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Abstract 

Background  Semantic segmentation of brain tumors plays a critical role in clinical treatment, especially for three-
dimensional (3D) magnetic resonance imaging, which is often used in clinical practice. Automatic segmentation of 
the 3D structure of brain tumors can quickly help physicians understand the properties of tumors, such as the shape 
and size, thus improving the efficiency of preoperative planning and the odds of successful surgery. In past decades, 
3D convolutional neural networks (CNNs) have dominated automatic segmentation methods for 3D medical images, 
and these network structures have achieved good results. However, to reduce the number of neural network param-
eters, practitioners ensure that the size of convolutional kernels in 3D convolutional operations generally does not 
exceed 7× 7× 7 , which also leads to CNNs showing limitations in learning long-distance dependent information. 
Vision Transformer (ViT) is very good at learning long-distance dependent information in images, but it suffers from 
the problems of many parameters. What’s worse, the ViT cannot learn local dependency information in the previous 
layers under the condition of insufficient data. However, in the image segmentation task, being able to learn this local 
dependency information in the previous layers makes a big impact on the performance of the model.

Methods  This paper proposes the Swin Unet3D model, which represents voxel segmentation on medical images as 
a sequence-to-sequence prediction. The feature extraction sub-module in the model is designed as a parallel struc-
ture of Convolution and ViT so that all layers of the model are able to adequately learn both global and local depend-
ency information in the image.

Results  On the validation dataset of Brats2021, our proposed model achieves dice coefficients of 0.840, 0.874, and 
0.911 on the ET channel, TC channel, and WT channel, respectively. On the validation dataset of Brats2018, our model 
achieves dice coefficients of 0.716, 0.761, and 0.874 on the corresponding channels, respectively.

Conclusion  We propose a new segmentation model that combines the advantages of Vision Transformer and Con-
volution and achieves a better balance between the number of model parameters and segmentation accuracy. The 
code can be found at https://​github.​com/​11525​45264/​SwinU​net3D.

Keywords  Deep learning, Medical image segmentation, 3D Swin Transformer, Brain tumor

†Yimin Cai and Yuqing Long have contributed equally to this work

*Correspondence:
Wei Yang
vyang@gzu.edu
Liming Chen
lmchen@gzu.edu
1 School of Medical, Guizhou University, Guiyang, China
2 School of Stomatolog, ZunYi Medical University, Zunyi, China

3 Key Laboratory of Advanced Manufacturing Technology of Ministry 
of Education, Guizhou University, Guiyang, China
4 Guiyang Dental Hospital (Dental Hospital of Guizhou University), 
Guizhou University, Guiyang, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02129-z&domain=pdf
https://github.com/1152545264/SwinUnet3D


Page 2 of 13Cai et al. BMC Medical Informatics and Decision Making           (2023) 23:33 

Background
A brain tumor is an abnormal growth of cells in human 
brain tissue. When the tumor grows gradually, it presses 
on the affected nerves, causing a series of adverse symp-
toms and even threatening life. Brain tumors are medi-
cally classified into benign and malignant tumors, the 
latter of which are further classified into primary and 
metastatic brain tumors [1]. Primary brain tumors are 
initially lesion cells inside human brain tissue, while 
metastatic brain tumors are caused by cancer cells from 
other tissues that metastasize to the brain. Metastatic 
brain tumors are more common than primary brain 
tumors, and about half of metastatic tumors come from 
lung cancer [1]. Under the current scientific and tech-
nological conditions, it is no longer difficult to obtain 
three-dimensional (3D) imaging of brain tissue, whether 
by computed tomography (CT) or magnetic resonance 
imaging (MRI), but the problem mainly lies in how to 
reliably and quickly identify the tumor lesion area in the 
imaging and obtain the 3D spatial structure of the tumor 
so as to improve the efficiency of preoperative planning 
and the odds of successful surgery. One solution is to rely 
on doctors specialized in imaging to identify and outline 
the lesion areas in the images, but this method is too inef-
ficient and requires a lot of time and labor. Because of the 
high computing speed of computers, it is a good choice 
to automate medical image segmentation with the help of 
image segmentation techniques in computer vision.

