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Abstract
This study reviews the studies utilizing Artificial Intelligence (AI) and AI-driven tools and methods in managing 
Acute Kidney Injury (AKI). It categorizes the studies according to medical specialties, analyses the gaps in the 
existing research, and identifies opportunities for future research directions. PRISMA guidelines were adopted using 
the three most common databases (PubMed, Scopus, and EBSCO), which resulted in 27 eligible studies, published 
between 2012 and 2023. The study showed significant heterogeneity in the design of the models, with variations 
in clinical settings, patient characteristics, cohort regions, and statistical methods. Most models were developed 
for AKI in hospitalized patients, particularly those undergoing surgery or in intensive care units. Compact models 
with a subset of significant predictors were deemed more clinically applicable than full models with all predictors. 
The findings suggest that AI tools, such as machine learning (ML) algorithms, have high prediction capabilities 
despite the dynamic and complex association among the influencing factors and AKI. Based on these findings and 
the recognized need for broader inclusivity, future studies should consider adopting a more inclusive approach by 
incorporating diverse healthcare settings, including resource-limited or developing countries. This inclusivity will 
lead to a more holistic understanding of AKI management challenges and facilitate the development of adaptable 
and universally applicable AI-driven solutions. Additionally, further investigations should focus on refining AI models 
to enhance their accuracy and interpretability, promoting seamless integration and implementation of AI-based 
tools in real-world clinical practice. Addressing these key aspects will elevate the effectiveness and impact of AI-
driven approaches in managing AKI.
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Introduction
Acute kidney injury
Acute Kidney Injury (AKI) denotes a spectrum of syn-
dromes characterized by a persistent decline in glo-
merular filtration rate (GFR) [1]. It is defined as a rapid 
deterioration in renal functions occurring for hours to 
days and leading to retention of blood urea Nitrogen 
waste (BUN) and elevation of serum creatinine (SCr) in 
the body [2]. AKI affects around 200 patients per million 
population, 22% of hospitalized patients, and more than 
50% of patients in the intensive care unit (ICU) [3]. The 
development of AKI is associated with prolonged hospi-
tal stays and increased health-related expenditure [4]. A 
study by Chertow et al. revealed that the development of 
AKI leads to an increased hospital stay and higher hospi-
talization costs by an average of $7,500 [5].

Notably, AKI is associated with high mortality and 
morbidity rates; it is estimated that more than 2 million 
deaths have been reported indirectly to AKI every year 
[6]. Furthermore, patients who experience AKI during 
their hospital stay have nearly double the risk of death 
compared to those who do not develop AKI [7]. Besides 
the high mortality rate, economic costs, and resource 
usage associated with AKI, other severe consequences 
extend beyond hospital discharge [8, 9]. AKI survivors 
are at greater risk of progressing future health problems, 
such as chronic kidney disease (CKD), cardiovascular 
and cerebrovascular, and respiratory complications [10]. 
Additionally, AKI has been linked to acute kidney dis-
ease (AKD) and end-stage kidney disease, suggesting that 
even brief episodes of AKI can lead to significant long-
term morbidity and increased risk of mortality [11, 12]. 
These health problems can significantly impact survivors’ 
quality of life and often require long-term management, 
placing additional demands on healthcare resources.

In addition, recent studies have demonstrated that the 
transition of care from inpatient to outpatient requires 
special attention. When patients are discharged, they 
require prolonged care to recover and manage their kid-
ney functions, which often includes staying in skilled 
nursing facilities or receiving outpatient follow-up care 
[11, 13]. This transition of care is important to stabilize 
their condition and prevent any further decline in kid-
ney function. The prolonged recovery period impacts 
not only the patient, who may face significant lifestyle 
adjustments such as dietary restrictions, medication 
management, and reduced physical activity but also 
places a considerable demand on healthcare resources 
[14]. Skilled nursing facilities, regular follow-up visits, 
and specialized supportive services are needed to ensure 
proper monitoring, mitigate complications, and prevent 
readmissions. These ongoing demands increase the bur-
den on healthcare systems, requiring additional staffing, 
infrastructure, and financial resources, which collectively 

contribute to the overall cost of AKI management [12, 
15].

Further, AKI survivors have a higher risk of 30-day 
rehospitalization [16]. The minority (4%) of AKI survivors 
require referral to nephrology care within 60 days of dis-
charge and (9%) within one year [17]. Similarly, according 
to the United States Renal Data System (USRDS), Annual 
Report 2015, (19%) of AKI survivors were referred for 
nephrology care one year after an AKI episode. These 
figures suggest that AKI incidence accounts for high per-
sonal and community costs and burdens the healthcare 
system [18, 19]. One way to reduce this growing burden 
is to devote efforts to AKI management.

AKI management
AKI management refers to the strategies and practices 
used to improve the detection, prevention, and manage-
ment of AKI in clinical settings [20]. The management 
practices might also include the use of predictive models 
and algorithms. This approach has the potential to iden-
tify high-risk patients, implement protocols and inter-
ventions to manage AKI, utilize electronic health record 
(EHR) systems, a digital data format about patients’ 
health, to monitor AKI-related data and educate medical 
providers on best practices for treating AKI. AKI opera-
tions management aims to improve patient outcomes and 
reduce the burden on the healthcare systems [21].

Timely recognition, early intervention, and appropriate 
follow-up are essential in managing AKI. Delayed recog-
nition and inadequate management of AKI are associ-
ated with significantly poor patient outcomes [22]. These 
issues present challenges for healthcare systems and pose 
risks to patient safety. A study by Yang et al. revealed that 
the non-recognition of AKI in China was 74.2%, of which 
17.6% were given a delayed diagnosis [23]. In an attempt 
to improve the diagnosis and treatment of AKI globally, 
The International Society of Nephrology (ISN) launched 
the “0by25” campaign with the target of eliminating 
avoidable AKI-related deaths [24]. A key part of achiev-
ing this goal is predicting AKI before it occurs and taking 
preventive measures.

