernel function, and a 2*2-max-
pooling layer with step 2. Batch-normalization and 0.1 
dropout layers were also used to prevent overfitting [33]. 
To forward the output of the max-pooling layer to a 
4-fully connected layer, the flattened layer was used [34], 
and the ReLU activation function was used for all layers.

The vital factors for training and classification in the 
auto-encoder convolutional network include the encoder 
and classifier parameters. The extracted features of the 
encoder’s last layer are trained by several convolutional 

layers, and the final extracted features would turn into the 
input of the first layer fully connected to the hidden layer 
of Ufc = 4. The number of weights (Wconv) depends on 
the number of hidden layers in the fully connected layer 
and the output size of the flattened layer. The flattened 
layer’s output equals 5*5*64 = 1,600. Hence, the number of 
weights equals Wconv = out-flatten*Ufc = 1600*4 = 6,400, 
and the number of existing parameters to the second fully 
connected layer equals 6400 + 4 (biases) = 6404.

The learning parameters of this network are presented 
in Table  3. The value of all modified parameters can be 
calculated by summing up the values in the param col-
umn (Table  3). The value of all modified parameters is 
158,760, of which 1,569,000 are related to learning, and 
960 are related to non-learning parameters.

Whole process in the present study was carried out 
in Keras with the Tensorflow backend. The networks 
in this study were designed in the Python environment 
and then, ran by cross-library in the Google Collabora-
tory (Colab) environment. Colab supplies a platform for 
running Python codes, especially machine learning, deep 
learning, and data analysis. The details of Colab hardware 
technical characteristics are given in Table 4.

Performance evaluation metrics
The main objective of the current study was to classify 
MRI images into glioma, meningioma, pituitary gland 
tumor, and healthy brain classes. Metrics for perfor-
mance evaluation included accuracy, precision, recall, 
and F-measure.

Fig. 4  Convolutional auto-encoder network classification part
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Accuracy refers to the proximity of a measured value to 
a standard or actual value. In other words, it is the abil-
ity of the tool to measure the exact value, whose accuracy 
can be measured.

In machine learning, precision results from dividing 
actual cases into sums of true and false cases. Recall is 
also the result of dividing the true items by all the items 
in that class. The weighting value for F-measure can be 
computed based on the precision and recall measures. 
F-measure is a good measure in evaluating the qual-
ity of classification and describing the weighted average 
between the quantities of precision and recall. The value 
of this measure is between 0 and 1, with 0 being the worst 
circumstance and 1 the best condition. This parameter 
was calculated by the following Eq. (4):

For organizing and evaluating classifiers and visualizing 
their performance, drawing receiver operating character-
istics (ROC) plots can be useful in describing the results. 

(1)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(2)Precision =
TP

TP+ FP

(3)Recall or Sensitivity =
TP

TP+ FN

(4)F - measure = 2×
Precision× Recall

Precision+ Recall

ROC plots are commonly applied in medical decision-
making and have recently been noticed in machine learn-
ing and data mining. The ROC curve is constructed by 
plotting the true positive rate (TPR) versus the false 
positive rate (FPR) in various threshold sets. Therefore, 
maximizing TPR while minimizing FPR are ideal achieve-
ments. This means that the upper left corner of the plot is 
the ideal point (FPR = 0 and TPR = 1).

Experimental results
Table 5 outlines the results of our proposed 2D CNN and 
convolutional auto-encoder neural network. The train-
ing accuracy of the proposed 2D CNN was found to be 
96.4752%, whereas its validation accuracy was 93.4489%. 
The training accuracy of the proposed convolutional 
auto-encoder was found to be 95.6371%, and its valida-
tion accuracy was 90.9255%. The precision, recall, and 
F-measure of the four classes obtained from 2D CNN and 
the convolutional auto-encoder neural network are sum-
marized in Tables  6 and 7, respectively. Figure  6 shows 
the training, validation accuracy, and loss analyses of the 
proposed models concerning the number of epochs.