Image segmentation is the grouping of each pixel in an 
image into a certain category. This is the basis for under-
standing the concept of a scene [2]. Image segmentation 
plays a pivotal role in medical image analysis. Image seg-
mentation can automatically outline the structure of dis-
eased or other target tissues, providing information for 
subsequent diagnosis and treatment by physicians. Early 
medical image segmentation algorithms mainly include 
threshold-based segmentation algorithms [3], region-
based segmentation algorithms [4], wavelet analysis and 
transform-based segmentation algorithms [5], Markov 
random field-based-based segmentation algorithms [6], 
and genetic algorithm-based segmentation algorithms 
[7]. With the improvement of hardware capability and 
the development of deep convolutional neural networks 
(CNNs), CNN has achieved dominance in the field of 
computer vision. The seminal U-net [8] network was 
proposed and achieved impressive results in the field of 
two-dimensional (2D) medical image segmentation. The 
classical Unet [8, 9] network consists of an encoder and 
a decoder; the encoder extracts image features using a 
series of convolutional and downsampling layers, while 
the decoder uses a series of transposed convolutional 
layers [10, 11] to upsample image features to the origi-
nal image resolution for semantic prediction of pixels, in 

addition to incorporating the image features extracted by 
the encoder during the upsampling process to reduce the 
information loss during downsampling. Given the sim-
ple structure and superior performance of U-Net, schol-
ars have subsequently proposed various variants of the 
U-Net model [9, 12–17].

Given the powerful fitting capability of such CNN-
based neural networks, they have achieved superior 
results in various medical image segmentation tasks 
so far. However, in order to improve the computational 
speed of the model and reduce the number of parameters 
in the model, we must ensure that the maximum size of 
the convolutional kernels in most models does not exceed 
3× 3× 3 , such as 3D-Unet [9], DenseVoxNet [18], and 
3D U2

− Net [19]. There are also some networks that 
use 5× 5× 5 convolutional kernels, such as V-Net [14], 
and some networks that use 7× 7× 7 convolutional ker-
nels, such as ResNetMed3D [20]. The receptive field of 
CNN-based methods is highly localized due to the limi-
tation of the fixed receptive field of the convolutional ker-
nel. Although the perceptual field of these methods can 
gradually increase in higher layers, they still cannot fully 
learn long-range dependent information in lower layers 
[21, 22]. Nevertheless, such long-distance dependencies 
are crucial for accurate segmentation of tissue structures 
in medical images [19]. Some studies have attempted to 
overcome the CNN’s inability to acquire remote depend-
encies through techniques such as dilation convolution 
[23], the spatial attention mechanism, the channel atten-
tion mechanism [24], and the image pyramid [25], but 
these techniques still have some limitations. Inspired by 
the great success of Transformer [26] in the field of natu-
ral language processing, some scholars have introduced 
Transformer into the field of computer vision and have 
proposed Vision Transformer (ViT) [27] and Swin Trans-
former [28]. Dividing 2D images into image blocks and 
combining them with positional encoding, ViT achieves 
comparable performance with the CNN on large data-
sets. Swin Transformer proposes a window attention 
mechanism and a cyclic moving window attention 
mechanism to solve the problem of high time complex-
ity in the computation of ViT. Based on the robust per-
formance achieved by ViT on image classification tasks, 
some scholars have introduced it to image segmentation 
tasks. Swin-Unet [29] is a pure Transformer network 
structure, where the encoder and decoders are composed 
of Transformers. However, Swin-Unet is a model for 2D 
medical image segmentation, which is not applicable to 
voxel segmentation of 3D medical images unless a lot of 
additional work has been performed or some complex 
adaptation code has been written. TransUnet [21] and 
TransBTS [30] are a kind of hybrid model in combining 
CNN and Transformer, using successive convolutional 
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layers and Transformer in the encoder for feature extrac-
tion and transposed convolution for upsampling opera-
tions in the decoder to recover spatial resolution for 
semantic segmentation. In the UnetR [31] and SwinBTS 
[32] structure, the authors used the Transformer to ini-
tially extract the image features while using the CNN as 
the backbone network in both its encoders and decoders.

Among the existing models, segmentation models 
implemented entirely based on CNNs have significant 
limitations in modeling long-distance dependent infor-
mation in images, while segmentation models based 
entirely on ViT are unable to learn low-level detail infor-
mation in images well [21, 22]. There are also some mod-
els that combine the advantages of ViT and CNN to 
model both long-distance dependent information and 
short-distance dependent information in images, but 
these models have a large number of model parameters 
and high computational time complexity due to the influ-
ence of ViT [28].

