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Abstract 

Background Accurate measurement of hemoglobin concentration is essential for various medical scenarios, includ-
ing preoperative evaluations and determining blood loss. Traditional invasive methods are inconvenient and not suit-
able for rapid, point-of-care testing. Moreover, current models, due to their complex parameters, are not well-suited 
for mobile medical settings, which limits the ability to conduct frequent and rapid testing. This study aims to intro-
duce a novel, compact, and efficient system that leverages deep learning and smartphone technology to accurately 
estimate hemoglobin levels, thereby facilitating rapid and accessible medical assessments.

Methods The study employed a smartphone application to capture images of the eye, which were subsequently 
analyzed by a deep neural network trained on data from invasive blood test data. Specifically, the EGE-Unet model 
was utilized for eyelid segmentation, while the DHA(C3AE) model was employed for hemoglobin level prediction. The 
performance of the EGE-Unet was evaluated using statistical metrics including mean intersection over union (MIOU), 
F1 Score, accuracy, specificity, and sensitivity. The DHA(C3AE) model’s performance was assessed using mean absolute 
error (MAE), mean-square error (MSE), root mean square error (RMSE), and R^2.

Results The EGE-Unet model demonstrated robust performance in eyelid segmentation, achieving an MIOU of 0.78, 
an F1 Score of 0.87, an accuracy of 0.97, a specificity of 0.98, and a sensitivity of 0.86. The DHA(C3AE) model for hemo-
globin level prediction yielded promising outcomes with an MAE of 1.34, an MSE of 2.85, an RMSE of 1.69, and an R^2 
of 0.34. The overall size of the model is modest at 1.08 M, with a computational complexity of 0.12 FLOPs (G).

Conclusions This system presents a groundbreaking approach that eliminates the need for supplementary devices, 
providing a cost-effective, swift, and accurate method for healthcare professionals to enhance treatment planning 
and improve patient care in perioperative environments. The proposed system has the potential to enable frequent 
and rapid testing of hemoglobin levels, which can be particularly beneficial in mobile medical settings.

Trial Registration The clinical trial was registered on the Chinese Clinical Trial Registry (No. ChiCTR2100044138) 
on 20/02/2021.
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Introduction
Hemoglobin, a critical oxygen-carrying protein in the 
blood, is a central biomarker for diagnosing and man-
aging an array of medical conditions. The monitoring 
of hemoglobin levels is of utmost importance in clini-
cal practice, playing a critical role in several key areas. 
Firstly, it is essential in diagnosing and treating anemia, 
as hemoglobin levels directly reflect the presence and 
severity of red blood cell deficiencies. Secondly, hemo-
globin measurement aids in assessing the risk of car-
diovascular diseases, given its association with blood 
viscosity and oxygen delivery to vital organs. Further-
more, preoperative evaluations rely heavily on hemo-
globin levels to ensure patients’ hemodynamic stability 
during surgical procedures. Finally, accurate quanti-
fication of blood loss is crucial in trauma and surgical 
settings, and hemoglobin monitoring provides a timely 
indicator of such losses. The clinical significance of 
hemoglobin measurement underscores the need for 
accurate, reliable, and accessible testing methods. 
Accurate hemoglobin measurement is not only vital for 
diagnosing and managing medical conditions but also 
for guiding critical clinical decisions, such as deter-
mining transfusion requirements, thereby optimiz-
ing patient care and outcomes. Traditional methods of 
measuring hemoglobin, predominantly based on inva-
sive blood tests, often result in patient discomfort and 
are time-consuming. This poses challenges in scenarios 
where rapid and non-invasive assessment is desirable. 
This not only poses challenges in emergency or mobile 
medical settings where rapid assessment is crucial but 
also limits the frequency of testing due to the discom-
fort and risk of infection associated with invasive pro-
cedures. The quest for non-invasive alternatives has 
led to the development of non-invasive techniques to 
gauge hemoglobin levels [1, 2], including pulse oxi-
metry and spectrophotometry. These methods, which 
measure oxygen saturation and the absorption of light 
by hemoglobin respectively, however, come with their 
limitations. Factors such as skin color, temperature, and 
motion artifacts can influence their accuracy.

The emergence of smartphone technology has paved 
the way for a novel approach to estimating hemoglobin 
levels. Leveraging deep learning algorithms, smartphone-
based systems are now capable of predicting hemoglobin 
concentrations [3, 4]. These systems harness the power 
of smartphones’ built-in sensors, such as cameras and 
flashlights, to capture skin images for analysis via deep 
learning algorithms. Artificial intelligence (AI) has the 
potential to significantly enhance the precision and reli-
ability of these sensors while simultaneously reduc-
ing detection costs and time. Given their convenience, 
accessibility, and cost-effectiveness, smartphone-based 

diagnostic methods are revolutionizing medical detec-
tion, offering clinicians improved diagnostic tools.

This paper introduces a pioneering system that uti-
lizes smartphones, coupled with deep learning algo-
rithms, to predict hemoglobin concentration accurately. 
By integrating clinical data from patients’ eyelids and 
employing a streamlined network architecture, this sys-
tem can ascertain hemoglobin levels without external 
equipment. Moreover, it achieves higher accuracy in 
real-time detection than manual assessments conducted 
by medical professionals. This advancement represents 
a significant stride toward more accessible and efficient 
healthcare diagnostics, promising enhanced patient care 
and outcomes.

