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Abstract
Background With the recent surge in the utilization of electronic health records for cognitive decline, the research 
community has turned its attention to conducting fine-grained analyses of dementia onset using advanced 
techniques. Previous works have mostly focused on machine learning-based prediction of dementia, lacking the 
analysis of dementia progression and its associations with risk factors over time. The black box nature of machine 
learning models has also raised concerns regarding their uncertainty and safety in decision making, particularly in 
sensitive domains like healthcare.

Objective We aimed to characterize the progression of health conditions, such as chronic diseases and 
neuropsychiatric symptoms, of the participants in Mayo Clinic Study of Aging (MCSA) from initial mild cognitive 
impairment (MCI) diagnosis to dementia onset through network analysis.

Methods We used the data from the MCSA, a prospective population-based cohort study of cognitive aging, and 
examined the changing association among variables (i.e., participants’ health conditions) from the first visit of MCI 
diagnosis to the visit of dementia onset using network analysis. The number of participants for this study are 97 with 
the number of visits ranging from 2 visits (30 months) to 7 visits (105 months). We identified the network communities 
among variables from three-fold collection of instances: (i) the first MCI diagnosis, (ii) progression to dementia, and (iii) 
dementia diagnosis. We determine the variables that play a significant role in the dementia onset, aiming to identify 
and prioritize specific variables that prominently contribute towards developing dementia. In addition, we explore the 
sex-specific impact of variables in relation to dementia, aiming to investigate potential differences in the influence of 
certain variables on dementia onset between males and females.

Results We found correlation among certain variables, such as neuropsychiatric symptoms and chronic conditions, 
throughout the progression from MCI to dementia. Our findings, based on patterns and changing variables within 
specific communities, reveal notable insights about the time-lapse before dementia sets in, and the significance of 
progression of correlated variables contributing towards dementia onset. We also observed more changes due to 
certain variables, such as cognitive and functional scores, in the network communities for the people who progressed 
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Introduction
According to the World Health Organization, there are 
currently 50 million individuals (about twice the popula-
tion of Texas) living with dementia worldwide, and this 
number is expected to triple by 2050 [29]. In the United 
States, the prevalence of dementia is already significant, 
with over 7 million individuals (about twice the popula-
tion of Oklahoma) aged 65 or older reported to have the 
condition in 2020. Moreover, if current demographic and 
health trends persist, it is predicted that the number of 
Americans with dementia will exceed 9 million by 2030 
and 12 million by 2040 [38].

Dementia impacts the individual’s cognitive ability 
of making safer decisions, such as driving or managing 
finances and hence, its early detection may also help the 
families of patients living with dementia take appropriate 
steps to ensure the safety of their loved ones. Despite the 
presence of specific diagnostic criteria, accurate demen-
tia diagnosis is challenging, particularly in the initial 
stages, resulting in mis-diagnosed or delayed diagnosis 
of dementia. Early signs of dementia may be present in 
patients’ evaluations, several years before actual diagno-
sis [17]. As there is currently no cure available for demen-
tia, the early detection of dementia is critical to allow 
patients and families to plan, receive the available inter-
ventions and support, and take advantage of the limited 
treatment options available [1].

The clinical data of a population-based cohort offers 
an opportunity to study the progression from first MCI 
diagnosis to dementia by analyzing longitudinal clinical 
visit data. The progression characterization of dementia 
onset refers to how it develops over time, including the 
symptoms that arise and the rate at which they progress. 
For instance, the early signs of dementia are forgetful-
ness, difficulty with language, and problems with famil-
iar tasks. However, the subjective nature of these signs 
makes the task of naive judgments inefficient, highlight-
ing the importance of pattern recognition in Electronic 
Health Record (EHR) clinical data over the period. In the 
past, the research community has tried to understand 
factors and biomarkers contributing to progression of 
dementia, but more work is needed to focus on variables’ 
contribution towards dementia onset [4, 30].

Several prior studies have employed learning-based 
mechanisms (machine learning and deep learning), 
transformers and open AI (Artificial Intelligence) models 
to detect and predict the progression of mild cognitive 
impairment (MCI) and dementia onset [11, 13, 21, 22]. 
The Time-aware Long Short-Term Memory (T-LSTM) 
neural network, a variation of LSTM (Long Short-Term 
Memory), is a well-known model that captures the time 
interval between two consecutive visits of a person to 
examine temporal changes in health status [2]. However, 
there is a lack of explanation regarding the decision-
making process for early prediction of dementia using 
T-LSTM. Similarly, the other time-aware attention net-
works and their variants fail to deploy safe and respon-
sible models for decision-making, suggesting the need to 
resolve the problem of uncertainty and explainability.

To address this problem, we performed network analy-
ses to examine the changes in individuals’ health condi-
tions in the prospective population-based cohort, Mayo 
Clinic Study of Aging (MCSA), from initial MCI diag-
nosis to dementia onset. We investigated how the asso-
ciations among variables (i.e., health conditions) change 
from the incident stage of MCI to the development of 
dementia, explaining the dynamic nature of variable rela-
tionships. Furthermore, we examined the sex-specific 
impact of variables in relation to dementia, identifying 
differences between males and females.

Network analysis is a flexible method to explore asso-
ciations among variables and text scores of EHR. After 
evaluating complexity in neuropsychological assessment, 
Tosi suggested that healthy subjects showed a segre-
gated pattern, suggesting a good specificity of each test 
in measuring a specific cognitive function [35]. Another 
study used psychometric network analysis to model rela-
tionships between neurocognitive variables in cognitive 
normality (CN), amnestic mild cognitive impairment 
(aMCI), and early Alzheimer’s disease (eAD), indicating 
structural changes across different groups [10]. In this 
study, we choose to explore network analysis for find-
ing correlations among different variables of HER data 
including chronic diseases, NPI-Q scores and intrinsic 
variables of disease.

to dementia compared to those who does not. Most changes for sex-specific analysis are observed in clinical 
dementia rating and functional activities questionnaire during MCI onset are followed by chronic diseases, and then 
by NPI-Q scores.