Based on the above state of affairs and inspired by the 
work of Swin Transformer [28] and Swin Unet [29], we 
propose a new segmentation model, Swin Unet3D, for 

voxel segmentation of 3D medical images. Our model 
is proposed after consideration of the advantages and 
disadvantages of Swin Transformer and the CNN, and 
without degrading the model modeling capability, our 
model only adds additional linear time complexity com-
pared to CNN-based segmentation models. Our model 
consists of an encoder, a decoder, and a jump connec-
tion, as shown in Fig. 1. A 3D medical image with a reso-
lution of H ×W × D is divided into non-overlapping 
voxel patches of size 4 × 4 × 4 . Each voxel patch is then 
flattened by a fully connected layer and encoded as a 
96-dimensional vector. Each vector is considered as a 
token, and these obtained H

4
×

W
4
×

D
4

 tokens are then 
fed into a transformer-based encoder for image feature 
extraction. The image features extracted by the four 
encoders are sent to the decoder for upsampling, which 
recovers the spatial resolution of the image and gradually 
fuses them with the features extracted by the encoders to 
complete the semantic segmentation of the image using 
a jump connection. The experiments that have been con-
ducted on the Brats2021 challenge dataset [33–35] and 
the Brats2018 challenge dataset [33–35] show that our 

Fig. 1  The architecture of the Swin Unet3D
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model achieves a good balance in terms of segmentation 
accuracy and the number of model parameters.

Our contributions can be summarized as follows: (1) 
based on the idea of Swin Transformer, we first imple-
mented Swin Transformer Block3D, a module that can 
extract features in 3D medical images like Convolu-
tion3D; (2) we proposed ViT and CNN parallel struc-
tures. The Swin Transformer-based Swin Block3D 
module is responsible for learning long-distance depend-
ency information in images, while the CNN-based 
Conv Block3D is responsible for learning short-distance 
dependency information in images, and at the end of 
each decoder, the model performs feature fusion of the 
image features extracted by these two modules; (3) the 
results of ablation experiments show that in an intensive 
prediction task like image segmentation, the ViT struc-
ture and the Convolution structure combined can com-
pensate for each other’s shortcomings.

Methods
Implementation details of Swin Unet3D
Architecture overview
Figure 1 presents an overview of Swin Unet3D, a model 
consisting of an encoder, a jump connection, and a 
decoder. The Patch Merging3D module is mainly used 
for image downsampling, while the Swin Transformer 
Block3D module and the Conv Block3D module are 
designed to extract image features. Specifically, Swin 
Block3D is employed to learn the long-range dependency 
information in the image, and Conv Block3D is adopted 
to learn local dependency information in the image. 
The patch Expanding3D module is used for upsampling 
to recover the spatial resolution of the image. A Patch 
Merging and several Swin Block3D are stacked to form 
a Down Stage, while a Patch Expanding3D and several 
Swin Block3D are stacked to form an Up Stage.

The input 3D image is first chopped into multiple 
4 × 4 × 4 voxel blocks, and then each voxel block is flat-
tened into a one-dimensional vector of length 64. Finally, 
these one-dimensional vectors are linearly transformed 
and their length is changed to N. After completing the 
above steps, the input image is encoded as H

4
×

W
4
×

D
4

 
tokens, each tokens is a one-dimensional vector of length 
N. Referring to the original Swin Transformer [28], N can 
be set to 96. These tokens are further fed into the Conv 
Blocks3D module and Swin Block3D module for extract-
ing the features of the image. The Patch Expanding3D 
module is used in the decoder to recover the spatial res-
olution of the feature vector, and the Swin Block3D and 
Conv Block3D modules are used to continue the feature 
extraction. After stacking multiple decoders, the spa-
tial resolution of the feature map can be restored to the 
input spatial resolution, and the pixel-level segmentation 

prediction of the input image can be obtained by apply-
ing a linear change to the last layer of the feature map.

Each encoder or decoder contains a multi-header 
attention mechanism layer. According to the design of 
Swin Unet [29], the number of multi-headed attention 
mechanisms used by Encoder12,Encoder3,Encoder4 , 
and Encoder5 are 3,6,9,12 respectively, and the num-
ber of multi-headed attention mechanisms used by 
Decoder4,Decoder3, andDecoder12 is 9,6,3 respectively. 
The number n of Swin Blocks3D contained in each 
Encoder in Fig.  1 is 2,2,4,2 from Encoder12 to Encoder5 , 
and 4,4,2 from Decoder4 to Decoder12 , respectively.