In the field of artificial intelligence, a confusion matrix 
is a matrix in which the performance of relevant algo-
rithms is visualized. Each matrix column represents the 
predicted value of instances, and each row represents the 
actual (true) value of instances. This matrix justifies its 
appellation that allows us to see whether there are con-
fusing results or overlaps between the classes. In medical 
research, it is significantly important to reduce the false 

Fig. 5  Architecture of the proposed convolutional auto-encoder network
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positive and false negative outcomes in the modeling 
process. The impact of false positive and false negative 
rates is shown in Fig. 7.

Figure  8 presents the ROC curves of the proposed 
models along with classes 0, 1, 2, and 4 of the brain tumor 
classification models. The ideal point is observable for 
both class 0 and class 1.

The outcomes of classical machine learning classifiers 
like Support Vector Machine (SVM), Logical Regres-
sion (LR), Random Forest (RF), Nearest Neighbor (NN), 
Stochastic Gradient Descent (SGD), and Multilayer Per-
ceptron (MLP) were compared and classified into four 
classes. The obtained accuracy rates were 86% for NN, 
82% for RF, 80% for SVM, 62% for LR, 52% for SGD, and 
28% for MLP. Figure  9 shows the comparison of these 
results. The precision, recall, and F-measure for each 
set of glioma, meningioma, pituitary gland tumor, and 
healthy brain images were calculated by these methods 
and are summarized in Table 8. For glioma tumor images, 
the highest precision was obtained by MLP (100%), the 
highest recall by KNN (90%), and the highest F-measure 
by KNN (87%). For meningioma tumors, the highest pre-
cision was obtained by KNN (93%), the highest recall by 
MLP (81%), and the highest F-measure by KNN (86%). 
For pituitary gland tumors, the highest precision was 
obtained by KNN (91%), the highest recall by RF (95%), 
and the highest F-measure by KNN (91%). For healthy 
brains, the highest precision was obtained by RF and 
SVM (83%), the highest recall by KNN (88%), and the 
highest F-measure by KNN (82%).

The results of one-way ANOVA for the three param-
eters of precision, recall, and F-measure in eight mode-
ling methods showed a statistically significant difference 
between the methods (p-value < 0.001) (Table  9). LSD 
post hoc test results showed a significant difference 
between the means of precision, recall, and F-measure in 
the two methods presented in this study (2D CNN and 
convolutional auto-encoder) and the means of the three 
methods LR, SGD, and MLP (p-value < 0.05). The mean 
F-measure parameter of the 2D CNN method, in addi-
tion to the three methods mentioned, was also signifi-
cantly different from SVM (p-value < 0.05) (Table 10).

Discussion
The main objective of the current study was to develop 
two various deep learning networks and six machine 
learning techniques to classify MRI images into three 
classes of brain tumors (glioma, meningioma and pitui-
tary gland tumor) and one class of healthy brain. The 
applied image dataset was publicly available at GitHub 
with 3264 T1-weighted contrast-enhanced magnetic res-
onance imaging (MRI) images.

According to the literature, some studies have used 
the famous T1-weighted contrast-enhanced MRI dataset 
(Figshare dataset), which contained 3064 MRI images of 
the human brain for tumor detection with computational 

Table 3  Modified parameters in the convolutional auto-encoder 
network for the classification of four categories

Layer (type) Output shape Param #

Input_1 (InputLayer) (None, 80, 80, 3) 0

Conv2d (Conv2D) (None, 80, 80, 128) 1664

Batch_normalization (BatchNormaliza-
tion)

(None, 80, 80, 128) 512

Conv2d_1 (Conv2D) (None, 80, 80, 128) 65,664

Batch_normalization_1 (BatchNormaliza-
tion)

(None, 80, 80, 128) 512

Max_pooling2d (MaxPooling2D) (None, 40, 40, 128) 0

Dropout (Dropout) (None, 40, 40, 128) 0

Conv2d_2 (Conv2D) (None, 40, 40, 64) 32,832

Batch_normalization_2 (BatchNormaliza-
tion)

(None, 40, 40, 64) 256

Conv2d_3 (Conv2D) (None, 40, 40, 64) 16,448

Batch_normalization_3 (BatchNormaliza-
tion)

(None, 40, 40, 64) 256

Max_pooling2d_1 (MaxPooling2D) (None, 20, 20, 64) 0

Dropout_1 (Dropout) (None, 20, 20, 64) 0

Conv2d_4 (Conv2D) (None, 20, 20, 32) 8224

Batch_normalization_4 (BatchNormaliza-
tion)