Conclusions Network analysis has shown promising potential to capture significant longitudinal changes in health 
conditions, spanning from the MCI diagnosis to dementia progression. It can serve as a valuable analytic approach for 
monitoring the health status of individuals in cognitive impairment assessment. Furthermore, our findings indicate a 
notable sex difference in the impact of specific health conditions on the progression of dementia.

Keywords Electronic health record, Mild cognitive impairment, Dementia, Progression of disease, Time varying
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Methods
Study design and subjects
This study was approved by the Mayo Clinic Institutional 
Review Board and the Olmsted Medical Center Insti-
tutional Review Boards. The study used data from the 
MCSA cohort [31]. The MCSA is a prospective popula-
tion-based cohort study of cognitive aging with compre-
hensive periodic cognitive assessments repeated every 15 
months. Eligible persons from the Olmsted County, Min-
nesota population, were randomly selected in an age- and 
sex-stratified manner and evaluated comprehensively in 
person by three independent evaluators (study coordina-
tor, physician, psychometrist). A consensus committee 
comprised by three evaluators (i.e., study coordinator, 
physician, and neuropsychologist) reviewed the data for 
each participant and assigned diagnosis by consensus, 
using previously published criteria to diagnose the partic-
ipant with MCI or dementia, or cognitively unimpaired. 
The MCSA cohort comprises 6,543 unique patients.

Figure  1 shows the process of study subject selection. 
We excluded participants who had MCI or dementia 
at the baseline (1st visit to MCSA) to not consider par-
ticipants with existing MCI and dementia. Then, we 
selected the participants who developed MCI and pro-
gressed to dementia in later visits. We finally obtained 97 

participants who visited MCSA more than one time since 
the first MCI diagnosis and progressed to dementia.

The inclusion criteria for this dataset stipulated that 
each participant had to attend at least one follow-up 
appointment after their diagnosis of MCI to facilitate the 
monitoring of disease progression over time.

Data
In this section, we discuss nature of the data. The study 
population data, as presented in Table  1, showcases 
demographic information. The median age of the partici-
pants is 83.8-year-old with fairly even female and male. 
For the Apolipoprotein E e4 status, which is often asso-
ciated with various health implications, less than half 
of the participants (42.2%) tested positive. Table 2 sum-
marizes variables collected from the MCSA and used in 
network analyses. Furthermore, we remove variables that 

Table 1 Variables at baseline
Characteristics N = 97
Age, median (IQR) 83.8 (79.2, 87.7)
Sex
 Female (%) 49 (50.5)
 Male (%) 48 (49.5)
Apolipoprotein E e4 status
 Yes (%) 41 (42.2)
 No (%) 56 (57.7)

Table 2 Variables at baseline
Participants’ Demographics
Age, Sex, Education (in years),
Genotyping
Apolipoprotein E e4 status (Yes, No)
Participants’ Chronic Conditions
Diabetes, Hypertension, Dyslipidemia, Atrial fibrillation, Angina chest 
pain, Myocardial infarction, coronary artery disease,
Stroke, Peripheral Vascular Disease
Cognitive and Functional sores
Clinical Dementia Rating Scale global score (CDRGlob),
Clinical Dementia Rating Sum of boxes (CDRSum),
Functional Activities Questionnaire (FAQ)
Neuropsychiatric symptoms
Beck Depression Inventory-II, Beck Anxiety Inventory,
NPI-Q: Delusions, Hallucinations, Agitation, Depression/Dysphoria, 
Anxiety, Euphoria/elation, Apathy/Indifference, Disinhibition, Irritability/
lability, Motor Behavior, Appetite/eating change

Fig. 1 Sample selection for tracking progression from incident MCI to dementia onset
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contain insufficient information for more than 50% of the 
instances for filtered data (see the final list of variables in 
the box below).

We included all the visits of a participant, after the first 
MCI diagnosis to the first dementia diagnosis. Differ-
ent participants have different number of visits because 
some were recruited later, and some missed certain visits 
(ranging from 2 to 7 visits per participant). The timing of 
MCI to dementia progression varies due to different tra-
jectories of relevant health condition (ranging from 2 to 7 
visits from MCI to dementia).

Fundamentals of graph theory
A graph is a mathematical representation of a set of 
objects where some pairs of the objects are connected by 
links. These objects are often referred to as nodes or ver-
tices, and the links between them are called edges or arcs. 
Graphs are used to model relationships between various 
entities, such as medical conditions. We investigated the 
progression of MCI to dementia for patients at different 
time intervals through graph learning.

We construct an edge between two nodes if their Pear-
son Correlation Coefficient (PCC) is above a certain 
threshold. The PCC measures the strength and direc-
tion of the relationship between the two variables, where 
a positive value indicates a positive correlation, and a 
negative value indicates a negative correlation. The PCC 
is calculated as r to compute the pairwise correlation 
among variables as shown in Eq. 1:
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where N  is the total number of nodes ( |V | ) in the net-
work. Here, Vi  and Vj  represents the node degrees. The 
node degree in a graph refers to the number of edges con-
nected to that node [12]. We used Pearson correlation to 
find positive and negative linear relationships between 
variables in each phase, as supported by existing studies 
[7, 9, 27].