Multi‑head window self‑attention3D
The window multi-head self-attention3D (SW-MSA3D) 
module divides the input tokens into multiple sub-
windows. The window size is specified according to the 
spatial resolution of the input image, which is generally 
equal to the spatial resolution of the input image divided 
by 32. The reason for using this design is that the images 
are downsampled four times during the encoding pro-
cess, and the downsampling factors are 4, 2, 2, and 2. To 
avoid misalignment of feature map dimensions during 
the fusion using feature map information, it is necessary 
to set the spatial resolution of the input image to a mul-
tiple of 32. Also, to be able to divide the input image into 
multiple windows of the exact same size, we must be able 
to integer divide the input in each dimension by the size 
of the window in the corresponding dimension (Fig. 2).

Like the two-dimensional W-MSA, W-MSA-3D com-
putes a multi-head self-attention mechanism for each 
window. It computes the similarity between the tokens 
in each window, and we adapted the idea of SW-MSA 
implementation in Video Swin Transformer [36] in the 
process of our implementation. However, as W-MSA-
3D only calculates the similarity between tokens within 
the same window, it lacks the information interaction 
between windows. To solve this problem, the SW-MSA-
3D mechanism is introduced. The input is cyclically 
shifted by s units in each dimension, where the value of s 
must be smaller than the window size in the correspond-
ing dimension, and the default value of s is half of the 
window size with reference to the setting of the original 
paper [28]. However, the circular shifted-window mecha-
nism leads to two more problems: (1) an increase in the 
number of windows; (2) inconsistent window sizes. Some 
tokens originally located in non-adjacent windows are in 
the same window after cyclic shifting, and the similarity 
generated between these tokens should be filtered out 
when calculating the self-attention inside the window, so 
we introduce the window-masking mechanism. Figure 3a 
shows the normal method of calculating the window self-
attention, which only calculates the similarity between 
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Fig. 2  Overview of the structure of some sub-modules: a swin Block3D, b Conv Block3D, c Patch Merging3D, d Patch Expand3D

Fig. 3  The schematic diagram of a W-MSA-3D and b SW-MSA-3D with a window size of 2. The tokens of the same color in a belong to the same 
window, and we only calculate the self-attention within each window. To obtain the dependency information interaction between adjacent 
windows, we divide some tokens within neighboring windows into the same window after cyclic shifting, and only tokens satisfying these 
conditions are allowed to calculate the window self-attention between them. Other tokens that do not satisfy the condition are shielded from 
attention between them by a masking mechanism even if they belong to the same window after a circular shift, as shown in b 
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tokens of the same color, as they are in the same window. 
Figure 3b depicts the cyclic shifted-window mechanism. 
Tokens that are originally in adjacent windows (patches 
with the same color in Fig. 3b) are in the same window 
after cyclic shifting, and the similarity between them 
can be calculated. The similarity between tokens that are 
not in adjacent windows (patches with different colors 
in Fig.  3b) should be filtered out even if they are in the 
same window after the cyclic shifting. The inclusion of 
the cyclic shifted-window mechanism can introduce 
information interaction between neighboring windows 
with the cost of only increasing the linear computational 
complexity, thus allowing the neural network to learn 
long-distance dependency information. The process of 
calculating the attention between tokens in each window 
can be described by the following formula:

Each ofWQ,WK ,WV  is a parameter-learnable square array 
with the same dimensionality, dk is the dimensionality of 
K, X is the matrix of tokens in the same window, and attn 
is the similarity between tokens.

Conv Block3D
The Conv Block3D module, shown in Fig. 2b, is stacked 
twice in the order of 1× 1× 1 convolutional layers, Lay-
erNorm [37] layers, and PRelu [38] layers, and it is mainly 
responsible for learning the local dependencies of the 
images. The computational process of this module can be 
described as follows:

where X denotes the input of Conv Block3D, Y indicates 
the output of Conv Block3D, and Xt denotes the inter-
mediate temporary variable. In order to avoid the extra-
large computational effort caused by this module, we use 
the depth-wise separable convolution [39] instead of the 
normal convolution. This sub-module was designed to 

(1)Q = WQ
× X

(2)K = WK
× X

(3)V = WV
× X

(4)attn = Softmax
Q × KT

dk
× V

(5)Xt
= PReLu1(LN1(Conv3D1(X)))

(6)Xt
= PReLu2(LN2(Conv3D2(X

t)))

(7)Y = Xt
× X

ensure that the model can better fit the detailed informa-
tion in the image and draws on the implementation in 
VAN [40] so that multiplication rather than addition is 
used in performing the feature convergence of Xt and X.