Predicting AKI is important for managing prevention 
strategies effectively, especially for high-risk individuals 
[25]. Accurate and early risk assessment may help inform 
patients and their families about potential risks and guide 
appropriate management of AKI. While significant prog-
ress has been made in predicting and managing AKI, 
gaps still exist, highlighting the need for further research 
to determine clinical predictors that can efficiently iden-
tify those at high risk.

Recent studies have shown that AKI can be both pre-
dictable and preventable if early risk factors are identified 
[24]. Recognizing these factors is essential for effec-
tively managing AKI to achieve better clinical outcomes. 
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Although AKI risk factors are complex and often overlap 
[26], accurately identifying them provides an opportunity 
to prevent occurrences and reduce negative outcomes 
associated with AKI by analyzing their correlation and 
impact through predictive models.

Risk prediction models in AKI
Risk prediction models (RPMs) are mathematical tools 
that use a combination of variables to predict the risk of 
an adverse event based on existing data [27]. RPMs can 
be applied in many fields, including healthcare.

RPMs can be both diagnostic and prognostic. Diagnos-
tic RPMs estimate the likelihood of an existing disease, 
while prognostic RPMs assess the risk of a future disease 
for patients who currently do not have it. Powerful algo-
rithms and advanced tools, such as Artificial Intelligence 
(AI) and its subset, machine learning (ML), are com-
monly used to develop accurate and reliable RPMs.

ML entails teaching a machine to learn from data pat-
terns, and improve automatically, from experience, rather 
than being explicitly programmed with the possible sce-
narios as in traditional programming [28]. ML tools 
include decision trees, neural networks, support vector 
machines, and random forests among others [29]. ML 
solves prediction problems involving big datasets with 
enormous numbers of predictors [30]. Moreover, ML 
algorithms offer improved performance, robustness, and 
ease of clinical use [31].

Concerns have been raised regarding the limited pre-
dictive power of RPMs. One key issue in ML is its heavy 
reliance on the quality and relevance of input data for 
training. ML models often require large datasets to 
achieve acceptable performance levels. Moreover, defi-
ciencies in the dataset can substantially lead to deficien-
cies in the model itself [32]. Therefore, the performance 
of a predictive model should be thoroughly assessed.

It is important to note that the potential impact of clin-
ical RPMs on patient safety relies heavily on the quality 
and reliability of the model and the risk variables being 
utilized. Accurate models can effectively stratify patients 
to identify those at high risk of AKI development and 
thus provide specialized care to prevent additional renal 
insult. Clinical implementation of RPMs focuses on pre-
dicting AKI incidences early enough for relevant inter-
ventions to improve patient outcomes. Much research 
has been devoted to predicting AKI, where preven-
tion strategies are considered for those at elevated risk. 
The advancements of ML have resulted in significant 
improvements in the RPMs used for estimating AKI inci-
dences. Moreover, the increased availability of EHR made 
it possible to develop RPMs to estimate AKI risk factors 
[33].

The development of AKI RPMs is relevant to patients 
and their families, healthcare providers, policymakers, 

and medical researchers. Such models are essential to 
predict the outcome of AKI patients and are often used 
for risk stratification. Many models have been developed 
for AKI predictions and are widely used in diverse set-
tings and populations [4, 8, 9]. Therefore, existing RPMs 
are based on different combinations of risk variables 
based on specific conditions.

Recent studies have demonstrated no standard com-
bination of risk factors or a clear understanding of their 
impact and association with AKI episodes [34]. A study 
by Joseph et al. revealed that risk factors identified in 
some studies have not been confirmed, or their effects 
have not been consistent in subsequent studies [35]. 
Other studies revealed that existing RPMs are of poor 
utility due to the difference in the independent risk fac-
tors used to construct the models [36, 37].

However, medical providers claim that AKI tends to 
occur in those with common risk factors and certain 
conditions and have extensively researched these fac-
tors [34]. Moreover, introducing EHRs signifies a big step 
forward in predicting AKI risk enablers. A recent study 
demonstrated the critical role of EHRs in discovering 
the interactions between risk factors, reducing medical 
errors, and improving patient outcomes [38].

Given the impact of AKI prognosis, enhancing the early 
prediction of AKI incidence is essential to improve pre-
ventive, diagnostic, and intervention strategies. Attaining 
a comprehensive understanding of AKI risk prediction 
offers the potential to derive valuable insights that could 
maximize the clinical effectiveness of AKI prediction 
models. In contrast to previous SLR papers on AKI, this 
study goes beyond identifying common risk factors and 
conditions associated with AKI development. While the 
primary objective remains the identification of high-risk 
factors, we take a comprehensive approach by thoroughly 
reviewing existing models, exploring their characteris-
tics and applications, examining the AI tools employed 
in detail, and comparing performance metrics across dif-
ferent models. By examining the specific attributes and 
functionalities of these RPMs, we aim to provide a better 
understanding of their strengths and limitations. Addi-
tionally, our study assesses the practicality and applicabil-
ity of these models in real-world scenarios. This detailed 
analysis of the existing literature allows us to gain valu-
able insights that may contribute to the improvement of 
future prediction models for AKI. Furthermore, by high-
lighting the different ML tools used and their respective 
performances, we show the potential of these approaches 
to transform AKI prediction and management, ultimately 
leading to better patient outcomes and healthcare deci-
sion-making. The outcomes of this review are expected 
to be highly valuable for developing future prediction 
models in the field of AKI.
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The rest of the paper is organized as follows. Sec-
tion  Acute kidney injury describes the proposed meth-
odology, including the review process and selection of 
relevant studies. Section  AKI management presents the 
results by discussing the descriptive analysis of studies 
and the analysis of findings. Section Risk prediction mod-
els in AKI discusses the findings and generates insights 
for healthcare professionals on clinically implementing 
AKI prediction models for improved patient safety, expe-
rience, and clinical effectiveness. Further, we present the 
study limitations and opportunities for future research in 
Sect. Risk prediction models in AKI. Finally, we present 
the conclusion of the study in Sect. Methods.