Assortativity
Assortativity is a measure of the tendency of nodes in a 
graph to connect to other nodes that are like themselves 
in some way and is denoted by A in this manuscript. It 
measures the correlation between the degrees of nodes at 
either end of an edge in the graph. It ranges from − 1 to 
1, with a positive number indicating a tendency for simi-
lar nodes to connect, and a negative number indicating a 
tendency for dissimilar nodes to connect. Thus, positive 
assortativity indicates that nodes with high degrees tend 
to be connected to other nodes with high degrees, while 
negative assortativity indicates that high-degree nodes 

tend to be connected to low-degree nodes. Assortativity 
can be thought of as a measure of homophily or the ten-
dency of like to connect with like.

Community detection
Community detection is the process of identifying 
densely connected groups or sub-networks of nodes 
within a larger network/graph. The goal of commu-
nity detection is to partition the nodes in the graph into 
groups (i.e., communities) that are more densely con-
nected internally than with the rest of the graph. For 
Graph G, community detection is used to identify groups 
of variables that are more closely related to each other 
than to other variables in the graph.

Graph construction
Our study has two states, MCI, and dementia. Consider a 
set of patients Pi = {P1, P2, P3, . . . , Pn}  where i  is the 
number of patients in P . Each patient Pi  is represented 
as a unique ‘CLINIC ID’ in the MCSA dataset, that visits 
over the period ofT = {T1, T2, . . . , Tm}  where m is the 
total number of visits for every patient Pi .

Consider a graph G = (V, E) , where V  is the set of 
nodes representing the variables in the MCSA data and E 
is the set of edges representing the relationships between 
these variables. In this work, |V | = 29 and |E|  depends 
on the extent of connection between two variables.

Network analysis using graph theory
We aim to investigate the progression of dementia onset 
for patients with varying number of visits at different 
time intervals through graph learning. However, as an 
initial step of this study, we choose to represent the pro-
gression of dementia by identifying the most correlated 
variables. The overview of our proposed framework is 
given in Fig. 2 where we select a group of patients’ visits 
from the MCSA dataset to examine the patterns in pro-
gression from the first MCI visit to dementia. We identify 
threshold (Th) by iteratively increasing the value with the 
condition of acquiring the threshold value that supports 
maximal correlation with assortative nature of the graph. 
Details are provided in the next section. Next, the pro-
gression of dementia is witnessed with successive visits.

The overview of our methodology is given as follows:

1. We first applied the Pearson Correlation Coefficient 
(PCC) to construct the graph-representation where 
nodes are the variables and correlation is illustrated 
by edges between these variables.

2. We identified the threshold value for community 
detection through the network models for three 
forms of dataset: (i) the visit of the first MCI 
diagnosis (MCI-V), (ii) the visit(s) between MCI and 
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dementia (M2D-V), and (iii) the visit of dementia 
diagnosis (DEM-V).

3. We presented the progression of dementia from the 
first MCI diagnosis at MCSA and its progression 
over the period.

Finding associations
The correlation coefficient defines the extent of close 
associations among health conditions that participants 
have. For instance, how closely the Hypertension is asso-
ciated with Diabetes. For all three groups, we associate 
these attributes using Pearson Correlation Coefficient. 
We chose this approach because PCC measures the lin-
ear relationship between different health conditions. 
Unlike cosine similarity, which measures the cosine of 
the angle between two vectors in a multi-dimensional 
space and is often used to understand the orientation or 
similarity in orientation between two, PCC highlights the 
strength of a linear relationship. When constructing a 
network of associated health conditions, using PCC helps 
to filter out connections that might occur by chance, par-
ticularly when setting a threshold for significance. Thus, 
we examine optimum threshold value for further net-
work analysis.

We then find the context-aware threshold to find signif-
icant correlations and construct a graph among attributes 
by establishing connections (among attributes). The value 
of threshold is obtained by iterating it until just before 
the graph is disassortative [28]. We use the grid-search 
method to find threshold value by retaining the most cor-
related elements through iterative decomposition and 
assortative check of the resulting graph; the value of r 
ranges from − 1 to 1, where − 1 represents a perfect nega-
tive correlation, 0 represents no correlation, and 1 repre-
sents a perfect positive correlation. The higher value of 
threshold signifies strong relations among variables. The 
graph representation of a research question of progres-
sion to dementia onset is highly efficient for assorta-
tive networks having a positive assortativity coefficient. 
Assortativity captures the tendency of similar nodes 
(attributes) to connect for understanding the meaningful 

relationships and clusters of health-related attributes. 
LASSO penalization may eliminate weak but meaningful 
connections, potentially losing important information in 
the limited network of attributes. Thresholding Based on 
Correlation or Mutual Information is sensitive to noise 
and may retain spurious connections or remove impor-
tant ones based on the chosen threshold.

To identify relationships and dependencies between 
variables, we employ assortativity which allows us to 
limit the iterative increase in threshold values and pre-
serve the underlying semantics of the correlated variable 
driven network [34]. To optimize the threshold value, 
we keep increasing the threshold value and a check on 
the assortative nature of the graph. As we increase the 
threshold value, we retain the stronger connections in 
the resulting graph, monitoring the nature of the graph 
to identify optimal threshold value. This step enables us 
to identify the optimal threshold values that lead to the 
most meaningful and informative attribute network.

Detecting communities
Identifying communities in Graph G is important for 
tracking the progression of dementia onset because it 
can help to identify sets of variables that are strongly cor-
related and may be involved in common biological pro-
cesses or pathways. Thus, community detection can assist 
in creating new ways to diagnose and treat dementia and 
enhance our comprehension of the biological processes 
involved in the disease. By identifying the communities of 
variables, the clinical researchers can better understand 
the complex interplay among different variables and how 
they contribute to dementia risk and progression.