Swin Block3D
The composition of Swin Block3D is shown in Fig.  2a, 
and its design idea is derived from the Block module in 
Swin Transformer [28]. It consists of two basic units: The 
first unit consists of a LayerNorm (LN) layer, window 
multi-Head self-attention3D (W-MSA-3D) module, a 
LayerNorm layer, and an MLP module in order of succes-
sive composition; the second unit uses the shifted-win-
dow multi-head self-attention3D (SW-MSA-3D) module, 
which replaces the W-MSA-3D module in the first cell, 
and the rest of the structure is the same as that of the first 
unit. The whole calculation process of Swin Block3D can 
be described by the following mathematical equation:

The Xt1 and Xt2 are temporary variables used to facilitate 
the description of these formulas.

The input of each encoder or decoder is some feature 
maps, but the Self Attention module in Swin Block3D 
needs to divide the feature maps into voxel patches, and 
then turn each voxel patch into a one-dimensional token 
in order to calculate the self-attention. After the self-
attentive calculation, each token needs to be converted 
into the corresponding voxel patches, and finally, these 
voxel patches are stitched into the feature map. In gen-
eral, the conversion between token and voxel patches is 
the dimensional transformation of the matrix. A voxel 
patch of dimension [h, w, d] is flattened to a one-dimen-
sional token of length h× w × d , and a token of length 
h× w × d can be transformed to a voxel patch of dimen-
sion [h, w, d] by matrix dimension transformation. We 
used the class named Rearrange in the einops [41] library 
to convert tokens and feature maps to each other.

Patch Merging3D and Patch Expanding3D
The function of the Patch Merging3D module mainly 
includes reducing the image spatial resolution and 
increasing the number of image channels. The structure 
of the Patch Expanding3D module, shown in Fig.  2c, is 
relatively simple, containing only a Conv3D layer and a 

(8)Xt1
= LN1(X

L−1)+W - SA- 3D(LN1(X
L−1))

(9)Xt
= LN2(X

t1)+MLP(LN2(X
t1))

(10)Xt2
= LN3(X

t)+ SW -MSA- 3D(LN3(X
t))

(11)XL
= LN4(X

t2)+MLP(LN4(X
t2))
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LayerNorm [37] layer, while the functions of the Patch 
Expanding3D module are exactly the opposite of those of 
the Patch Merging3D module, mainly consisting of grad-
ually restoring the image spatial resolution and reducing 
the number of image channels. As shown in Fig. 2d, this 
module contains a ConvTranspose3d layer and a Layer-
Norm layer.

The reason why these two modules use LayerNorm [37] 
instead of BatchNorm is as follows: 3D images generally 
occupy a relatively large amount of GPU memory, so dur-
ing the experiment, the BatchSize parameter generally 
cannot be too large, otherwise, it will easily cause GPU 
memory overflow. However, in the case of BatchSize is 
relatively small using BatchNorm is not very meaningful.

Encoder and decoder
The internal details of the Encoder and Decoder are 
shown in Fig. 1. Each Encoder consists of a Patch Merg-
ing3D sub-module, a Conv Blocks3D sub-module, and 
more than one Swin Blocks 3D sub-module. The Patch 
Merging3D sub-module outputs a temporary feature 
image ( Xt ) after downsampling the input image or the 
feature image output from the previous Encoder. Both 
the Conv Blocks3D sub-module and the Swin Blocks3D 
sub-module get Xt as input, where the Conv Blocks3D 
sub-module is used to learn short-distance dependency 
information in Xt , while the Swin Blocks3D sub-module 
is used to learn long-distance dependency information 
in Xt . A matrix addition operation on the output of the 
Conv Blocks3D and Swin Blocks3D sub-modules yields 
the feature image of this Encoder output.

The internal composition of the Decoder is similar to 
that of the Encoder, with the difference that there are two 
inputs given to the Decoder. The first input is the feature 
image output by the Encoder of the same level, and the 
second input is the feature image output by the Decoder 
of the previous level or the feature image output by the 
Encoder5 . The first input is added mainly to introduce the 
residual connection to avoid the gradient vanishing in the 
back-propagation process [42].