Methods
This systematic review was designed per the updated Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) framework 2020 [39]. PRISMA 
framework provides a standard methodology that uses 
a guideline checklist to ensure transparent and scien-
tifically appropriate systematic reviews. Accordingly, a 
review protocol was developed to identify the research 
questions and describe the source of information, search 
strategy, inclusion and exclusion criteria, data extraction, 
and analysis procedures. A comprehensive review of the 
recent literature from January 2012 to January 2023 was 
undertaken to achieve the aim of this paper and provide 
healthcare professionals and academics with valuable 
recommendations on building robust AKI RPMs.

Planning the review
The appropriate selection of databases and keyword 
identification is essential to ensure a comprehensive 
and unbiased review [40, 41]. The SLR performed in this 
study consisted of a search of published articles in three 
electronic databases: Scopus, PubMed, and EBSCO. 
The databases were selected based on their recognized 
impact indices containing scholarly and peer-reviewed 
medical, systems engineering, and computer science lit-
erature. The search was limited to studies published from 
the year 2012 onwards. The choice for this period is two-
fold. Firstly, the KDIGO criterion for AKI was published 
in 2012, and a more standardized definition of AKI has 
been expected since then [25]. Before that period, there 
was no standard definition for AKI, therefore, AKI mod-
els would vary. Secondly, the healthcare industry has 
evolved significantly in the last decade, and RPMs devel-
oped before 2012 are unlikely to be generalizable to the 
current settings [42].

Further, after the electronic search, the bibliographies 
of relevant studies were screened manually to identify 
additional eligible studies. The search terms and strat-
egy were broadened to identify as many qualifying stud-
ies as possible. Search keywords were developed using 

synonyms/phrases related to AKI, Prediction, and AI, 
ML tools and combined with Boolean expressions “AND” 
and “OR,” as shown in Table 1.

To select and include only relevant studies that 
reported the development of AKI RPMs or externally 
validated at least one RPM while ensuring viable and 
unbiased results: the inclusion and exclusion criteria are 
defined in Table 2.

Conducting the review
The selection of articles to review was carried out in three 
rounds. The first round consisted of an initial search of 
the literature included in the EBSCO (n = 87), PubMed 
(n = 77), and SCOPUS (n = 59) electronic databases with a 
total of 223 studies. Afterward, Microsoft Excel software 
was used to exclude duplicate records, yielding 65 stud-
ies. Five studies were excluded based on the exclusion 
criterion (ii) being a review paper resulting in (n = 60) 
studies, whereas seven studies were irrelevant to the 
research objectives, and one study was excluded based 
on exclusion criteria (iv); therefore, they were excluded as 
well resulting in a total (n = 52) studies.

In the second round, titles and abstracts of all included 
studies were screened, and potentially relevant studies 
were assessed for eligibility. Fifteen studies were excluded 

Table 1  Search string used to obtain articles
SCOPUS, PubMed, and EBSCO
“Acute Kidney 
Injury”

OR “Acute Renal Injury” or “Acute Kidney Failure” 
or “Acute Renal Failure” or “AKI” or “ARI” or “AKF” 
or “ARF”

AND
“Prediction” OR “Predictive” or “Predict” or “Management”
AND
“Artificial 
Intelligence”

OR “AI” or “Machine Learning” or “ML” or “Logistics 
Regression” or “Linear Regression” or “Random 
Forest” or “Decision Tree” or “Neural Network” 
or “Deep Learning” or “Bayesian Belief Network” 
or “Support Vector” or “SVM” or “Bayes Network” 
or “K-Nearest Neighbor” or “KNN” or “K-means” 
or “Decision Support” or “Decision Tool”

Table 2  Inclusion and exclusion criteria
Inclusion Criteria Exclusion Criteria
(i) An empirical study (i) Proceedings of congresses, confer-

ence papers, books, book chapters, 
dissertations, and thesis studies

(ii) Included the adult 
population

(ii)  Review papers

(iii) Written in the English 
language

(iii) Written in other languages than 
English

(iv) Available in full text (iv) Including the children population
(v) Reporting AKI predic-
tive model based on KDIGO 
definition

(v) Involving patients undergoing 
kidney transplantation

(vi) Published between 2012 
and 2022

(vi) Predicting mortality (in hospital 
or overall)
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based on exclusion criteria (i) and (iii), resulting in a total 
of (n = 37). In the third round, the full texts of all eligible 
publications were reviewed independently and thor-
oughly for relevance to the research objectives. Lastly, 
fourteen studies were excluded from the review based 
on exclusion criteria (v) and (vi), and the final review 
included (n = 27) studies. Screening of references of the 
included studies did not reveal additional publications to 
include. The described search process is summarized in 
the PRISMA flow diagram in Fig. 1.

Data extraction and quality assessment
A standardized data extraction form was developed 
and modified as necessary, using a spreadsheet to col-
lect data on existing AKI RPMs characteristics. Items 
extracted from each study were grouped in five catego-
ries namely study-, data-, technology-, modelling- and 

implementation-related characteristics, as presented in 
Table  3. Since the literature review aims to identify the 
risk factors contributing to the development of AKI, the 
clinical variables are also be reported.

Table 3  Details of extracted items in AKI risk prediction literature
Category Items
Study-related 
Characteristics

Year, region, study type, objective

Data-related Related period, data source, sample size, mean 
age (years), gender, method of internal 
validation

Technology-related Related Algorithms utilized
Modelling-related Related number of all predictors, predictor selec-

tion method, number of significant pre-
dictors, AKI indicator, predicted outcome

Implementation-related 
Related

discrimination AUC, calibration, clinical 
usefulness, presence of external validation

Fig. 1  Describes the literature selection process following the PRISMA 2020 guidelines
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The final review sample included 27 relevant articles 
with their related characteristics. The fit between the 
research methodology and question was assessed to 
ensure the quality of the studies included in the sample.

Results
Descriptive analysis of the review papers
The 27 reviewed articles were published in 23 different 
journals. Figure 2 illustrates the distribution of academic 
journals across a range of categories. Medical journals 
hold the largest proportion of journals, comprising 70%. 
The Engineering and Sciences category, accounting for 
17% of the journals, demonstrates the presence of publi-
cations dedicated to exploring advancements in scientific 
and engineering disciplines. Noteworthy is the Digital 
Health and Internet Research category, which accounts 
for 9% of the journals, signifying an increasing emphasis 
on the convergence of technology and healthcare within 
academic research.