In this study, our goal was to uncover the structure of 
communities within the network of health conditions. 
Specifically, we sought non-overlapping communities to 
clearly delineate the distinct groups of health conditions 
that cluster together. This distinction is vital as it pro-
vides insights into conditions that tend to co-occur, aid-
ing in a better understanding of disease comorbidities.

Given this context, we opted for undirected graphs 
because the mutual influence between two health con-
ditions does not inherently possess a directionality; the 

Fig. 2 Overview of the proposed approach. Here T represents the threshold we increment by 1 to check the graph’s Assortative (A) nature

 



Page 6 of 15Garg et al. BMC Medical Informatics and Decision Making          (2024) 24:305 

occurrence of one does not unilaterally affect the other, 
but rather they tend to co-exist in a patient’s profile. We 
compute three networks: (i) one for all the first visit of 
MCI diagnosis, (ii) one for all the visits between the first 
visit of MCI diagnosis and the first visit of dementia diag-
nosis, (iii) one for all the first visit of dementia diagnosis.

We chose to implement unweighted models once we 
construct graph for each of these three networks using 
the threshold for PCC. Our preliminary analysis sug-
gested that the strength of association, or the weight 
between any two conditions, did not significantly alter 
the community structure for the scope of our study. This 
simplification allowed for clearer community boundaries 
and more straightforward interpretability of the resulting 
network structures. Thus, we use two well-established 
community detection models: (i) Girvan Newmann Algo-
rithm [16], and (ii) Clauset–Newman–Moore (CNM) 
[5], to identify groups of variables that tend to co-occur 
frequently. A key difference between Girvan Newmann 
Algorithm uses the predefined number of clusters but the 
CNM algorithm does not.

The Girvan-Newman algorithm detects communities 
in complex networks progressively removing edges from 
the network in order of their “betweenness” centrality 
until the network breaks down into smaller communities 
[16]. The betweenness centrality of an edge is a measure 
of the number of shortest paths between pairs of nodes 
in the network passing through that edge. Betweenness 
centrality (B) is widely used to measure how much a node 
or edge influences communication or interaction flow in 
the network as shown in Eq. 2.

 
B (Vi, Vj) =

∑
s �= t

σ {s,t} (Vi, Vj)

σ {s,t}
 (2)

where (Vi, Vj)  is an edge from Vi  to Vj , σ {s,t}  denote 
the source and target in the network, σ {s,t} (Vi, Vj) 

represents the number of links passing through an edge 
(Vi, Vj)  while traversing from source s  to target t  
against the ones which do not pass through (Vi, Vj) . The 
edges with high betweenness centrality are more likely 
to connect different communities, and thus removing 
them is more likely to break up the network into distinct 
communities.

The CNM algorithm is a popular method for commu-
nity detection in networks, based on greedy modular-
ity maximization [5]. The algorithm works by iteratively 
merging nodes into communities that increase the mod-
ularity of the network. It begins by assigning each node 
to its own community and then iterates over all pairs 
of nodes and calculates the change in modularity that 
would result from merging them into a single commu-
nity. The algorithm greedily merges the pair that results 
in the largest increase in modularity and repeats this pro-
cess until no further improvement in modularity can be 
achieved. We finally obtain community-level attributes as 
shown in Fig. 3.

Characterizing progression
To simplify the analyses, we focused on characterizing 
the progression of dementia examining variables in: (i) 
the visit of the first MCI diagnosis (MCI-V), (ii) the vis-
its between MCI and dementia (M2D-V), and (iii) the 
visit of dementia diagnosis (DEM-V) through batchwise 
analysis of community detection. We examined the pro-
gression of variables in different communities for MCI-V, 
M2D-V, and DEM-V by identifying feature vectors and 
distance between them in cohort visits.

A feature vector is defined by a set of variables to track 
the progression of change in the characteristics of the 
patients’ visit. Consider C = {C1, C2, . . . , Ck}  as the 
set of k  communities obtained after deploying the com-
munity detection algorithms. Every community Cv  con-
sist of different values for V= {v1, v2, . . . , vl} , where l  

Fig. 3 An illustration of transition from node-level attributes to community-level attributes, followed by feature vectors
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may vary for every community Cv . V represents the fea-
ture vector corresponding to each community of health 
conditions. We considered a set of variables in a commu-
nity as a feature vector.

We first normalize our data using min-max normal-
ization policy. We calculate the distance between fea-
ture vectors whose values are the values of attributes in 
each community obtained from two separate visits. We 
employ distance measurements to assess the importance 
of variations among participants’ visits, based on a collec-
tion of variables. Our hypothesis suggests that analyzing 
these patterns of differences could offer valuable insights 
into whether individuals are maintaining mild cogni-
tive impairment (MCI) or transitioning toward demen-
tia. This enables us to compare changes in the variables 
over time and assess the patient’s overall progression. By 
utilizing this approach, we aim to gain insights into the 
dynamics of the variables within each community and to 
identify potential trends or patterns that may be indica-
tive of dementia onset progression. Here, we define dis-
tance DistCa  as Eq. 3:

 DistCv = VTj − VTi  (3)

where VTj  is the feature vector for jth  visit and VTi  is a 
feature vector for ith  visit of a patient. Here Tj  belongs to 
[M2D-V, DEM-V]; and Ti  belongs to [MCI-V]. To mea-
sure distance, we use Euclidean distance.