Evaluation metrics
For each segmentation task, we used the dice coeffi-
cient [14] as an evaluation criterion, which is defined as 
follows:

where X is the prediction result of the models, Y is the 
ground truth, TP refers to the correctly classified tumor 
voxels, FN refers to the correctly classified non-tumor 
voxels, and FP refers to those voxels that are determined 
to be tumors by the model but are non-tumors in the 

(12)Dice =
2�X

⋂

Y �

�X� + �Y �

=

2TP

2TP + FP + FN

ground truth. The dice coefficient is used to measure the 
similarity between the model prediction and the ground 
truth (GT), and its value ranges from 0 to 1. The closer 
the dice coefficient is to 1, the closer the prediction is to 
the GT.

Experiments
Experimental conditions configuration
Swin Unet3D was implemented on Python 3.7.9, PyTorch 
1.9.0 [43], and einops 0.3.2 [41]. We used an RTX3090 
graphics card and an NVIDIA A100 graphics card to 
complete these experiments. To accelerate the train-
ing process of the model, we used the hybrid precision 
provided in PytorchLightning [44] for model training, 
inferences, and gradient accumulation techniques, thus 
disguising the expansion of the BatchSize. In all experi-
ments, we used the Monai [45] framework to complete 
the preprocessing of the input images.

Experiment on the dataset of Brats2021 Challenge
The Brats2021 Challenge [33–35] dataset contains a 
total of 2000 MRI scans of glioma patients, with a train-
ing dataset size of 1251. Each patient’s MRI scan con-
tains four contrasts: native T1-weighted, post-contrast 
T1-weighted (T1-GD), T2-weighted, and T2 Fluid-Atten-
uated Inversion Recovery (T2-Flair) images. All MRI 
scans have an image size of 240× 240× 155 after inter-
polation to a resolution of 1mm3 . Segmentation annota-
tions for all of the patients included the GD-enhanced 
tumor (ET-Label 4), peritumoral edema/infiltrating tissue 
(ED-Label 2), and necrotic tumor core (NCR-Label 1).

To obtain better segmentation results and faster con-
vergence of the model, we converted the multi-class 
labels into a multi-label segmentation task in the one-
hot format, as follows: Label 2 was used to construct the 
enhancing tumor(ET), label 2 and label 4 were combined 
to construct the Tumor core(TC) channel, and label 1, 
label 2, and label 4 were merged to construct the Whole 
tumor (WT). The merge operation was implemented by a 
logical OR operation.

All models were trained and validated using the same 
hyperparameters, except for some individual model-spe-
cific hyperparameters, as detailed below. The data set was 
divided into training and validation sets in the ratio of 
0.8:0.2, using a random seed of 42. The validation set was 
divided at the beginning of the training phase and was 
not involved in the training process. To make all experi-
mental results reproducible, we also used random seeds 
with values equal to 42 for initializing the environments 
of PyTorch [43], PyTorch-lightning [44], Monai [45], and 
Cuda.

All models use the AdamW [47] optimizer and the 
DiceLoss [14] loss function, with the Batchsize being set 
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to 1 and then disguised to expand the BatchSize to 16 
using the gradient accumulation technique in Pytorch-
Lightning [44]. In the training stage, a region of size 
128× 128× 128 is randomly cropped from the original 
image and fed into the model for training. In the valida-
tion stage, we use the sliding window inference technique 
provided by Monai [45], with a sliding window size of 
[128, 128, 128] and an overlap region overlap parameter 
of 0.125. All models use the same learning rate of 3e-4. 
We also use the early stop technique in Pytorch-Light-
ning [44] to avoid overfitting the model on the training 
dataset. Figure 4 provides a comparison of the segmen-
tation results among Ground Truth and the individual 
models.

Experiments on the dataset of Brats2018 Challenge
We also complete comparative experiments on Swin 
Unet3D and other models on the validation dataset of 
Brats2018 [33–35]. Brats2018 has the same segmentation 
regions and targets as Brats2021, but the dataset size is 
different. The training dataset for Brats2018 contains 285 
MRI scans of patients with glioma.