Our main contributions in this work are as follows: 1) 
The development of a non-invasive hemoglobin measure-
ment system using smartphone imaging, addressing the 
need for a convenient and rapid testing method; 2) The 
implementation and evaluation of the EGE-Unet model 
for eyelid segmentation, showcasing its superior perfor-
mance over existing models in terms of accuracy and 
efficiency; 3) The application of the DHA(C3AE) model 
for hemoglobin level prediction, demonstrating its effec-
tiveness in providing accurate and reliable results; 4) The 
innovation of a streamlined deep learning framework 
suitable for mobile deployment, with a focus on compu-
tational efficiency and practicality.

The remainder of this paper is organized as follows: The 
next section provides a comprehensive review of the lit-
erature related to non-invasive hemoglobin measurement 
and the application of deep learning in smartphone-
based health diagnostics. This is followed by the Methods 
section, where we detail our experimental setup, partici-
pant recruitment, data acquisition, and the deep learn-
ing model architecture. The Results section presents the 
performance of our system, including accuracy and reli-
ability assessments. We then discuss the implications of 
our findings in the Discussion section, comparing our 
results with existing literature and exploring potential 
clinical applications. Finally, the paper concludes with a 
summary of our contributions and an outlook on future 
research directions.

Related work
Several approaches have been explored to determine 
hemoglobin (Hb) concentrations from blood specimens 
[5–9]. Traditional machine learning models, utilizing 
invasive methods, have been frequently employed for 
Hb concentration prediction [7–9]. While these models 
require blood samples obtained through venipuncture 
and rely on costly, specialized optical measurement 
equipment, they offer high precision in their results. 
In the field of medical image processing, researchers 
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have utilized various techniques to address diagno-
ses and predictions of eye-related diseases, includ-
ing deep learning and hybrid algorithm for machine 
learning [10–15]. Similarly, recent advancements have 
introduced non-invasive techniques for Hb predic-
tion, leveraging image processing and machine learning 
[16–18]. Notably, deep learning methodologies utiliz-
ing images of the fingertip and eye have been applied 
to categorize Hb levels [19, 20]. One particular study 
[21] achieved a rank order correlation of 0.93 between 
its predictions and actual Hb levels using fingertip vid-
eos processed by an Artificial Neural Network. Another 
research [22] effort utilized a Convolutional Neural 
Network (CNN) analyzing eye images for anemia clas-
sification, achieving an impressive accuracy rate of 94%. 
Additional techniques [23] for Hb level estimation have 
employed facial feature extraction alongside Inception 
V3 for classification, as well as the analysis of the near-
infrared spectrum of spent dialysis fluid to predict ane-
mia [24].

Despite these innovations, non-invasive quantifica-
tion of Hb levels remains an area with limited explora-
tion. A noteworthy [20] attempt involved quantifying 
Hb concentration through non-invasive means using 
fundus images for training, although this method pre-
sented challenges in data handling. Smartphone-based 
systems emerge as a promising solution offering rapid, 
convenient, and precise detection of Hb concentra-
tions. The adaptation of existing models or the devel-
opment of novel approaches to refine the segmentation 
process is crucial for predicting Hb concentrations on 
mobile devices, aiming for lightweight yet highly effec-
tive neural networks. Our research contributes to this 
burgeoning field by focusing on advanced segmentation 
techniques and the development of streamlined neural 
networks.

This study reports on the development of a deep learn-
ing-assisted system that predicts hemoglobin concen-
tration using smartphones. Initially, our research team 
built a prediction model employing a two-stage approach 
that combined Mask-RCNN [25] for image segmenta-
tion and MobileNet for the prediction phase [26]. This 
model, trained on a dataset comprising 1,124 periop-
erative eyelid images of patients, demonstrated a mean 
absolute error (MAE) of approximately 1.5. By employ-
ing a smartphone application to capture ocular images 
and applying a deep neural network trained on a robust 
dataset of hemoglobin measurements, our system offers 
a promising alternative to traditional methods. The use 
of the EGE-Unet model for eyelid segmentation and the 
DHA(C3AE) model for hemoglobin level prediction rep-
resents an innovative step toward enhancing the preci-
sion and convenience of hemoglobin testing.

Methods
Ethical statement
The study protocol was approved by the institutional eth-
ics committee of the First Affiliated Hospital of Third 
Military Medical University (also called Army Medical 
University, KY2021060), on February 20, 2021, and writ-
ten informed consent was obtained from each patient. 
The clinical trial was registered on the Chinese Clinical 
Trial Registry (No. ChiCTR2100044138) on March 11, 
2021. The principal researcher was Prof. Bin Yi.

Patient recruitment and image collection
The patient recruitment and image collection phase were 
conducted at the First Affiliated Hospital of the Third 
Military Medical University in Chongqing, China, from 
March 18, 2021, to April 26, 2021. The study set forth 
specific inclusion criteria: willingness to participate in the 
research and capability to adhere to the study protocol; 
necessity for Arterial Blood Gas (ABG) analysis as part 
of routine clinical care; and a perioperative Hemoglobin 
variance exceeding 1.5  g/dL. Conversely, the exclusion 
criteria encompassed: refusal to participate; incapacity to 
cooperate due to mental health conditions; presence of 
eye diseases, exposure to eye or facial radiation therapy; 
affliction by carbon monoxide or nitrite poisoning, jaun-
dice, or any condition affecting the conjunctiva color; or 
any other factor deemed by researchers to render a par-
ticipant unsuitable for the study.