(None, 20, 20, 32) 128

Max_pooling2d_2 (MaxPooling2D) (None, 10, 10, 32) 0

Conv8 (Conv2D) (None, 10, 10, 64) 8256

Conv2d_11 (Conv2D) (None, 10, 10, 64) 16,448

Batch_normalization_10 (BatchNormali-
zation)

(None, 10, 10, 64) 256

Max_pooling2d_7 (MaxPooling2D) (None, 5, 5, 64) 0

Dropout_5 (Dropout) (None, 5, 5, 64) 0

Flatten (Flatten) (None, 1600) 0

Dense (Dense) (None, 4) 6404

Total parameters: 157, 860

Trainable parameters: 156, 900

Non-trainable parameters: 960

Table 4  Colab hardware specifications

Hardware Description

GPU 1 × Tesla K80, compute 
3.7, having 2496 CUDA 
cores, 12 GB GDDR5 VRAM

CPU 1 × single core hyper 
threaded Xeon Proces-
sors @2.3Ghz i.e. (1 core, 2 
threads)

RAM ~ 12.6 GB available

Disk ~ 33 GB available
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approaches like neural networks. Studies using this 
dataset for the classification of brain tumors are listed 
in Table 11. It should be noted that the study employed 
another dataset that included 3264 MRI images. This 
dataset contained four categories of MRI images, namely 
glioma, meningioma, and pituitary gland tumors and 
healthy brains (no tumors). Badža and Barjaktarović [5] 
conducted brain tumor detection using a CNN devel-
oped in MATLAB R2018a. Their proposed CNN had two 
convolutional layers of 64- and 16-filter lengths. The clas-
sification block had two fully connected layers: the first 
representing the flattened output of the max-pooling 
layer and the second having an equal number of hidden 
units to the number of tumor classes. The best result was 
reported as 95.40% for record-wise cross-validation for 
augmented images. Nonetheless, the highest accuracy 
obtained from the mentioned study (95.40%) with a value 
of 1.07 is less than our proposed 2D CNN. The execution 
time of our study was longer because of the complexity 
and high frequency of layers in the network, which justi-
fied the good accuracy we obtained. The longer execution 
time in the current study can be explained by the number 
of hidden layers, the pooling layers, and the batch sizes. 

It should be noted that the training of deeper networks 
requires extra time than the training of shallower or sim-
pler networks [35].

In another research, a CNN and an extreme learn-
ing machine were applied to diagnose brain tumors. 
The proposed model utilized four convolution lay-
ers and batch-normalization layers with 16-, 32-, 
64- and 128-filter lengths (3*3). Four ReLU layers and 
three max-pooling layers were used in the proposed 
CNN with stride size [2, 2]. The model only had one 
fully connected layer with three types of classes. Fea-
ture vectors extracted by the mentioned convolution 
and layers were used as the input of KE-CNN (kernel 
CNN). The KE-CNN had 91.28% accuracy for clas-
sifying brain tumors [27]. However, our proposed 2D 
CNN and auto-encoder network achieved 96.47% and 
95.63% accuracy, respectively. We used several layers 
of convolution for both networks and created complex 
networks, which can be justified by the large volume 
of data we used to increase classification accuracy. In 
comparison, other studies used networks with a small 
number of layers or a small amount of data [36].

In general, by comparing the two networks used in 
the current study, it can be concluded that the 2D CNN 
operated with 1% more accuracy than the auto-encoder 
network. Although the 2D CNN is more straightforward 
than the auto-encoder network, it performed better in 
feature extraction and learning, and according to what 
was previously mentioned, it uses all the parameters for 
learning [37]. The execution time (the duration of each 
epoch) or the runtime of the proposed convolutional 
network is less than that of the auto-encoder network. 
Therefore, the use of ordinary hardware and memory 
can be enough to run our proposed 2D CNN. One of the 
most notable differences between the current study and 
others is the use of six machine learning bribes to classify 
brain tumor images. SVM, NN, RF, SGD, LR, and MLP 
were developed for diagnosing brain tumors accurately.