And the experimental results are shown in Table 2, The 
change curves of relevant metrics can be obtained from 
Fig.  6. In the training stage of this experiment, we crop 
random image blocks of size 128× 128× 128 from the 
input images and feed them into the network for training. 
In the inference stage, we use the sliding window body 
mechanism provided by the monai [45] framework, with 
the roi_size parameter set to [128, 128, 128] and the over-
lap parameter set to 0.125. In addition, the other param-
eters used in this experiment were completely inherited 
from Brats2021, which was done to test the fitting ability 
of Swin Unet3D more fully.

Result and discussion
Result analysis
To explore the fitting ability of our model, we completed 
model training and segmentation performance validation 
on the datasets of Brats2018 and Brats2021. And we also 
conducted comparison experiments using 3D U-Net [9], 
V-Net [14], UnetR [31], TransBTS [30], SwinBTS [32], 
and AttentionUnet [16], with almost the same hyper-
parameters for all experimental trials. As the number of 
training epochs increases, these models achieve the aver-
age dice coefficients on the validation dataset as shown in 
Figs. 5 and 6. From Table 1, it can be seen that the aver-
age dice coefficients achieved by our models on the vali-
dation dataset of Brats2021 are 0.834 (ET channel), 0.866 
(TC channel), and 0.905 (WT channel), respectively. 
From Table  2, it can be seen that our model achieved 
average dice of 0.716 (ET channel), 0.761 (TC chan-
nel), and 0.874 (WT channel) on the Brats2018 dataset, 

respectively. Combining the results in Tables 1 and 2, we 
can tentatively conclude that our model achieves a better 
balance of model size and segmentation accuracy com-
pared to other models. To explore the fitting ability of our 
model, we completed model training and segmentation 
performance validation on the datasets of Brats2018 and 
Brats2021. And we also conducted comparison experi-
ments using 3D U-Net [9], V-Net [14], UnetR [31], Trans-
BTS [30], SwinBTS [32], and AttentionUnet [16], with 
almost the same hyper-parameters for all experimental 
trials. As the number of training epochs increases, these 
models achieve the average dice coefficients on the vali-
dation dataset as shown in Figs.  5 and 6. From Table 1, 
it can be seen that the average dice coefficients achieved 
by our models on the validation dataset of Brats2021 are 
0.840 (ET channel), 0.874 (TC channel), and 0.911 (WT 
channel), respectively. From Table 2, it can be seen that 
our model achieved average dice coefficients of 0.716 
(ET channel), 0.761 (TC channel), and 0.874 (WT chan-
nel) on the validation dataset of Brats2018, respectively. 
Combining the results in Tables  1 and 2, we can tenta-
tively conclude that our model achieves a better balance 
of model size and segmentation accuracy compared to 
other models.

Discussion
We also tried to remove the Conv Blocks3D submod-
ule from Swin Unet3D, and only the Swin Block3D sub-
module is used to complete the image feature extraction 
work, getting a model called Swin Pure Unet3D. As can 
be seen from Table  1 and Fig.  5, the average dice coef-
ficients achieved by Swin Pure Unet3D on the validation 
dataset of Brats021 are consistently lower than those of 
Swin Unet3D. Figure 7 was used to visualize the predic-
tion results of Swin Pure Unet3D, which uses MRI scans 
of the same patient as in Fig. 5 from the Brats2021 valida-
tion dataset. Although the difference between the aver-
age dice coefficient achieved by Swin Pure Unet3D and 
Swin Unet3D on the Brats2021 validation dataset is no 
more than 4.4%. This difference appears to be relatively 
small, however, it can be seen from Fig.  7 that many 
noise points appear in the prediction results of Swin Pure 
Unet3D, in contrast, there is no such phenomenon in 
Swin Unet3D, and the prediction results of Swin Unet3D 
are closer to Ground Truth. It can be seen from Table 2 
and Fig. 6 that on the validation dataset of Brats2018, the 
difference between Swin Pure Unet3D and Swin Unet3D 
is much larger, with the largest dice coefficient difference 
reaching 7.7% (WT channel).