To facilitate patient enrollment, image capture, data 
collection, and image analysis, a standardized research 
methodology was established. The research team com-
prised eight members, each assigned specific roles: one 
for patient recruitment, two for capturing images, two 
for data collection and management, one for conjunctiva 
analysis, and two for quality assurance. Before the com-
mencement of patient recruitment, all team members 
underwent training to familiarize themselves with the 
study’s procedures, including the inclusion and exclusion 
criteria, conjunctiva exposure and image capture tech-
niques, and conjunctiva analysis standards.

On the day preceding surgery, eligible patients who 
consented to participate signed a written informed con-
sent form. On the day of surgery, following ABG analy-
sis, the designated team members proceeded to the 
operating room or the post-anesthetic care unit (PACU) 
to photograph the patients’ right and left facial profiles, 
ensuring standard conjunctiva exposure under the typical 
lighting conditions of the operating room and PACU. The 
interval between the ABG analysis and the image capture 
did not exceed 10 min. All photographs were taken with 
the patients in a supine position, using the rear camera 
of the same smartphone (20.00 megapixel and f/1.8 aper-
ture) under identical settings. Simultaneously, two other 
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team members recorded patient identifiers, gender, Hb 
levels, age, and other pertinent information.

At the end of each day, the data collection team 
reviewed the images to identify patients with Hb vari-
ations greater than 1.5  g/dL, discarding all unselected 
images permanently. The quality control team over-
saw the entire process, ensuring the integrity of patient 
recruitment, image quality, and data accuracy through-
out the study.

Workflow and experimental methodology
In this research, we innovated a smartphone-based 
solution capable of estimating hemoglobin levels 
through the application of deep learning. This system 
utilizes a smartphone application to capture eye skin 
images, which are subsequently analyzed by a deep 
neural network. This network has undergone training 
on a dataset comprising Hb measurements obtained via 
invasive blood tests. It employs features extracted from 
the skin images to forecast Hb concentrations. The sys-
tem’s workflow and the experimental setup are deline-
ated below. Fig. 1 provides a schematic overview of our 
system’s workflow and the study’s experimental frame-
work. The system encompasses an algorithm dedicated 
to eyelid segmentation and another algorithm designed 
for predicting Hb concentrations based on these values 
(refer to Fig.  1). Leveraging deep learning technology, 

we accomplished swift and reliable detection of Hb lev-
els in patients undergoing surgery.

To compile training datasets, we captured eyelid 
images from patients using various smartphone mod-
els. Data augmentation techniques were employed 
to enhance the deep learning method’s accuracy and 
robustness. The efficacy of the trained model was 
assessed on novel datasets, with its precision being 
verified against a collection of 265 test samples. To 
further validate the model’s accuracy, we conducted 
a comparative analysis involving two distinct experi-
mental cohorts: one comprising human experts and 
the other utilizing the prediction model outlined in 
this paper, both evaluating the same set of 265 test 
images. Medical professionals estimated the Hb con-
centration range based on the patients’ eye images and 
assessed the accuracy of their estimations. Conversely, 
the smartphone application processed the eye images 
through segmentation and subsequently forecasted the 
Hb values. The application then precisely determined 
the prediction error within a specified range. This 
experimental design not only highlights the potential 
of mobile technology in medical diagnostics but also 
showcases the accuracy and efficiency of deep learning 
algorithms in predicting critical health markers such as 
hemoglobin levels.

Fig. 1 Workflow of model for Non-Invasive Prediction of Hemoglobin
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Image data augmentation
To effectively train deep learning models, a substantial 
volume of training data is essential. Nonetheless, enlarg-
ing the training dataset poses a significant challenge. A 
practical approach to augment the volume of training 
data involves the reproduction of existing data. This pro-
cess generates multiple images from a single source by 
randomly applying a combination of techniques illus-
trated in Fig.  2, which includes: (A) color temperature 
adjustment, (B) contrast enhancement, (C) brightness 
alteration, (D) Gaussian blur application, (E) horizontal 
flipping, and (F) stochastic cropping and resizing. Tech-
niques A, B, and C address the variability in color repre-
sentation across different smartphone models, ensuring 
the model is not biased toward the color metrics of a 
specific device. Technique C also accounts for the diverse 
lighting conditions under which photos might be taken, 
ranging from dimly lit environments to brightly illumi-
nated settings. Technique D introduces an element of 
blur to simulate photos taken out of focus, a common 
occurrence in hastily captured images. Techniques E 
and F are designed to mimic minor inaccuracies in fram-
ing and alignment that can occur during the photo cap-
ture process, ensuring the model can accurately process 
images despite slight imperfections. By employing these 
data augmentation techniques, we not only increase 
the diversity of our training dataset but also enhance 
the robustness and generalizability of our deep learning 
model to accurately interpret images under a wide array 
of conditions typical of smartphone photography.