Results
Network associativity
Table  3 contains the characteristics of our network 
analysis study with three separate groups of datasets, 
labeled as MCI-V, M2D-V, and DEM-V, representing 
separate phases associated with cognitive impairment or 
dementia.

Threshold represents a cutoff point used to define or 
distinguish connections in the network being analyzed. 
For every phase, we initiate the threshold value as 10% to 
construct the graph G and increase the value by 1% until 
network becomes non-assortative. Assortativity Coeffi-
cient is a measure of how many nodes (i.e., variables) in 
a network tend to connect with other nodes that are like 
them. The assortativity coefficient increases from MCI-V 
to DEM-V, suggesting that variables are more likely to 
connect (or share similar characteristics) with other vari-
ables as the cognitive decline progresses.

The threshold value, 30% for MCI to Dementia vis-
its signify strong relationships among characteristics of 
variables in the network for the M2D-V stage. Yet, post 
the dementia diagnosis visit, the intricacy of these rela-
tionships intensifies and complicated, with a minimal 
threshold value of 21%, indicating an early halt due to the 
graph’s shift towards non-assortativity.

Clustering Coefficient measures the degree to which 
nodes (variables) in the network cluster together or form 
interconnected groups. A high clustering coefficient indi-
cates that a node’s neighbors are also neighbors of each 
other. The clustering coefficient is highest in DEM-V 
and lowest in M2D-V indicating that the denser clus-
ters among variables in the DEM-V group as compared 
to the other phases. In DEM-V, the variables interrelate 
or co-occur closely with each other, implying the associa-
tion among them in terms of the cognitive decline pro-
cess. The network may contain certain tightly knit groups 
or communities of variables that are intricately related 
in the context of cognitive decline. These communities 
represent specific aspects or dimensions of the cognitive 
decline process. With the high clustering coefficient for 
DEM-V, the interactions among variables become more 
complex or unpredictable because of more connections 
and uncertainty in the patterns. This finding aligns with 
the previous research that may complicate early predic-
tion efforts in dementia using computational intelligence 
[8]. The lowest average clustering coefficient in M2D-V 
suggests either the variables operate more independently 
or the network is modular. However, this variation might 
be due to multiple visits (2 to 7 visits) for each patient in 
M2D-V, compared to a single visit in MCI-V and DEM-V. 
As such, we notice the redundancy in the values of vari-
ables due to similar state of a person (MCI) in multiple 
visits, suggesting variation in correlation coefficient.

Figure  4 shows the associations among different vari-
ables for MCI-V, M2D-V, and DEM-V. We observe the 
changing association of certain health conditions dur-
ing MCI-V, M2D-V, and DEM-V that aligns with the 
past study [37] reporting health conditions such as dia-
betes, hypertension, atrial fibrillation, cardiovascular, 
cataracts, depression, anxiety, and mobility impairments 
associated with cognitive decline. In MCI-V, depression 
is associated with anxiety, hallucination, Clinical Demen-
tia Rating Scale global score (CDRGlob) and Functional 
Activities Questionnaire score, indicating correlation 
among these variables. However, in M2D-V, depression 
is directly associated with agitation and anxiety and indi-
rectly associated with CDRSum and disinhibition with 
one hop. In DEM-V, depression is associated directly 
with all the above and CDRGlob. The CDRGlob shall 
vary from MCI-V to DEM-V and will associate with the 
other variables to a different extent, depicting significant 
variation during DEM-V and its correlation with highly 

Table 3 Threshold values, assortative coefficient, and clustering 
coefficient in the network

MCI-V M2D-V DEM-V
Threshold 25% 30% 21%
Assortativity Coefficient 0.053 0.093 0.216
Clustering Coefficient 0.614 0.577 0.640
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participating variables towards dementia. Additionally, 
the isolated nodes (variables) having the least connec-
tion with the other variables, such as diabetes in M2D-V, 
have no variation and remains same. However, diabetes 
has a low clustering coefficient in MCI-V and high clus-
tering coefficient in DEM-V indicating more correlation 
with other variables. Similarly, hypertension is associated 
with dyslipidemia in MCI-V, followed by an additional 
association with agitation during M2D-V. Hypertension 
is associated with anxiety, dyslipidemia, diabetes and 
coronary artery disease in DEM-V and all these condi-
tions are associated with dementia as reported in the past 
studies [37].

Network community
A particular set of variables may be associated with each 
other at the early stage of cognitive impairment, but their 
associations may change as the cognitive decline pro-
gresses. The evolving nature of the associations among 
variables highlights the need for a dynamic approach that 
tracks the changes over time to effectively characterize 

the progression to dementia onset. Network communi-
ties of variables illustrates changes in associations among 
these variables for MCI-V, M2D-V, and DEM-V groups. 
We obtained 3, 4, and 3 communities using Girvan New-
mann community detection algorithm for those three 
groups and represent the associations among variables in 
Fig. 5.

We find common variables across communities in all 
three groups during progression of cognitive decline and 
categorize them into four different categories. Catego-
ries are determined based on the dominating variables. 
Many variables do not change significantly in M2D-V as 
it contains multiple visits with prevailing health condi-
tions thus producing more communities than the other 
groups. Category 0 (blue lines) has many variables asso-
ciated with each other. Similarly, orange, green, and 
purple lines indicate the common variables merging into 
categories 1, 2 and 3, respectively.