We also performed significance testing experi-
ments, and Table  3 depicts the significance testing 
results on the validation dataset of Brats2021, while 
Table  4 shows the significance testing results on the 
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validation dataset of Brats2018. We first saved the 
dice coefficients obtained for each model on the vali-
dation dataset to a CSV file, and then used the SciPy 

[48] library to perform significance analysis on the 
dice coefficients obtained for each model and the dice 
coefficients obtained for Swin Unet3D. The analysis 

transverse sagittal coronal 3d

Ground Truth

3D U-Net

V-Net

UnetR

TransBTS

SwinBTS

AttentionUnet

Swin Unet3D

Fig. 4  The segmentation results of each model were visualized on the validation dataset of Brats2021 using the ITK-SNAP [46] software. The red 
area in the figure shows the necrotic tumor core (NCR—label 1), the green area shows the peritumoral edematous/invaded tissue (ED—label 2), 
and the yellow area shows the GD-enhancing tumor (ET—label 4)
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results were kept in four valid digits. Together with 
the results shown in Tables 3 and 4, it can be seen that 
there is a sizable significant difference between Swin 
Pure Unet3D and Swin Unet3D on segmentation per-
formance. This could, to some degree, indicate that the 

convolutional module can compensate for ViT’s inabil-
ity to fit the image detail information well.

Fig. 5  Variation curves of metrics for measuring the model fitting ability on the validation dataset of Brats2021: a mean loss; b dice coefficient on 
ET channel; c dice coefficient on TC channel; d dice coefficient on WT channel

Table 1  Performance comparison of multiple models on the Brats2021 validation dataset and and the analysis of the significant 
differences between the performance of Swin Unet3D on the validation set and the performance of other models using the Wilcoxon 
sign test

Bold values indicate the best metrics

Model name Params Params size Mean dice Significant difference

(M) (MB) ET TC WT ET TC WT

3D U-Net 7.9 15.834 0.825 0.844 0.900 Yes No Yes

V-Net 45.6 182.432 0.815 0.840 0.751 No Yes Yes

UnetR 102 204.899 0.842 0.853 0.905 Yes No Yes

TransBTS 33.0 65.975 0.824 0.843 0.889 Yes Yes Yes

SwinBTS 35.7 71.394 0.828 0.843 0.896 Yes Yes Yes

AttentionUnet 23.6 47.257 0.841 0.851 0.870 No No No

Swin Pure Unet3D 33.6 67.163 0.817 0.822 0.885 Yes Yes Yes

Swin Unet3D 33.7 67.403 0.834 0.866 0.905 – – –
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Conclusion
In this paper, we proposed a new 3D medical image seg-
mentation model by adding the Swin Block3D module 
based on the Swin Transformer and Conv Block3D mod-
ule based on CNN to each decoder and encoder of the 
model.

The Swin Block3D sub-module based on ViT is 
responsible for learning the global dependency infor-
mation in the image, and the Conv Blocks3D sub-mod-
ule based on convolution is responsible for learning 
the local dependency information of the image. Merg-
ing the dependency information learned by these two 
can ensure that all layers in Swin Unet3D will model 

Table 2  Performance comparison of multiple models on the Brats2018 validation dataset and the analysis of the significant 
differences between the performance of Swin Unet3D on the validation set and the performance of other models using the Wilcoxon 
sign test

Bold values indicate the best metrics

Model name Params Params size Mean dice Significant difference

(M) (MB) ET TC WT ET TC WT

3D U-Net 7.9 15.834 0.704 0.763 0.869 No Yes Yes

V-Net 45.6 91.216 0.361 0.528 0.801 Yes Yes Yes

UnetR 102 204.899 0.743 0.767 0.869 Yes Yes Yes

TransBTS 33.0 65.975 0.707 0.723 0.844 Yes Yes No

SwinBTS 15.7 34.411 0.732 0.717 0.863 No No No

AttentionUnet 23.6 47.257 0.613 0.550 0.658 Yes Yes Yes

Swin Pure Unet3D 33.6 67.163 0.657 0.646 0.797 Yes Yes Yes

Swin Unet3D 33.7 67.403 0.716 0.761 0.874 – – –

Fig. 6  Variation curves of metrics for measuring the model fitting ability on the validation dataset of Brats2018: a mean loss; b dice coefficient on 
ET channel; c dice coefficient on TC channel; d dice coefficient on WT channel
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the dependency information of the image well. Mean-
while, using jump connections in Swin Unet3D can 
mitigate the excessive loss of image information due to 
downsampling in the encoder. We have demonstrated 

the powerful fitting ability of the Swin Unet3D model 
through experiments on the Brats2021 Challenge and 
Brats2018 Challenge datasets. The results of the abla-
tion experiments show that the Conv Blocks3D module 
and the Swin Block3D module can compensate for each 
other’s inherent deficiencies.
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