Model optimization for precise eyelid detection 
and hemoglobin concentration prediction
The effectiveness of many AI-based diagnostic methods 
can significantly diminish when faced with variations in 
lighting conditions, camera angles, and other external 
influences. To counteract these challenges and enhance 
algorithmic performance, this study employed two dis-
tinct algorithms: 1) an Eyelid Semantic Segmentation 
Algorithm, and 2) a Prediction Algorithm based on color 
intensity analysis. The model’s performance was assessed 
utilizing a deep learning framework, which was imple-
mented directly within a smartphone application, as 

depicted in Fig. 1. Initially, the Efficient Group Enhanced 
UNet (EGE-Unet) [27] was deployed to accurately iden-
tify the target eyelid regions. The success of the predic-
tion algorithm was found to be closely tied to the precise 
localization of these regions of interest. Subsequently, 
the deep learning network was tasked with performing 
hemoglobin concentration predictions, through which 
the DHANet model emerged as the superior prediction 
model due to its exceptional accuracy.

In the concluding phase of model optimization, the 
DHANet model was selected as the definitive choice for 
executing highly accurate hemoglobin concentration pre-
dictions. This decision was based on its proven efficacy in 
diagnosing concentration levels accurately, thus under-
scoring the critical importance of both accurate eyelid 
segmentation and effective color intensity analysis in 
enhancing the performance of AI diagnostic tools, espe-
cially when operated in the variable and unpredictable 
environment of smartphone applications.

Deep learning model architecture
This study introduces a deep learning model structured in 
two pivotal stages: the Region of Interest (ROI) cropping 
stage and the decision-making stage. This bifurcation 
stems from the observation that in diagnostic imaging, 
particularly as illustrated in Fig. 1, the most informative 
content is often localized within a small area near the test 
line. Direct decision-making from the original, full-sized 
image is inefficient due to the disproportionate ratio of 
relevant information to the overall image size. This model 
draws inspiration from human diagnostic practices, 
where focus is typically narrowed to the test line area. By 
mimicking this approach—segregating the precise crop-
ping of the test line area (ROI cropping stage) from the 
diagnostic analysis utilizing the test line’s data (decision 
stage)—we aim to enhance learning efficiency.

The EGE-Unet [27] model, an advanced iteration of the 
traditional U-Net [28] designed to address challenges in 
medical image segmentation, is deployed during the ROI 
cropping phase. It incorporates two novel modules: the 
Group multi-axis Hadamard Product Attention mod-
ule (GHPA) and the Group Aggregation Bridge mod-
ule (GAB). The GHPA module facilitates the extraction 

Fig. 2 Image regeneration
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of lesion information from various angles by grouping 
input features and applying Hadamard Product Atten-
tion operations across different axes, an idea inspired by 
the Multi-Head Self-Attention mechanism. Meanwhile, 
the GAB module merges semantic features and detail 
features across scales, alongside the masks generated by 
the decoder, through group aggregation. This integration 
enables the extraction of multi-scale information effi-
ciently. The EGE-Unet model stands out for its segmen-
tation accuracy, low parameter count, and computational 
simplicity, making it particularly suited for practical 
applications.

Figure  3 delineates the EGE-UNet’s design, showcas-
ing a U-shaped layout with symmetrical encoder-decoder 
components. The encoder is segmented into six stages, 
each characterized by varying channel numbers. The ini-
tial stages employ standard convolutions, while the latter 
ones utilize the GHPA for multi-perspective representa-
tion extraction. Each encoder-decoder junction incor-
porates the GAB, enhancing upon the simplistic Skip 
connections found in the original U-Net. Deep supervi-
sion is employed to facilitate mask predictions at multiple 
scales, contributing to the GAB inputs. These enhance-
ments enable EGE-UNet to surpass previous methods 

in terms of segmentation efficacy while maintaining a 
reduced parameter and computational footprint. For an 
in-depth discussion on the GHPA and GAB modules, 
refer to reference [27].

The decision stage of this paper introduces a hemo-
globin concentration prediction model that adopts a 
regression-based approach. Drawing inspiration from 
the miniaturized face detection Delta Age AdaIN (DAA) 
network [29], this method encodes age into binary form 
for input into a Transfer learning framework to capture 
continuous age-related feature information. The binary 
code mapping yields two groups of values corresponding 
to the mean and standard deviation of the comparison 
ages, respectively. The age decoder calculates the differ-
ence in age, and the mean of all comparisons and differ-
ence ages is utilized for age prediction. This methodology 
is adapted for the eyelid prediction stage, as depicted in 
Fig. 4.