We observe neuropsychiatric symptoms (NPI-Q) in 
category 0 and CDR, cognitive and Functional scores 
appear in both category 0 and 1. Category 1 also includes 

Fig. 4 Network Associativity for (a) MCI-V (top-left) (b) M2D-V (top-right) and (c) DEM-V (bottom-left). (0: Apolipoprotein E e4 status, 1: Motor Behavior, 2: 
Beck Depression Inventory-II, 3: Beck Anxiety Inventory, 4: CDRSum, 5: CDRGlob, 6: Functional Activities Questionnaire, 7: Depression/Dysphoria, 8: Diabe-
tes, 9: Dyslipidemia, 10: Delusion, 11: Hallucination, 12: Agitation, 13: Anxiety, 14: Apathy/ Indifference, 15: Disinhibition, 16: Appetite/eating change, 17: 
Irritability/lability, 18: Peripheral Vascular Disease, 19: Euphoria/elation, 20: Angina chest pain, 21: Hypertension, 22: Coronary artery disease, 23: Myocardial 
infarction, 24: Stroke, 25: Atrial fibrillation)
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agitation and depression. Chronic diseases, such as dia-
betes and hypertension, belong to category 2, depicting 
corresponding higher correlations as compared to the 
other variables. Such correlations suggest the association 
among variables at various stages of cognitive decline, 
showing the complex nature of dementia. Some vari-
ables (angina, chest pain, coronary artery disease, atrial 
fibrillation, dyslipidemia, and myocardial infarction) 
occur together in multiple categories, suggesting high 
correlation.

While high association among variables in a dataset 
may suggest a relationship between them, it does not 
necessarily imply that they contribute significantly to the 
progression to dementia. Further examination is nec-
essary to determine the impact of each variable in the 
progression to dementia to gain a more nuanced under-
standing of its underlying mechanisms.

Characterizing community variables from MCI to dementia
We examined changes in variables of network commu-
nities over time as the patients progressed to dementia 
to provide useful insights on the impact of variables to 
dementia progression. We selected the most representa-
tive community in each stage and plotted the distance-
time graphs as the patient progresses towards dementia 
(Fig.  6). The most representative community is a clus-
ter of variables representing significant changes among 

variables for successive visits, highlight patterns for 
those progressing towards dementia or stay in MCI. We 
use Euclidean distance metric to monitor changes in the 
variables and identify the most contributing variables 
towards dementia onset through statistical analysis. The 
higher the value of the Euclidean distance, the more the 
change of variables towards progressing to dementia over 
the period. The x-axis denotes the time lapse between 
the visits ranging from the first visit of MCI diagnosis to 
the visit of dementia onset, and the y-axis denotes the 
Euclidean distance between feature vectors (variables in 
communities) reflecting a change of variables in a com-
munity for a given time lapse. The blue dotted line Fig. 6, 
represents the intercept formed by the linear equation, 
bounded by x-axis and y-axis covering the most cases 
where a person stays in MCI for given time-lapse. It is 
the bounded area with linear equations: 25x + 9y = 225, 
y > = 25, x > 9. We identified the intercepts: (i) the line that 
intersects x-axis at (a, 0) and (ii) the line that intersects 
y-axis at (0, b). Here b is the values of Euclidean distance 
and a is the time lapse. The equation becomes:

 
x
a
+

y
b
= 1 (4)

Which can be represented as bx + ay = ab.  We vary val-
ues for a and b such that the resulting linear equation 

Fig. 5 Association among variables changes in network communities for three distinct phases: MCI-V (MCI), M2D-V (M2D), and DEM-V (DEM). Differ-
ent colors represents the distinct community and the corresponding variables in that category. Here, category 0 to 3 are the communities of variables, 
evolved for different groups. We observed the clusters of different variables suggesting associations with MCI onset”
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optimally covers maximum green dots (participants visits 
where they are still MCI).

There is more mixture of red and green dots (dementia 
and non-dementia) in the beginning of time laps (close 
to ‘0’ in the x-axis) compared as the time progresses. 
While we are unable to determine the precise time-
lapse for dementia onset, time-lapse before dementia 
ranges from approximately 1 year to beyond 10 years. We 
found that distance > 20 showed high chance of progres-
sion to dementia during early stages post MCI diagnosis 
(i.e., 90% of people who have distance > 20 progressed to 
dementia).

The Euclidean distance correlates with the progression 
to dementia; the distance greater than 20 (dotted line in 
Fig.  6) reflects a high probability (> 90%) of dementia, 
between 10 and 20 reflects a moderate chance of demen-
tia (70%). On observing the common variables among 
these three sets, we obtain variables assessing cognitive 
and functional impairment (CDR and FAQ) to be the 
most significant variables in progression to dementia. 
These observations support existing studies on early pre-
diction of dementia and Alzheimer’s disease [36]. Stay-
ing in MCI without progression to dementia has a lower 
value of Euclidean distance (i.e., not much changed vari-
ables) associated with disinhibition, delusion, and motor 
behavior. It suggests that these variables may relate to 
dementia progression from MCI. Our study findings 
indicate the importance of recognizing minor alterations 
in daily activities in future longitudinal studies to inves-
tigate different pathways from normal cognitive aging 
to the cognitive decline characterizing various stages of 
Dementia.

Furthermore, we selected the variables from our obser-
vations in Fig.  6 by considering its presence in major-
ity (two out of three) cases, namely, delusion, Clinical 

Dementia Rating, functional activities questionnaire 
score, and agitation. We make the following observations:

Stats CDRGlob CDRSum FAQ Delusion Agitation
All visits Mean 0.61 2.87 8.00 0.07 0.11

S.D. 0.52 3.18 8.53 0.26 0.313
MCI-V Mean 0.36 1.02 3.17 0.03 0.05

S.D. 0.22 0.99 4.62 0.17 0.22
M2D-V Mean 0.46 1.89 5.60 0.05 0.12

S.D. 0.23 1.55 5.83 0.23 0.32
DEM-V Mean 1.03 5.78 15.44 0.13 0.15

S.D. 0.70 3.84 9.08 0.34 0.36

In the above Table, we observe that the mean values 
and standard deviation of all five variables: delusion, 
Clinical Dementia Rating, functional activities question-
naire score, and agitation, increases as participants move 
from MCI to Dementia, suggesting change in variables 
during MCI onset.