Figure  3 shows the number of publications per year. 
The first study was in 2018, and the number of publi-
cations increased significantly afterward. Specifically, 
25.9% of the studies were published by the end of 2020, 
while the majority (74.1%) were published between 
2021 and 2022. This increase confirms the importance, 
interest, and awareness of implementing RPMs for AKI 
development.

As illustrated in Fig.  4, it is apparent that the sample 
articles came from various countries worldwide. The 
countries with the highest number of RPM studies were 
China (44.44%), followed by the USA and Taiwan (14.8%).

As shown in Figs. 5 and 22 tools were applied in the 27 
articles reviewed. Most prediction models utilized are 
extreme gradient boosting (86.36%), followed by logistics 
regression (81.82%), and random forest (72.23%). It is also 

worth noting that support vector machine (45.45%), deci-
sion trees (40.91%), and light gradient boosting machine 
(31.82%) were among the commonly utilized tools in the 
prediction of AKI. This chart highlights the prominence 
of specific ML algorithms in predicting AKI within the 
reviewed literature, providing insights into the preferred 
approaches in this field of research.

Study-related characteristic
The characteristics of the studies conducted between 
2012 and 2022 are summarized in Table 4. These studies 
were conducted in different regions with retrospective or 
prospective study designs.

The objectives of these studies varied, ranging from 
developing and validating ML models for AKI predic-
tion in specific patient populations to comparing the 
performance of ML algorithms with traditional statistical 
models. For instance, one study from Canada focused on 
developing and validating a preoperative ML model for 

Fig. 3  Number of publications and cumulative publications per year

 

Fig. 2  Distribution of journals across various categories
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predicting AKI in cardiac surgery patients [43], while a 
study from China aimed to construct a clinical prediction 
model for postoperative AKI in patients with acute aortic 
dissection [52].

Other studies explored the use of ML algorithms to 
predict AKI risk in patients with different medical condi-
tions, such as sepsis [44, 47, 56], cognitive heart failure 
[43, 48, 49, 65], acute pancreatitis [53], and femoral neck 
fractures [50]. Some studies also investigated the feasi-
bility and performance of deep learning algorithms and 
attention-based temporal neural network approaches for 
AKI prediction using EHR data [57, 59, 63].

Data-related charactertistics
The study cohort size ranged from 135 to 234,867 
patients, depending on the data and study design. Ten 
studies were conducted in a single-center setting, four 
were conducted in multiple centers, and the remain-
ing ten used publicly available health data, including the 
Medical Information Mart for Intensive Care (MIMIC-
IV and MIMIC-III) and the electronic ICU Collaborative 

Research Database (eICU-CRD), which contain data 
from multiple centers. Additionally, most studies, 
twenty-four, used retrospective data, two used prospec-
tive data, and one used both. Table  5 summarizes the 
data-related characteristics, including the data collection 
period, healthcare setting, data source, sample size, mean 
patient age, gender distribution, and method for internal 
validation.

The RPMs analyzed in the studies focused on specific 
patient populations or clinical contexts, such as predict-
ing AKI after cardiac surgery or in patients with sepsis. 
Seven articles described RPMs for AKI in ICU patients. 
Six articles covered AKI in patients following major sur-
gery, and three articles addressed sepsis-related patients. 
While one article focused on a prediction model follow-
ing major non-cardiac surgery, the other twelve stud-
ies focused on other complications. Only one study 
described a predictive model for a general hospital popu-
lation [64]. Across many studies, the link between surgi-
cal procedures and AKI risk in different hospital settings 
was explored, and the findings consistently showed that 

Fig. 4  Number of publications per country
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AKI is a common and significant complication follow-
ing surgeries. For example, factors such as preoperative 
heart rate, blood cell counts, albumin, and left ventricular 
ejection fraction were identified as strong independent 
predictors of AKI in cardiac surgeries [43, 48, 49, 65]. 
Additionally, heart failure was strongly associated with 
AKI development in patients who underwent any sur-
gery, as suggested by multiple studies [50, 53, 63].

Figure  6 indicates the distribution of the settings in 
which the AKI models were developed or evaluated. The 
largest portion of the chart, accounting for 41% of the 
models, corresponds to postoperative care. This signifi-
cant focus on postoperative care reflects the importance 
of predicting AKI in patients after surgical procedures, 
highlighting the need for early detection and interven-
tion in this population. The second-largest portion of 
the chart, comprising 18% of the models, represents 
AKI models developed or evaluated in an ICU setting 

indicating the attention given to critically ill patients. 
Acute disease patients constitute 15% of the models, 
emphasizing the relevance of predicting AKI in various 
acute medical conditions such as heart disease, pancre-
atic and cerebrovascular. This category stresses the need 
for accurate risk stratification and early intervention in 
patients with acute diseases to prevent kidney injury. 
Both sepsis patients and AKI models in inpatient wards 
accounted for 11% of each distribution. Interestingly, 
only one AKI model, accounting for 2% of the total dis-
tribution, was specifically developed for patients under-
going CT scans. This focus highlights the risk of AKI 
associated with CT imaging. Although CT scans are 
important diagnostic tools, they carry certain risks. One 
such risk is contrast-induced AKI, which can occur in 
vulnerable individuals. To reduce the risk of contrast-
induced AKI, several preventive measures can be taken. 
Patients at higher risk, such as those with pre-existing 

Fig. 5  Percentage of ML algorithms implemented in AKI RPMs. Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Random Forest (RF), Sup-
port Vector Machine (SVM), Decision Tree (DT), Light Gradient Boosting Machine (LGBM), Adaptive Boosting (AdaBoost), Convolutional Neural Network 
(CNN), Gradient Boosting Decision Tree (GBDT), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Artificial Neural Network (ANN), Recurrent 
Neural Network (RNN), Bootstrap Aggregation (Bagging), Bayesian Belief Network (BBN), Classification and Regression Trees (CART), Categorical Boosting 
(CatBoost), Extra Trees Classifier (XTC), Kernel Support Vector Classifier (Kernel SVC), Least Absolute Shrinkage and Selection Operator (LASSO), Naïve Bayes 
Classifier (Naïve Bayes), Nu-Support Vector Classification (NU-SVC), and Random Mixture Model (RMM)
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Table 4  Characteristics of AKI models studies in the literature
Paper Year Region Study Type Objective
[43] 2022 Canada Retrospective Create and internally validate a preoperative ML model to predict AKI associated with 

cardiac surgery and compare its performance with parametric statistical models.
[44] 2022 China Retrospective Establish and validate predictive models for AKI in critically ill sepsis patients using 

novel ML algorithms.
[45] 2022 USA Retrospective Investigate the feasibility of using ML techniques to predict AKI in a Japanese percu-

taneous coronary intervention database with fewer variables than the NCDR-AKI risk 
model.