The architecture of the eyelid prediction system, 
as depicted in Fig.  4. The top left of the figure shows 
the eyelid coding section, where the eyelid images for 
each concentration value (1 unit interval) are encoded 
in binary 8 bits to form a comparison standard feature; 
the bottom left of the figure shows the eyelid image 

Fig. 3 The overview of the segment network
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feature extraction and conversion with style migra-
tion, where the extracted image features are learned 
from the standard features with difference features; 
the bottom right of the figure shows the decoding of 
the difference features to predict the eyelid hemo-
globin concentration values; the decoding section of 
the network structure is located at the top right of the 
figure. The specific 4 components are as follows: 1) Eye-
lidEncoder Module: This pivotal module transforms 
the eyelid image into a comprehensive feature vector, 
encapsulating essential characteristics of the eyelid. For 
this purpose, the C3AE network [30] is employed due 
to its efficiency and compactness, making it particularly 
suitable for deployment on mobile platforms; 2) Delta 
Hemoglobin AdaIN (DHA): The DHA component is 
instrumental in estimating hemoglobin concentrations 
by juxtaposing the current image against a repository 
of images representing a spectrum of hemoglobin lev-
els. It facilitates hemoglobin concentration predic-
tion by evaluating the feature discrepancies across 
images; 3) Binary Encoding Mapping Module: Given 
that hemoglobin concentration variation is a continu-
ous and gradual phenomenon, an 8-bit binary code is 
utilized to encapsulate the range of hemoglobin con-
centrations. This method employs binary encoding to 
transform the continuous spectrum of hemoglobin lev-
els into a discrete, yet seamless, binary representation, 
enhancing the model’s efficiency and interpretability; 4) 

EyelidDecoder Module: Acting as the final step in the 
prediction pipeline, the EyelidDecoder module inter-
prets the outputs from both the EyelidEncoder and the 
binary encoding mapping modules. Utilizing this con-
solidated information, accurately predicts the patient’s 
hemoglobin concentration levels. The overall algorithm 
for combining eyelid image segmentation and noninva-
sive hemoglobin concentration prediction is as follows:

Algorithm: Non-invasive Prediction of Hemoglobin

1 // Pseudocode for Automatic Non-Invasive Prediction of Hemo-
globin 
// Using Deep Learning-Assisted Smartphone-Based System

2 Initialize:
 Load trained deep learning model 
 Initialize smartphone camera settings for optimal image 
capture
 Load image preprocessing tools 
 Load model prediction

3 CaptureImage():
 Capture image using smartphone camera
 Return image

4 PreprocessImage(image):
 Apply normalization or standardization
 Resize image to match model input requirements
 Return preprocessed_image

5 SegmentImage(PredictHemoglobin)
 model_input = format_as_model_input(preprocessed_image)
 Segment_image=EGE-Unet(model_input)
 Return Segment_image

Fig. 4 The overview of the prediction network
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Algorithm: Non-invasive Prediction of Hemoglobin

6 PredictHemoglobin(Segment_image):
 model_input = format_as_model_input(Segment_image)
 hemoglobin_level = DHA(C3AE).predict(model_input)
 Return hemoglobin_level

7 DisplayResult(hemoglobin_level):
 Display hemoglobin level on smartphone screen

8 Main:
  image = CaptureImage()
preprocessed_image = PreprocessImage(image)
 segment_image=SegmentImage(preprocessed_image)
 hemoglobin_level = PredictHemoglobin(segment_image)
 DisplayResult(hemoglobin_level) 

9 // End of Pseudocode     

In refining the DHA prediction model, the performance 
of the EyelidEncoder module was optimized by evaluat-
ing the resnet18 network in comparison to the original 
c3ae model. Additionally, a range of widely recognized 
mobile image processing architectures—MobileNet [31], 
MobileNetV2 [32], MobileNetV3 [33], Shufflenetv2 [34], 
Squeezenet [35], Wideresnet [36], Resnet18_CBAM 
[37], PFLD [38], and BCNN—were analyzed for their 
applicability. Notably, the PFLD model is recognized for 
its compact structure, suitable for age prediction, while 
the BCNN, a simple 5-layer convolutional network, was 
developed in-house. The efficacy of these models was 
assessed using various metrics, including Mean Absolute 
Error (MAE), Mean-Square Error (MSE), and R-Squared 
(R2), to ensure a comprehensive evaluation of model 
performance.

Experiments on the server
The experiments were conducted using the open-source 
PyTorch learning framework and programmed in Python. 
The hardware setup for these experiments was hosted 
on a Dawning workstation at the Chongqing Institute of 
Green and Intelligent Technology, part of the Chinese 
Academy of Sciences. This setup boasted dual NVIDIA 

3090 graphics cards, each with 11 GB of memory, and ran 
on a 64-bit Ubuntu 16.04 operating system.

Model porting and mobilization
A smartphone application for Android systems was 
developed to facilitate hemoglobin concentration esti-
mation directly from eyelid images. As depicted in Fig. 5, 
the mobile application is divided into two main sections: 
sampling detection and case management.

Sampling Detection Section: 1) Photo-taking Func-
tionality: Users can capture images using both the front 
and rear cameras of their device. The application features 
an interface with a target detection box to guide users 
in framing the eyelid within the photograph. Alterna-
tively, users can select existing images from their photo 
album for analysis; 2) Eye Area Image Display: Captured 
images of the eye area are displayed through the appli-
cation’s interface for review and further processing; 3) 
Hemoglobin Concentration Recognition: The applica-
tion employs the developed model to analyze the selected 
eye area images, determining hemoglobin concentration 
levels and highlighting specific regions associated with 
these levels through mask areas; 4) Result Display Func-
tion: The detected eyelid area, mask area, and calculated 
hemoglobin concentration values are presented to the 
user, enabling easy visualization and understanding of the 
results.