In [23], researchers used a hybrid feature extraction 
approach with regularized extreme learning machine to 
classify types of brain tumors. Their method works by 
extracting the main features of brain images, and then 
applying principal component analysis to compute a 
covariance matrix of features. In the last step, a RELM is 
developed for diagnosing brain tumors into three classes 
(meningioma, pituitary, glioma). This method achieved 

Table 5  Network results for classification into 4 classes

Network Training-accuracy Test-accuracy Train-loss Test-loss

2D CNN 0.96475260 0.93448979 0.093299804 0.28095046

Convolutional auto-encoder 0.95637199 0.90925510 0.11472394 0.32122133

Table 6  Precision, recall, and F-measure of 2D CNN

We bolded the parameters that had the best performance for each group

Precision Recall F-measure

Glioma 0.95 0.95 0.95

Meningioma 0.96 0.93 0.94

Pituitary gland tumor 0.97 0.97 0.97
Healthy brain 0.91 0.98 0.94

Average 0.9475 0.9575 0.95

Table 7  Precision, recall, and F-measure of convolutional auto-
encoder neural network

We bolded the parameters that had the best performance for each group

Precision Recall F-measure

Glioma 0.95 0.94 0.94

Meningioma 0.93 0.94 0.93

Pituitary gland tumor 0.96 0.97 0.97
Healthy brain 0.93 0.92 0.92

Average 0.9425 0.9425 0.94
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Fig. 6  Training and validation analysis over 100 epochs for (1) 2D CNN: a training and testing accuracy analysis, and b training and testing loss 
analysis. (2) Convolutional auto-encoder neural network: c training and testing accuracy analysis, and d training and testing loss analysis

Fig. 7  Confusion matrix analyses of the proposed model representing TP, TN, FP, and FN ratio obtained from the testing dataset of the a 2D CNN, 
and b convolutional auto-encoder neural network
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94.23% accuracy, which is not optimal compared to the 
results obtained from the networks designed in the cur-
rent study.

A capsule network was employed in another study to 
classify brain tumors. Due to its good performance, the 
segmented tumor regions were applied as the inputs 
of the proposed capsule net. This method was imple-
mented on Python 2.7, based on the Keras Library, 
using the Adam optimizer. Capsule net reached 86.56% 
accuracy for classifying segmented tumor regions and 

78% accuracy for whole-brain tissue as input [21]. The 
researchers varied the feature maps in the convolutional 
layer of CapsNet in order to enhance accuracy; however, 
they achieved the highest accuracy of 86.56% using 64 
feature maps with one convolutional layer of CapsNet. 
The network that employs only the tumor region or some 
other segmented part as input performs better in terms 
of execution speed. It also demands segmentation meth-
ods or a dedicated specialist to sign those parts [3, 29, 
30]. The most favorable outcome in the research utilizing 

Fig. 8  Roc plots of the a 2D CNN, and b convolutional auto-encoder neural network
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the segmented image parts as inputs has been presented 
by Tripathi and Bag [38], with 94.64% accuracy. They 
used features as inputs of classifiers extracted from the 
segmented brain tissue in the image. They checked their 
proposed method employing a fivefold cross-validation 
technique.

Like the approaches proposed in the current study, 
Rehman et  al. performed the preprocessing of images 
with contrast improvement and dataset augmentation 
to reduce the occurrence of over-fitting and increase 
the database samples. Three types of CNNs (AlexNet, 

VGGNet, and GoogleNet) with an SVM model were uti-
lized to diagnose brain tumors. The fine-tuned VGG16 
network obtained the highest accuracy of 98.69% for 
the classification target [22]. In comparison, our devel-
oped methods 2% and 3% less accurate, respectively, than 
VGG16. This network is an intense and very deep net-
work with 138 million weights, requiring complex hard-
ware for calculating real-time performance [39]. Notably 
in this study, similar to ours, the researchers utilized vari-
ous data augmentation methods to increase the size of 
the training dataset, such as rotating and flipping with 
raw MRI images. Data augmentation aims to enhance 
network performance by intentionally creating more 
training data from the original data.