[46] 2022 China Retrospective Construct a clinical prediction model for postoperative acute kidney AKI in patients 
with Type A and Type B acute aortic dissection using ML techniques.

[47] 2022 China Retrospective Develop an ensemble ML model to predict early sepsis-associated AKI.
[48] 2022 China Prospective Employ a ML algorithm and various techniques for feature selection and model train-

ing to enhance the predictive power for cardiac surgery-associated AKI outcomes 
compared to statistical analysis.

[49] 2022 Iran Retrospective/Prospective Develop a predictive tool for cardiac surgery-associated AKI by applying various ML 
approaches to determine the most effective technique.

[50] 2022 China Retrospective Build ML models to predict the risk of AKI in patients with femoral neck fractures.
[51] 2022 China Retrospective Establish an ML-based prediction model for early identification of AKI in patients with 

cognitive heart failure.
[52] 2022 China Retrospective Establish a predictive model for acute renal failure occurrence in patients after aortic 

arch surgery using ML techniques and compare its performance with traditional 
logistic regression models and other scoring systems.

[53] 2022 China Retrospective Develop an AKI risk prediction model for patients with acute pancreatitis.
[54] 2022 China Retrospective Determine the incidence and risk factors of AKI and AKI-associated hippocampal dam-

age in patients who have undergone cardiovascular surgery.
[55] 2022 China Retrospective Develop and validate an ML model for predicting the risk of AKI in critical care patients 

with acute cerebrovascular disease.
[56] 2022 Taiwan Retrospective Utilize an AI-based ML approach to forecast future risks of rehospitalization with AKI.
[57] 2021 South 

Korea
Retrospective Compare the predictive performance of ML algorithms with conventional logistic 

regression models in assessing the risk of postoperative AKI.
[58] 2021 South 

Korea
Retrospective Explore the effectiveness of a deep learning algorithm in anticipating the risk of 

contrast-induced AKI compared to other ML and logistic regression models in patients 
undergoing computed tomography.

[37] 2021 Japan Retrospective Propose a system for AKI prediction using one-dimensional convolutional neural 
networks, along with real-time calculation of the probability of developing AKI and 
visualization of the rationale behind prediction.

[59] 2021 China Retrospective Employ an attention-based temporal neural network approach for AKI prediction and 
analyze the impact of medical features extracted from HER data prior to AKI diagnosis.

[60] 2021 China Retrospective Utilize ML methods to identify key indicators and predict AKI in order to provide 
decision support for clinical staff, requiring measurement of only a small number of 
indicators.

[61] 2021 USA Retrospective Assess the predictive capability of a convolutional neural network-based ML algorithm 
using patient EHR data to predict AKI stage 2 or 3 up to 48 h in advance of its onset.

[62] 2020 USA Retrospective Develop an AKI prediction model and evaluate its transferability across multiple health 
systems, as well as propose a method to predict the adaptability of AI models in 
hospitals.

[63] 2020 Germany Retrospective Create a deep learning-based algorithm capable of predicting postoperative AKI prior 
to the manifestation of symptoms and complications.

[64] 2020 Taiwan Retrospective Develop, validate, and establish a scoring system using different ML techniques to en-
able early recognition and intervention of contrast-associated AKI, aiming to prevent 
permanent kidney damage.

[65] 2020 Taiwan Retrospective Employ an AI-based ML approach, driven by perioperative data, to predict contrast-
associated AKI.

[66] 2020 China Retrospective Establish predictive models for AKI in patients with acute pancreatitis using ML tech-
niques during hospitalization.

[67] 2019 Belgium Prospective Prospectively evaluate the performance of the AKI predictor model in predicting 
AKI-23 within the first week of ICU stay and compare it with predictions made by ICU 
physicians.

[68] 2018 USA Retrospective Evaluate a ML algorithm for early detection and prediction of AKI up to 72 h before its 
onset, facilitating early clinical intervention.
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kidney conditions or other comorbidities, may be rec-
ommended alternative imaging methods that do not use 
contrast agents.

Modelling-related characteristics
Generally, the definition for predicting AKI was consis-
tent across all studies, following the recent consensus 

definition of AKI based on KDIGO guidelines as per 
the inclusion criteria (v) [4]. However, the assessment 
timeframe varied significantly, depending on the clinical 
context and specific variables used in the models. Some 
studies predicted AKI within hours of hospital admis-
sion, while others did so after surgery, with timing based 
on when the surgery occurred. Only one study predicted 
AKI within a longer timeframe of seven days. This vari-
ability in timing highlights the importance of considering 
clinical settings when developing an RPM and highlights 
the need to standardize AKI prediction timing. Addition-
ally, the definition of AKI varied depending on the diag-
nostic criteria. All studies diagnosed AKI based on SCr, 
except for five studies that included urine output (UO) 
criteria. All studies used the admission SCr level to repre-
sent the patient baseline.