Case Management Section: Users have the capability to 
store detection outcomes and enter patient details to cre-
ate a new case file. Future sampling for the same patient 
can be added and linked to the existing case, allowing for 
monitoring of hemoglobin level changes over time.

The model porting process to a mobile platform 
involves several technical steps. Initially, the segmenta-
tion and prediction models are converted to the ONNX 
format for broader compatibility. Subsequently, model 
invocation is handled via OpenCV, with inference code 

Fig. 5 Smartphone application
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crafted in C++. This inference logic is then packaged 
through NDK cross-compilation, leading to the crea-
tion of an SDK with a standardized C interface. The final 
application interface and related logic are developed in 
Android Studio, enabling the SDK to perform predictions 
through a conventional C interface. This comprehensive 
approach ensures the seamless integration of sophisti-
cated deep learning models into user-friendly mobile 
applications, enhancing accessibility and utility for end 
users.

Results
Image pre-processing
In this study, we enrolled 284 patients scheduled for elec-
tive surgery, including 117 males and 167 females, and 
collected a total of 1273 eye images. After excluding three 
images due to inadequate exposure and five due to over-
exposure, we were left with a dataset of 1265 images. This 
dataset was divided into 1000 images for training and 265 
images for testing. The hemoglobin concentration distri-
bution in the training dataset closely mirrored that of the 
test dataset, ensuring consistency in model evaluation.

Segmentation experiment
For the segmentation task, we utilized the EGE-Unet 
model, applying multi-scale training to the training set 
with a batch size of 64. The Stochastic Gradient Descent 
(SGD) optimizer was used, setting the initial learning rate 
(LR) at 0.01 over 300 epochs. A StepLR decay strategy 

was employed, halving the LR at the 16th epoch and dou-
bling it at the 20th epoch. The results of this segmenta-
tion experiment are illustrated in Fig.  6, comparing the 
performance of the proposed model against YOLOv8 
[39] and Mask RCNN.

The outcome of this experiment, as detailed in Table 1, 
revealed that EGE-UNet surpassed the compara-
tive models, achieving Mean Intersection Over Union 
(MIOU) of 0.78, an F1 Score of 0.87, an accuracy of 0.97, 
a specificity of 0.98, and a sensitivity of 0.86. Further-
more, Table 2 highlights the efficiency of EGE-UNet: the 

Fig. 6 Schematic diagram of segmentation results

Table 1 The segmentation results

Model MIOU F1 Score Accuracy Specificity Sensitivity

EGE-UNet 0.78 0.87 0.97 0.98 0.86

YOLOv8 [30] 0.34 0.51 0.92 0.96 0.47

Mask-RCNN 
[16]

0.67 / 0.98 / /

Table 2 Segmentation Model Metrics

Model Molde Size(M) Params(M) FLOPs(G)

EGE-UNet 0.5 0.05 0.08

YOLOv8 [39] 6.23 3.20 8.70

Mask-RCNN [25] 169 43.92 121.76
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model parameters totaled only 0.05M, with a computa-
tional requirement of merely 0.08 FLOPs (G), and an 
overall model size of just 0.5M. This performance was 
on par with that of YOLOv8 and Mask RCNN; however, 
EGE-UNet’s model size was significantly more compact, 
being 30 times smaller than YOLOv8 and 3000 times 
smaller than Mask RCNN. Additionally, it required 20 
and 50 times less computational complexity, respectively, 
marking a substantial improvement in model efficiency 
and practical applicability.

Prediction experiment
In the predictive analysis phase, the Delta Hemoglobin 
AdaIN (DHA) model was employed as the foundation 
for training the prediction model. A crucial aspect of this 

experiment involved adjusting the EyelidEncoder mod-
ule to evaluate the performance of the resnet18 network 
against the c3ae model. Concurrently, this study also 
benchmarked popular mobile image processing models 
against the DHA model to ascertain their relative perfor-
mance. The findings from this comparative analysis are 
summarized in Table 3.

From the data presented in Table 3 and the visual rep-
resentation in Fig.  7, it is evident that the most effec-
tive model configuration was attained when employing 
C3AE as the EyelidEncoder. This configuration yielded 
impressive outcomes, characterized by a Mean Abso-
lute Error (MAE) of 1.34, a Mean-Square Error (MSE) 
of 2.85, a Root Mean Square Error (RMSE) of 1.69, and 
an R-squared (R2) value of 0.34. Furthermore, the model 

Table 3 Prediction result

model MAE MSE RMSE R2 Mode Size Params(M) FLOPs(G)