In another study [28], CNNs were molded to deter-
mine the three most common types of brain tumors (i.e., 
glioma, meningioma, and pituitary gland tumors). In this 
study, researchers applied five different architectures of 
CNN for the classification of brain tumors and reported 
the highest accuracy for architecture 2. This architec-
ture’s training and validation accuracies were 98.51% and 
84.19%, respectively. Architecture 2 is comprised of two 
convolutional layers, ReLU layer, and max-pooling with 
64 hidden neurons. The testing accuracies of the devel-
oped networks in the current study were more signifi-
cant than the accuracy of this architecture; nevertheless, 
this architecture has the capacity to overfit using a small 
learning rate or lower amount of training and testing 
data.

The current work is a pioneer study to develop two 
deep CNNs with optimal learning parameters and high 

Table 8  Precision, recall, and F-measure of machine learning classifiers for the four classes of glioma, meningioma, pituitary gland 
tumors, and healthy brain

We bolded the parameters that had the best performance for each group

KNN RF SVM LR SGD MLP

Glioma

Precision 0.84 0.91 0.78 0.61 0.63 1.00
Recall 0.90 0.75 0.79 0.61 0.52 0.01

F-measure 0.87 0.83 0.79 0.61 0.57 0.02

Meningioma

Precision 0.93 0.80 0.79 0.61 0.65 0.32

Recall 0.80 0.80 0.73 0.60 0.23 0.81
F-measure 0.86 0.80 0.76 0.60 0.34 0.46

Pituitary gland tumor

Precision 0.91 0.76 0.83 0.74 0.48 0.00

Recall 0.92 0.95 0.93 0.76 0.90 0.00

F-measure 0.91 0.84 0.88 0.75 0.63 0.00

Healthy brain

Precision 0.77 0.83 0.83 0.52 0.43 0.14

Recall 0.88 0.78 0.75 0.52 0.55 0.19

F-measure 0.82 0.81 0.79 0.52 0.48 0.16

Table 9  Results of one-way analysis of variance (ANOVA) 
comparing precision, recall, and F-measure

ANOVA

Sum of squares df Mean square F Sig

Precision

Between groups 1.212 7 .173 6.090 .000

Within groups .682 24 .028

Total 1.894 31

Recall

Between groups 1.611 7 .230 7.343 .000

Within groups .752 24 .031

Total 2.364 31

F-measure

Between groups 2.033 7 .290 30.910 .000

Within groups .226 24 .009

Total 2.258 31
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Table 10  Multiple comparisons between methods

* The mean difference is significant at the 0.05 level

Dependent variable (I) method (J) method Mean 
difference 
(I–J)

SE Sig 95% Confidence interval

Lower bound Upper bound

Precision 2D CNN LR .32750* .11921 .011 .0815 .5735

SGD .40000* .11921 .003 .1540 .6460

MLP .58250* .11921 .000 .3365 .8285

Convolutional auto-encoder LR .32250* .11921 .012 .0765 .5685

SGD .39500* .11921 .003 .1490 .6410

MLP .57750* .11921 .000 .3315 .8235

Recall 2D CNN LR .33500* .12520 .013 .0766 .5934

SGD .40750* .12520 .003 .1491 .6659

MLP .70500* .12520 .000 .4466 .9634

Convolutional auto-encoder LR .32000* .12520 .017 .0616 .5784

SGD .39250* .12520 .004 .1341 .6509

MLP .69000* .12520 .000 .4316 .9484

F-measure 2D CNN SVM .14500* .06854 .045 .0035 .2865

LR .33000* .06854 .000 .1885 .4715

SGD .44500* .06854 .000 .3035 .5865

MLP .79000* .06854 .000 .6485 .9315

Convolutional auto-encoder LR .32000* .06854 .000 .1785 .4615

SGD .43500* .06854 .000 .2935 .5765

MLP .78000* .06854 .000 .6385 .9215

Table 11  Comparative analysis of proposed work with previous works

Contribution Features employed Type of classifier 
(s)

Dataset Technical 
environment

Accuracy (%) k-Fold cross-
validation method/
data division

Badža et al. [5] Elementary features- 
model based

CNN (with two con-
volution layers)

T1-weighted con-
trast-enhanced MRI 
(Figshare dataset)

MATLAB 96.56 60% data in training, 
20% in validation, 20% 
in test and tenfold 
cross-validation