As shown in Table  6, the number of predictors used 
in the models varied across studies depending on the 
clinical settings and patient population, ranging from 
12 to 134 predictors. The number of significant predic-
tors identified in the models also varied, with studies 

Table 5  Data-related items
Paper Period Setting Data Source Sample Size Mean Age 

(Years)
Gender, Male 
(%)

Method 
of Internal 
Validation

[43] 2009–2015 Cardiac Surgery Single Center 6,522 65.8 72.00% 10-CV
[44] 2001–2012 Sepsis MIMIC-III 3,176 66 55.30% 10-CV
[45] 2008–2019 Cardiovascular JCD-KiCS 19,222 68.4 - 5-CV
[46] 2019–2021 Cardiovascular Single Center 283 51.98 80.9% Bootstrap
[47] 2001–2012 Sepsis MIMIC-IV 21,038 67 57.6% CV
[48] 2019–2020 Cardiac Surgery Single Center 135 - - 5-CV
[49] 2019–2021 Cardiac Surgery Multiple Centers 1,620 58.09 60.28 10-CV
[50] 2008–2019 Femoral Neck Fracture MIMIC-IV 1,596 - - 10-CV
[51] 2001–2012 Cardiovascular MIMIC-IV 8,580 - - -
[52] 2015–2019 Cardiovascular Multiple Centers 1,637 - 77.20% 10-CV
[53] 2016–2021 Acute Pancreatitis Multiple Centers 424 - 62.50% -
[54] 2019–2020 Cardiovascular Surgery Single Center 227 5-CV
[55] 2001–2012 Acute Cerebrovascular MIMIC-III 2,935 66.8 51.10% 5-CV
[56] 2008–2018 Sepsis Single Center 23,761 76.4 36.00% -
[57] 2003–2017 Renal Cell Carcinoma Single Center 4,104 56 69.60% 10-CV
[58] 2007–2019 Intravenous Contrast Media Single Center 14,185 67.5 77.20% 10-CV
[37] 2014–2015 ICU eICU-CRD - - - 10-CV
[59] 2001–2012 ICU MIMIC-III 46,520 - - -
[60] 2001–2012 ICU MIMIC-III 2,018 68.19 49.55% 10-CV
[61] 2008–2012 ICU MIMIC-III 6,821 60–69 53.29% 10-CV
[62] 2010–2018 ICU Single Center 153,821 56–65 50.60% -
[63] 2012–2018 Cardiothoracic Surgery Single Center 13,895 - - 5-CV
[64] 2010–2017 General Population Single Center 234,867 - - -
[65] 2016–2018 Cardiac Surgery Single Center 671 63 67.60% -
[66] 2014–2019 Acute Pancreatitis Single Center 334 - - -
[67] 2018 ICU Single Center 252 62.5 61.50% -
[68] 2001–2017 ICU Multiple Centers 286,797 - - -
MIMIC (Medical Information Mart for Intensive Care), JCD-KiCS (Japanese Cohort of Dialysis and Kidney Injury Critical Study), and eICU-CRD (electronic ICU 
Collaborative Research Database

Fig. 6  AKI models settings
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reporting between 4 and 42 significant predictors. SCr 
was the most commonly included predictor, appearing 
in the majority of studies. Other predictors, such as UO, 
were also included in some models. The primary pre-
dicted outcome was AKI, with some studies further strat-
ifying AKI into different stages. These stages included 
AKI Stage 1, 2, and 3, as well as AKI incidence within 
specific timeframes, such as 24, 48, or 72 h.

Most studies used all available predictors to create 
their models, while others used feature selection tech-
niques to identify key predictors. Three studies utilized 
all available variables to develop full models, while the 
remaining twenty-four applied feature selection to iden-
tify key predictors and then designed compact models. 
Among the latter group, ten studies employed the SHap-
ley Additive exPlanations (SHAP) method to assess the 
importance of individual predictors. This method helps 
determine which patient factors are most significant for 
predicting AKI risk, guiding interventions and treatment 
plans for at-risk patients. Other feature selection meth-
ods included backward variable selection, the Boruta 

algorithm, LASSO logistic regression, Recursive Feature 
Elimination, and correlation analysis.

For all the RPMs analyzed, the most frequently iden-
tified predictors were renal variables such as baseline 
SCr, bicarbonate, estimated GFR, BUN, and UO, as well 
as non-renal variables such as age, gender, body mass 
index (BMI), diabetes, liver failure, mechanical ventila-
tion, medication usage, heart failure, use of vasopressors, 
diuretics, hemoglobin, white blood cell (WBC) count, 
blood pressure, hypertension, and hypotension.

Technology and implementation-related characteristics
Table  7 provides the results of different algorithms 
used in the development. A range of algorithms were 
employed, including random forest, logistics regression, 
gradient boosting variants, neural networks and decision 
trees.

Each algorithm was evaluated based on its discrimina-
tion ability, represented by the Area under the receiver 
operating curve (AUROC). The studies had different 
objectives; some aimed to create predictive models that 

Table 6  Modelling-related items
Paper Number of all Predictors Predictor Selection Method No. of Significant Predictors AKI Indicator Predicted Outcome
[43] 30 Backward selection 6 SCr AKI
[44] 36 Boruta algorithm 7 SCr AKI
[45] 12 LASSO LR, SHAP 7 SCr AKI
[46] 46

42
SHAP 4 SCr AKI

[47] 38 Correlation Analysis 17 SCr AKI Stage 1,2,3
[48] 34 RF

LASSO, XGB, SVM
11 SCr and UO AKI

[49] 44 SHAP, LIME 4 SCr AKI Staging 1,2,3 for day 1 and 7
[50] 86 SHAP 20 SCr AKI within 24, 48, 72 h
[51] 58 RFE, SHAP 18 SCr and UO AKI
[52] 134 SHAP 15 SCr AKI
[53] 30 Correlation Analysis 10 SCr and UO AKI Staging 1,2,3
[54] MLP 7 SCr AKI
[55] 23 XGB 10 SCr AKI Staging 1,2,3
[56] 84 SHAP 7 SCr AKI
[57] 23 Ranking Analysis 5 SCr Postoperative AKI
[58] 31 SHAP 19 SCr AKI
[37] - 84 SCr AKI Staging 1,2
[59] 54 - 54 SCr AKI Staging 1,2,3
[60] 47 SFS 17 SCr AKI
[61] - - - SCr, UO AKI Staging 2,3
[62] 13 SHAP 10 SCr AKI Staging 1,2,3
[63] 96 - - SCr AKI Staging 2,3
[64] 47 XGB, LASSO 10 SCr AKI
[65] 87 SHAP 20 SCr AKI
[66] 23 - 5 SCr AKI Staging 2,3
[67] - - 13 SCr AKI Staging 2,3
[68] - - - SCr AKI
LASSO (Least Absolute Shrinkage and Selection Operator), SHAP (SHapley Additive exPlanations), RF (Random Forest), SVM (Support Vector Machine), LIME (Local 
Interpretable Model-Agnostic Explanations), RFE (Recursive Feature Elimination), XGB (XGBoost), SFS (Sequential Feature Selection) and MLP (Multilayer Perceptron)
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were simple and easy for clinicians to interpret, while 
others prioritized achieving high predictive accuracy. The 
performance metrics for these models included discrimi-
nation, calibration, clinical usefulness, and the presence 
of external validation. All models underwent internal val-
idation, and some studies also conducted external valida-
tion and assessed clinical usefulness.