DHA(C3AE) 1.34 2.85 1.69 0.34 0.58 0.05 0.04

DHA (resnet18) 1.33 2.79 1.67 0.36 129 11.32 2.37

Resnet18_CBAM 1.35 2.86 1.69 0.34 43 11.27 1.77

MobileNet 1.58 4.16 2.04 0.04 12.4 3.23 4.32

MobileNetV2 1.47 3.45 1.85 0.20 8.87 2.26 4.37

MobileNetV3 1.56 3.64 1.90 0.16 4.26 1.85 0.07

Shufflenetv2 1.46 3.33 1.82 0.23 5.03 1.27 4.08

Squeezenet 1.34 2.98 1.72 0.31 2.89 0.74 3.26

Wideresnet 1.41 3.30 1.81 0.24 65.3 17.31 129.47

BCNN 1.52 3.51 1.87 0.19 96.3 25.2 3.58

PFLD 1.52 3.53 1.88 0.19 5.33 1.37 0.11

Fig. 7 Network Parameter vs. Prediction MAE. Color Depth Representation Model FLOPs (G)
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was distinguished by its minimal parameter size of only 
0.05M and a remarkably low computational demand 
of 0.04G FLOPs. Comparatively, when the EyelidEn-
coder was configured with resnet18, the model’s perfor-
mance metrics were analogous to those achieved with 
C3AE. However, the resnet18 configuration necessi-
tated model parameters that were 226 times larger and 
incurred a computational complexity 59 times greater 
than that of C3AE. Although mobile network models 
such as MobileNet, MobileNetV2, MobileNetV3, and 
Squeezenet demonstrated slightly less optimal perfor-
mance than the C3AE network, they were characterized 
by significantly larger parameters and higher computa-
tional complexity, except the Squeezenet2 model. Nota-
bly, Squeezenet2 achieved an MAE comparable to that of 
c3ae, yet required model parameters 14 times larger and 
a computational complexity 81 times greater.

Moreover, the analysis revealed that convolutional 
networks designed on a simplistic framework exhibited 
parameter sizes and computational complexities akin 
to the C3AE network. Nevertheless, their performance 
metrics did not measure up to those of the C3AE model, 
underscoring the superior efficiency and efficacy of the 
C3AE-based EyelidEncoder configuration in hemoglobin 
concentration prediction tasks. This study highlights the 
importance of selecting an appropriate EyelidEncoder to 
balance model performance with operational efficiency, 
especially in applications intended for mobile platforms.

Clinical sample test evaluation
A blind testing approach was utilized to assess the effi-
cacy of the proposed model in predicting hemoglobin 
concentrations within clinical samples, as depicted in 
Figs. 8 and 9.

Fig. 8 Compare with medical experts

Fig. 9 Mobile app detection demonstration
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Figure 9 highlights the functionality of a mobile appli-
cation specifically developed for this purpose. The appli-
cation’s workflow encompasses capturing an image of the 
patient’s eyelid, identifying the relevant eyelid area for 
segmentation, and subsequently predicting the hemo-
globin concentration. The results of this practical appli-
cation, juxtaposed with the evaluations made by two 
medical experts and two junior doctors, are showcased in 
Table 4 Before the assessment, both the experts and jun-
ior doctors were familiarized with 1000 trained images, 
which they used as a reference for evaluating the hemo-
globin concentrations based on patients’ eyelid images.

According to Table  4, the optimal Mean Absolute 
Error (MAE) estimated by the medical experts was 1.73, 
while the mobile application demonstrated a significantly 
improved accuracy with an MAE of 1.33, marking a 23% 
enhancement in accuracy over the experts’ predictions. 
Additionally, the distribution of prediction errors by 
the app closely mirrored that of the experts, with mini-
mal estimation biases observed in patients with normal 
values and larger biases in patients exhibiting abnormal 
values at both extremes of the spectrum. Conversely, the 
MAE observed in junior doctors was 2.64, reflecting a 
notable deficit in prediction accuracy attributable to their 
comparative lack of experience.

Error metrics detailed in Table  5 range from 0 to 2.0, 
reinforcing the reliability of predictions made by both 

the mobile application and the experts. As delineated in 
Table 5, the mobile application achieved a 60% accuracy 
rate at an error range of 1.5, surpassing the experts’ accu-
racy rate of 55%. In contrast, the accuracy rate of jun-
ior doctors was notably lower, plummeting to 48% at an 
error range of 2.0. These results underscore the potential 
of the mobile application to significantly aid physicians in 
enhancing the real-time accuracy of hemoglobin concen-
tration predictions in patients, thereby contributing to 
more informed and effective clinical decision-making.

Discussion
In this project, we developed an innovative smartphone-
based application for the non-invasive prediction of 
hemoglobin concentration, utilizing a sample-to-hemo-
globin concentration strategy coupled with deep learning 
to facilitate decision-making. This application leverages 
patient-derived eyelid images captured through smart-
phone cameras and employs a micro-network frame-
work, achieving results with minimal computational 
demand, at only 0.12 FLOPs(G). The predictive accu-
racy of the application shows promise for enhancement 
through training with additional clinical data. Its effi-
cacy and versatility were confirmed through extensive 
testing across multiple users and prediction models, 
establishing its utility as a tool for detecting hemoglobin 
concentration.