Sex-specific community variable changes
We examined changes in variables of network commu-
nities over time between female and male participants 
in the MCSA. Figure 7 shows the more changes among 
females as compared to male participants with increased 
time-lapse. Furthermore, the blue division suggests the 
dementia is more certain with increased time-lapse and 
low Euclidean distance among variables of the com-
munity for male participants. In general, we observe 
that the number of visits by female participants is more 
than those of male participants after 5 years of MCI-
V. We observed different patterns for following three 
communities:

1. Chronic conditions: We consider the community 
of variables (Atrial fibrillation, Angina chest 
pain, Coronary artery disease, Dyslipidemia, 

Fig. 6 Changes of community variables from MCI to dementia onset. Green dot denotes that the participant is still MCI and red dot denotes that par-
ticipant has progressed to dementia. Euclidean distance above the maroon dotted line reflects a high chance of dementia (> 90%). The visits below the 
blue dashed line are mostly mixture of MCI and dementia with a relatively short distance. (a) Community in MCI-V (corresponding variables: Beck Depres-
sion Inventory, CDRGlob, CDRSum, Diabetes, Agitation, Depression, Functional Activities Questionnaire (FAQ)). (b) Community in M2D-V (corresponding 
variables: CDRGlob, CDRSum, Delusion, Disinhibition, Motor behavior, Functional Activities Questionnaire (FAQ)). (c) Community in DEM-V (correspond-
ing variables: CDRGlob, CDRSum, Agitation, Anxiety, Apathy, Appetite, Delusion, Depression, Euphoria, Irritability, Peripheral Vascular Disease, Functional 
Activities Questionnaire (FAQ))
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Hypertension, Myocardial infarction, Stroke) in 
Fig. 7(a). Our research findings indicate that 26% of 
the visits in female participants (50% suggesting MCI 
and 50% suggesting dementia), after 5 years of first 
MCI diagnosis, have substantial Euclidean distance. 
However, among male participants, there is zero 
Euclidean distance between consecutive visits after 5 

years of the MCI-V, suggesting increased uncertainty 
in predicting cognitive status among female 
participants due to change in chronic conditions.

2. Cognitive and functional impairment (CDR 
and FAQ) variables and NPI-Q scores: Next, we 
consider CDR and FAQ variables (CDRGlob, 
CDRSum, Agitation, Anxiety, Apathy, Appetite, 

Fig. 7 Sex-specific changes of community variables with time-lapse. Green dot denotes that the participant is still MCI and red dot denotes that par-
ticipant has progressed to dementia. (a) Community that contains variables: Atrial fibrillation, Angina chest pain, Coronary artery disease, Dyslipidemia, 
Hypertension, Myocardial infarction, Stroke. (b) Community contains cognitive and functional impairment (CDR and FAQ) variables and NPI-Q scores: 
CDRGlob, CDRSum, Agitation, Anxiety, Apathy, Appetite, Delusion, Depression, Disinhibition, Euphoria, Irritability, Peripheral Vascular Disease, Functional 
Activities Questionnaire (FAQ). (c) Community that contains variables for neuro-psychiatric characteristics: (Anxiety, Apathy, Appetite, Delusion, Disinhibi-
tion, Euphoria, Hallucination, Irritability, Motor behavior)
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Delusion, Depression, Disinhibition, Euphoria, 
Irritability, Peripheral Vascular Disease, Functional 
Activities Questionnaire (FAQ)). Our study reveals 
that in Fig. 7(b) where blue line holds threshold 
for trade-off between time-lapsed and Euclidean 
distance. We obtain the unbounded area with linear 
equations: 25x + 9y = 225, y >= 25, x > 9, as a 
two-dimensional space suggesting the prospective 
decision-making for cognitive status. Although there 
is no uncertainty among male participants, however, 
17% of the visits within the recommended space 
among female participants suggests MCI in-place 
of dementia, as cognitive status. Furthermore, if we 
consider participant visits after 5 years of MCI-V, 
we observe the visits two-fold, showing Euclidean 
distance (D) (i) D <= 5, (ii) D > 5. We observe 
only 21% of visits having D < = 5 among female 
participants, suggesting more visits with significant 
changes among CDR and FAQ variables even after 5 
years as compared to 70% visits of male participants 
accounting for D < = 5. For D > 5, the cognitive status 
shows 1:3 ratio for cognitive status (MCI: dementia), 
showing no direct observations in the decision-
making process for female participants. However, if 
the visits show high Euclidean distance, it indicates 
dementia as a cognitive state with high probability.

3. Neuropsychiatric characteristics: Furthermore, we 
examine the community that contains variables 
for NPI-Q: (Anxiety, Apathy, Appetite, Delusion, 
Disinhibition, Euphoria, Hallucination, Irritability, 
Motor behavior) in Fig. 7(c). Our research highlights 
distinct patterns in female participants with 64% of 
the visits after 5 years of MCI-V showing substantial 
change in the variables, as compared to the male 
participants with only 40% of the visits showing 
change in the variables during consecutive visits. 
Higher values of Euclidean distance for male 
participants gives more confidence in dementia state 
as compared to the female participants.