Discrimination was measured using the AUROC, with 
a median AUROC of 0.753 across the studies (ranging 
from 0.590 to 0.930). For studies that performed external 
validation, which indicates whether the model was vali-
dated on an independent dataset, the median AUROC 
for the development model was 0.772 (ranging from 
0.592 to 0.929), and for external validation, the median 
AUROC was 0.78 (ranging from 0.69 to 0.9142). Calibra-
tion plots were utilized in several studies to assess the 
calibration of the models, with some reporting good cali-
bration outcomes, while others did not provide specific 
calibration results. The Hosmer-Lemeshow (H-L) test, a 
statistical test for goodness-of-fit, was employed in a few 
studies to evaluate calibration. The p-values from the H-L 

test indicated the level of agreement between predicted 
and observed outcomes. Several studies also assessed 
clinical usefulness using metrics such as decision curve 
analysis (DCA) and the Brier score. DCA measures the 
net benefit of the model across a range of threshold prob-
abilities, while the Brier score evaluates the accuracy of 
predicted probabilities. These metrics provide insights 
into the practical utility of the models in clinical deci-
sion-making. The presence of external validation varied 
across the studies. While some models were externally 
validated, others were not, leading to potentially overly 
optimistic results from internal validation based on the 
same cohort. This highlights the need for further valida-
tion of AKI prediction models.

Notably, in situations involving the application of 
multiple ML algorithms, only a single model using the 
highest-performing algorithm has been reported. There-
fore, each study was regarded as having one model. The 
method of dealing with missing data was defined in a few 
studies, with some using bootstrap resampling or other 
techniques. In some cases, imputation methods were not 

Table 7  Technology and implementation-related items
Paper Algorithm Discrimination AUC Calibration Clinical Usefulness External Validation
[43] RF + LR 0.75 H-L Test - No
[44] XGB 0.82 Calibration Plots DCA No
[45] LGDM 0.77 Calibration Plots - No
[46] RF 0.76 Calibration Plots, Brier Score DCA No
[47] XGB 0.77–0.79 - - Yes
[48] RF 0.86 Barier Score DCA No
[49] RF 0.81 - - No
[50] LGBM 0.93 - - NO
[51] LGBM 0.80 Calibration Plots - Yes
[52] XGB 0.82 Brier Scre (0.087) - Yes
[53] RF 0.91 Calibration Plots DCA 

CIC
Yes

[54] RF 0.82 - - No
[55] XGBoost 0.88 Calibration Plots - Yes
[56] LGBM 0.82 - - No
[57] LGBM 0.81 H-L Test DCA No
[58] RNN 0.76 - - No
[37] CNN 0.84 - - No
[59] NN 0.83 - - Yes
[60] XGBoost 0.93 - - Yes
[61] CNN 0.86 - - No
[62] DS-GBT 0.78 H-L Test - Yes
[63] RNN 0.89 Calibeation Plots

H-L Test, Brier Score
- No

[64] XGB 0.79 - - No
[65] RF + XGB 0.84 - - No
[66] XGB 0.92 - - No
[67] RF 0.80 Calibration Plot - Yes
[68] DT 0.87 - - No
RF (Random Forest), LR (Logistic Regression), XGB (Extreme Gradient Boosting), LGDM (Logistic Gradient Descent Machine), LGBM (Light Gradient Boosting Machine), 
RNN (Recurrent Neural Network), CNN (Convolutional Neural Network), DS-GBT (Dual-Stage Gradient Boosting Tree), DT (Decision Tree) and H-L Test (Hosmer–
Lemeshow Test)
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used as the advanced boosting ML method can handle 
missing values automatically. For other models, miss-
ing values of continuous variables were imputed using 
median values, while categorical variables were imputed 
using mode values. Additionally, some studies used a 
k-nearest neighbors’ approach to fill in missing values.

Discussion
Key findings
The studies demonstrate that leveraging EHR data has 
significantly increased interest in AI and ML-based risk 
prediction models for healthcare. These models assist 
physicians in anticipating future events, particularly in 
AKI prediction, where precise predictions are essential 
for proactive monitoring and intervention, thus reduc-
ing AKI incidence and severity while improving quality of 
care. A review of 27 articles was conducted, focusing on 
RPMs for AKI.

The RPMs analyzed show considerable diversity in 
clinical settings, patient characteristics, cohort regions, 
and statistical methods. Most models focus on AKI in 
hospitalized patients rather than community-acquired 
AKI, reflecting that most studies have been conducted 
in developed regions where AKI is primarily hospital-
acquired. However, developing countries with limited 
healthcare access may have higher rates of community-
acquired AKI, limiting these models’ generalizability and 
ability to inform prevention strategies. A recent study 
estimated AKI incidence at 4.3% among all hospital 
admissions [69]. Yet, this figure remains an underestimate 
of the true occurrence of community AKI due to the non-
referral of patients to hospitals. For this reason, preven-
tion strategies for AKI should consider both hospital and 
community-acquired cases to be effective. Furthermore, 
many models are tailored to specific patient groups and 
settings, such as cardiac surgeries or sepsis patients. The 
goal of developing AKI RPMs for surgery-related cases is 
to identify risk factors during or before procedures that 
pose a high risk for AKI. This allows clinicians to weigh 
the benefits and risks of procedures, determine when to 
monitor kidney function, and take preventive measures.