Table 4 APP VS Expert Prediction Result

Interval APP(MAE) Expert-1 Expert-2 Junior doctor-1 Junior doctor-2 Number

6–7 1.28 4.30 0.20 1.00 0.09 2

7–8 1.42 3.83 3.36 2.14 2.14 18

8–9 1.57 2.72 3.29 2.13 2.38 30

9–10 1.29 1.90 2.47 1.98 2.16 48

10–11 1.03 1.13 2.27 2.04 2.26 48

11–12 1.03 0.55 1.66 1.95 2.54 34

12–13 0.99 0.87 1.15 2.71 2.88 36

13–14 1.66 1.66 0.80 3.17 3.37 23

14–15 2.35 2.37 1.21 3.83 4.57 18

15–16 2.60 3.19 1.78 4.21 3.85 6

Average 1.33 1.73 2.30 2.38 2.64 265

Table 5 Comparison of predictions between different intervals

Interval ranges APP accuracy Expert-1 Expert-2 Junior doctor-1 Junior doctor-2

1 0.44 0.35 0.32 0.27 0.25

1.5 0.60 0.55 0.48 0.35 0.33

1.8 0.70 0.62 0.53 0.41 0.39

2.0 0.75 0.66 0.57 0.48 0.46
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Our approach, which leverages mobile phone-captured 
eyelid photos for estimating hemoglobin levels, pre-
sents a convenient and cost-effective method compared 
to previous studies [20]. Unlike other research focusing 
on conjunctival judgment for anemia diagnosis [22, 40], 
our model offers quantitative hemoglobin level detection 
through non-invasive conjunctival examination. A criti-
cal aspect of our research is the blind test, which com-
pares the predictions made by the mobile application 
with those of medical experts. The superior accuracy of 
our system, as indicated by a lower MAE, underscores 
its potential utility for healthcare professionals, particu-
larly in time-sensitive scenarios such as intraoperative 
massive bleeding where rapid, non-invasive hemoglobin 
measurement is imperative. Our proposed system’s abil-
ity to operate on standard smartphone devices positions 
it as a scalable solution for global health monitoring. The 
requirement for minimal additional hardware makes it 
an economically viable option for low-resource settings, 
where traditional hemoglobin testing methods may be 
cost-prohibitive.

The application of deep neural networks and their 
variants in predicting hemoglobin concentration from 
eyelid images [26, 41, 42] is well-documented. However, 
the extensive parameters and computational complexi-
ties of these models restrict their practicality in mobile 
medical applications. To overcome these challenges, 
our study introduces a two-pronged solution. Firstly, we 
employ the UNet (EGE-UNet) for precise segmentation 
of the patient’s eyelid region. The EGE-UNet, integrat-
ing the lightweight Group multi-axis Hadamard Prod-
uct Attention (GHPA) module and Group Aggregation 
Bridge (GAB) module, excels in extracting and integrat-
ing multi-scale information for accurate eyelid segmen-
tation. This model’s efficacy and efficiency, as evidenced 
by its performance against alternatives like YOLOv8 and 
Mask RCNN and its low computational requirements, 
make it ideal for smartphone deployment. Secondly, the 
Delta Hemoglobin AdaIN (DHA) operation is utilized 
for deriving a representative eyelid image indicative of 
the patient’s hemoglobin concentration through transfer 
learning. The DHA, a compact yet potent feature learn-
ing network, leverages binary encoding to ensure the 
continuity of feature information, thereby enhancing 
prediction accuracy. Our findings reveal the smartphone-
based system’s capability, assisted by deep learning algo-
rithms, to non-invasively predict hemoglobin levels with 
promising accuracy. Our system relies on ubiquitous 
smartphone technology and the absence of the need for 
sophisticated laboratory equipment. We anticipate that 
the reduced cost of hemoglobin testing will not only 
benefit healthcare providers through lower operational 
expenses but also empower patients by making frequent 

health assessments more affordable. While promising, 
this study acknowledges limitations such as the relatively 
small sample size and the necessity for further valida-
tion across larger datasets. We acknowledge the poten-
tial challenges, such as variability in smartphone camera 
quality, lighting conditions, and user handling. Future 
research will address these by developing a standardized 
protocol for image capture and by enhancing the model’s 
robustness to different environmental factors. In addi-
tion, future work will focus on refining the deep learning 
models to improve accuracy and reduce false predictions. 
Meanwhile, integrating real-time feedback mechanisms 
into the smartphone application could enhance user 
engagement and provide immediate guidance on poten-
tial health concerns. We are also considering the inclu-
sion of a feature that tracks hemoglobin levels over time 
to identify trends and alert users to significant changes. 
For practical applications, it is necessary to conduct 
large-scale clinical trials to validate our system’s effective-
ness in real-world settings. This will involve collaboration 
with healthcare providers to integrate our technology 
into routine check-ups and remote patient monitoring 
programs.

Conclusions
In summary, our research demonstrates the feasibil-
ity of non-invasively predicting hemoglobin levels using 
a deep learning-assisted smartphone application. This 
breakthrough has the potential to transform hemoglobin 
measurement practices, offering a more efficient and 
patient-friendly alternative for the diagnosis and moni-
toring of various health conditions. Future studies are 
essential to validate our results further and refine the sys-
tem for widespread clinical application. Several aspects 
require further exploration and validation before this 
technology can be widely adopted in clinical settings. 
These include:

1) Large-scale Validation: While our initial results are 
promising, it is crucial to validate our findings on a 
larger and more diverse population. This will help 
ensure that the application is accurate and reliable 
across different demographics, ages, and health con-
ditions.

2) Refinement of Algorithms: The deep learning algo-
rithms used in our application need to be continu-
ously refined and optimized. This includes improving 
the accuracy of predictions, reducing the possibility 
of false positives or negatives, and enhancing the user 
interface for better patient experience.
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