Discussion
The analysis of individuals’ health statuses, using a net-
work model to trace from the incident MCI to the onset 
of dementia, yielded notable observations. Diverging 
from conventional methods, our approach not only 
provides visual insights but also elucidates the underly-
ing rationale. Through this study, we can (1) unravel the 
dynamic interplay among variables during the three dis-
tinct phases: MCI-V, M2D-V, and DEM-V, (2) identify 
key variables that influence the progression to demen-
tia, and (3) explore the distinct impact of variables on 
dementia onset specific to each sex.

By uncovering the complex interplay among vari-
ables, we may identify potential targets for intervention 
and devise personalized treatment strategies that con-
sider the individual patient’s unique circumstances. We 
explained notable findings regarding variables through 
Figs. 6 and 7. These figures are intended to show “changes 
of community variables” in different stages (MCI, MCI to 
Dementia, and Dementia Visit) as a whole. We reported 
notable finding of variables in the communities through 
qualitative analysis compared with existing literature 
(Fig.  6) and sex-specific community variable changes 
(Fig. 7) analyzing focused variables such as chronic con-
ditions and neuropsychiatric characteristics.

By investigating the communities within the network 
and tracking their changes over time, we can detect early 
indications of dementia progression. For example, con-
sider a community where certain variables prevail across 
all phases of dementia progression, such as CDRSum, 
CDRGlob, Functional Activities Questionnaire (FAQ). In 
contrast, other variables change as the progression moves 
from MCI-V to DEM-V.

In the context of dementia progression from MCI, 
prior research has highlighted the potential of treatments 
targeting neurological symptoms, like depression, to slow 
the advancement of the disease [6]. Our results align with 
these insights, further emphasizing the significant role 
neurological factors have in the progression of dementia. 
Addressing these risk factors over the period can indeed 
serve as an effective strategy to impede the disease’s 
trajectory.

Earlier research has shown a greater tendency for 
females to transition from MCI to dementia, a conclu-
sion consistent with our own observations [32]. This 
variation in findings across earlier studies has led to the 
identification of distinct risk factors for each sex [3]. Our 
study showed these sex-specific risk factors using a com-
munity-based approach among variables over the time. 
Visual representations of these dynamic changes offer a 
better understanding of the various phenotypes exhibited 
by individuals with cognitive impairment. For example, 
based on the age-related time-lapse, patterns with green 
dot and red dots in Figs.  6 and 7 represent the state of 
cognitive impairment (MCI or DEM) within each com-
munity of variables.

Several studies examined the interaction between sex 
and various variables to understand how they collectively 
contribute to the development, progression, and mani-
festation of dementia [33]. Our study revealed notable 
changes in variables of three network communities with 
chronic conditions, NPI-Q, and NPI-Q with neuropsy-
chiatric variables over time between female and male 
participants in terms of (i) the variation in the number 
of visits, (ii) before and after 5 years of time-lapse after 
MCI-V, (iii) characterizing difference in visits. Our 
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experiments demonstrate the increased uncertainty in 
predicting the cognitive status among females as com-
pared to male participants, especially when the visits 
with significant changes in visits after 5 years of MCI-V.

Leveraging computational intelligence techniques 
and advanced data analysis methods enables us to delve 
deeper into the underlying mechanisms and relationships 
that drive the disease. However, there is a limitation of 
our study, primarily the small sample size because this 
study focused exclusively on individuals who developed 
MCI and subsequently progressed to dementia, excluding 
those with MCI at the baseline. Although, recent stud-
ies in healthcare informatics involving transitions from 
MCI to Dementia are also observed with small sample 
sizes [14, 18, 19, 23, 25, 39]. Future studies should aim to 
include a larger and more diverse cohort, encompassing 
those who remain at the MCI stage and exhibiting nor-
mal cognitive function. This broader scope would allow 
for a more comprehensive characterization of observed 
differences and a better understanding of the disease 
continuum.

While analyzing the variables associated with the 
MCI and dementia, it is important to distinguish vari-
ables that are causally linked to, intrinsic to, or manifest 
as accompanying symptoms of MCI and dementia. We 
observed the potentially causally linked variables through 
our network analyses, such as diabetes and cardiovascu-
lar conditions, contributing to the dementia, support-
ing existing studies [20, 24]. Intrinsic variables, such as 
Clinical Dementia Rating and scores from the Functional 
Activities Questionnaire, measuring the direct impact on 
patient health and daily functioning, providing essential 
insights into its primary characteristics and severity of 
cognitive decline as discussed in the previous work [15, 
26]. Accompanying symptoms such as neuropsychiatric 
manifestations affect the quality of life, significantly influ-
encing the patient outcomes. We observed the difference 
in the accompanying symptoms with the minor changes 
in Euclidean distance in Fig. 7(c) where men and women 
have little changes in accompanying symptoms ranging 
from 0 to 3 as compared to the scores changed with infu-
sion of intrinsic variables with Euclidean distance of up 
to 35.

Conclusion
Network analysis provides valuable insights associated 
with the onset of dementia by characterizing its progres-
sion from initial MCI diagnosis. The assortative nature of 
the graph formed through correlations between variables 
allows better understanding of variable relationships as 
MCI progresses to dementia. Our findings have eluci-
dated the dynamic nature of these relationships, identify-
ing key variables that contribute to the onset of dementia. 
Additionally, our investigation has revealed potential 

differences in the effects of these variables based on sex, 
suggesting the need for sex-specific models in the future. 
Further research is encouraged to expand upon these 
findings, encompassing larger and more diverse popu-
lations to enhance the generalizability of the results. By 
continuing to investigate the intricate associations among 
variables, we can advance our understanding of dementia 
and strive to improve prevention, management, and care 
for affected individuals and their families.
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