Pashaei et al. [27] Elementary features- 
model based

CNN (with four con-
volution layers)

T1-weighted con-
trast enhanced MRI 
(Figshare dataset)

– 93.68 70% data in training, 
30% in testing and 
tenfold cross-vali-
dation

Gumaei et al. [23] GIST features FNN (feedforward 
neural network)

T1-weighted con-
trast enhanced MRI 
(Figshare dataset)

MATLAB 94.23 70% data in training, 
30% in testing and 
fivefold cross valida-
tion

Afshar et al. [21] Elementary features- 
model based

CapsNet T1-weighted con-
trast enhanced MRI 
(Figshare dataset)

Keras package, with 
Tensorflow

86.56 –

Rehman et al. [22] Fine-tune/Freeze-
AlexNet, GoogLeNet, 
and VGG16

SVM T1-weighted con-
trast enhanced MRI 
(Figshare dataset)

MATLAB 98.69 70% of data in 
training, 15% for 
validation, and 15% in 
testing

Abiwinanda et al. 
[28]

Elementary features- 
model based

CNN (with two con-
volution layers)

T1-weighted con-
trast enhanced MRI 
(Figshare dataset)

Keras package, with 
Tensorflow

84.19 –

Proposed 
approaches

Elementary features-
model based

Two CNNs Brain tumor clas-
sification (MRI): four 
classes

Keras package, with 
Tensorflow

96.47 90% data in training, 
10% in testing95.63
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accuracy. We also compared six machine learning tech-
niques applied to classify brain tumors and healthy 
brains (no tumor). To better compare the previous stud-
ies conducted in this area, some key results are given in 
Table 11.

A limitation of medical image classification is the small 
size of medical image databases. This limitation, in turn, 
restricts the availability of medical images for training 
deep neural networks. One way to deal with this chal-
lenge in our study is to apply data augmentation tech-
niques to create new brain tumor lesions through scaling 
and rotation, which may cause class imbalance. In addi-
tion, in this study, our primary plan was to train the net-
works using local images of a hospital, but the problem 
of labeling the images prevented this from being imple-
mented. Labeling cancer images is not only time-con-
suming but also requires a high level of expertise that 
is challenging in brain tumor analysis. In future works, 
considering the importance of rapid and accurate diag-
nosis of brain tumors without latency, we will investigate 
the constructions of other robust deep neural networks 
for brain tumor classification with less execution time 
and more simplicity. Hence, full machine learning and 
deep learning algorithms can be implemented as future 
enhancements. Furthermore, the proposed techniques 
can be used to detect different forms of cancers in MRI 
or Computed Tomography (CT) scan.

Conclusion
One of the areas of use for artificial intelligence and 
machine learning is the health domain. Deep networks 
are currently being designed and developed to detect 
diseases based on imaging. In order to do this, we have 
proposed computational-oriented methods to classify 
brain tumors. In our study, a novel 2D CNN architecture, 
a convolutional auto-encoder network, and six common 
machine-learning techniques were developed for brain 
tumor detection. This classification was conducted using 
a T1-weighted, contrast-enhanced MRI dataset, which 
includes three types of tumors and a healthy brain with 
no tumors.

According to the results and output shown in Figs. 6, 7 
and 8, the proposed neural networks showed significant 
improvement over previous ones in detecting brain MRI 
image features and classifying them into three types of 
tumors and one class of healthy brain. The training accu-
racy of the proposed 2D CNN was found to be 96.47%, 
and the training accuracy of the proposed auto-encoder 
network was found to be 95.63%. In addition to the two-
deep networks used in our study, six machine-learning 
techniques were also developed to classify brain tumors. 
The highest accuracies of 86%, 82% and 80% were 
attained for KNN, RF, and SVM, respectively. Comparing 

our networks with similar state-of-the-art methods 
shows that our proposed networks performed somewhat 
better with optimal execution time (maximum 15  min 
for 2D network and 25  min for auto-encoder network). 
The results of this study demonstrate that our proposed 
networks have an immeasurable generalization and high 
execution speed; therefore, they can be applied as effec-
tive decision-support agents for radiologists in medical 
diagnostics.
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