The reported incidences of AKI were inconsistent and 
differed significantly, depending on the definition of 
AKI, the population studied, and the clinical context in 
which it is detected. Therefore, to use AKI RPMs in clini-
cal practice, their cross-site transportability, or ability 
to perform consistently in different healthcare settings/
populations, must be validated. A cross-site transport-
able model should be able to provide reliable predic-
tions regardless of the location or context in which it is 
applied and is thereby generalizable. This is an important 
consideration in many fields, including healthcare, where 
predictive models are often developed and validated in 
one setting but must be applied in different settings with 

different patient populations, data collection methods, 
geographical locations, periods, and clinical workflows. 
Failure of a prediction model to transport well across 
new settings indicates that the model cannot be read-
ily implemented in clinical practice for new patients. 
Thereby, ensuring cross-site transportability is important 
to ensure the model is ready for use in local patients and 
avoid potential errors that may arise from using a model 
in inappropriate settings. Only one study assessed and 
predicted the transportability of AKI prediction models 
and found that their model could accurately predict AKI 
at all external sites, demonstrating cross-site transport-
ability [62]. Their study suggests that using ML models 
for AKI prediction can be generalized across different 
healthcare systems, leading to better patient outcomes. 
However, their study also found that the model’s perfor-
mance slightly decreased when applied to other multiple 
centers. More research is needed to fully comprehend the 
transportability of AKI RPMs and develop models that 
perform well in diverse healthcare settings.

The geographical distribution of the studies reviewed 
highlights the concentration of AKI prediction research 
in certain regions, particularly in East Asia and North 
America. Most studies were conducted in China, the 
USA, and other developed regions like Japan, Germany, 
and South Korea. This regional concentration may intro-
duce biases that affect the applicability of AI models in 
more diverse or underrepresented healthcare environ-
ments, particularly those with limited resources. Rec-
ognizing this concentration helps emphasize the need 
for further research in underrepresented regions, where 
differences in healthcare systems, data availability, and 
resource allocation could significantly affect the clini-
cal applicability of AI models. By understanding these 
regional contexts, the broader utility and adaptability of 
AI-based AKI prediction models can be better assessed, 
which is crucial for ensuring their effectiveness across 
various healthcare settings.

AKI often occurs in patients with common risk factors, 
particularly in specific medical settings. Most studies 
(74%) provided the rationale for selecting candidate pre-
dictors, indicating that model development was primarily 
data-driven with good specification of known clinically 
important factors. There was substantial variability across 
models in the variables included as candidate predictors. 
From over 50 predictive risk factors identified across the 
27 studies, 20 factors were used consistently in more than 
one study. We identified 20 common variables frequently 
included in prediction models, and choosing appropri-
ate candidate predictors is essential for deriving accurate 
RPMs. These models generally use various demographic, 
clinical, and laboratory factors to predict the likelihood 
of AKI in different hospital settings.
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Among these commonly included predictors, SCr 
was the most prevalent. SCr is widely utilized as it is an 
established biomarker for evaluating kidney function 
and detecting renal impairment, making it an impor-
tant predictor for AKI. However, the use of SCr as both a 
predictor and a diagnostic criterion requires careful con-
sideration to avoid conflating its roles in early identifica-
tion and diagnosis. In addition, UO was included in some 
models, although its incorporation was limited by data 
availability. UO is an important marker for early detec-
tion, often providing a more immediate indication of 
reduced kidney function compared to SCr [70, 71]. One 
study showed that adding UO criteria can detect AKI in 
patients 11  h earlier than SCr criteria alone [70]. Nev-
ertheless, we believe it is not ideal to include both SCr 
and UO as independent variables in the model because 
they are highly correlated [72]. Typically, elevated SCr 
levels indicate impaired kidney function, which is often 
associated with a decrease in UO, suggesting an inverse 
relationship between the two variables [73]. Therefore, 
including both variables in the model may not signifi-
cantly improve its predictive performance, as they essen-
tially provide overlapping information about kidney 
function.

Other renal-related variables, such as BUN, eGFR, and 
bicarbonate, were also commonly used. BUN and eGFR 
are well-known indicators of renal function, while bicar-
bonate helps assess acid-base balance, which is particu-
larly relevant for patients at risk of kidney injury [72]. 
Collectively, these renal variables provide a comprehen-
sive understanding of kidney function, which can support 
early intervention efforts to prevent AKI progression.

Beyond renal-specific indicators, non-renal variables 
were also identified as significant contributors to AKI 
risk, highlighting the systemic nature of the condition. 
Age was frequently included, as older individuals are 
more prone to AKI due to age-related renal changes and 
increased comorbidity burdens, including cardiovascular 
disease and diabetes. High BMI was another common 
predictor, as obesity is linked to inflammation and meta-
bolic stress, both of which can contribute to kidney dam-
age [74]. Gender differences were also evident, with male 
patients generally found to be at higher risk of AKI com-
pared to female patients, likely due to physiological and 
hormonal factors.

Several comorbid conditions were consistently 
included as predictors, including diabetes, hyperten-
sion, cardiac diseases and liver failure, all of which can 
affect vascular health and increase the likelihood of 
renal injury [75]. Factors associated with critical illness, 
such as mechanical ventilation, use of vasopressors, and 
diuretics, were also found to be significant predictors, as 
these factors reflect severe conditions that can compro-
mise kidney perfusion and increase the risk of injury due 

to nephrotoxic exposure. Additionally, Sepsis was identi-
fied as a common risk factor for AKI due to the kidney’s 
sensitivity to hypoperfusion, mechanical ventilation, and 
excessive fluid resuscitation [47, 56]. When the body 
responds to Sepsis, it triggers an inflammatory response 
that activates innate immunity and releases proinflam-
matory substances that often lead to AKI [76].

Lastly, laboratory markers such as hemoglobin levels, 
WBC count, and blood pressure (including both hyper-
tension and hypotension) were frequently included in 
prediction models. These markers provide insights into 
systemic health, the presence of inflammatory or hypoxic 
conditions, and cardiovascular function, all of which can 
affect renal outcomes. Including these demographics, 
clinical, and laboratory variables in prediction models 
reflects the complexity of AKI risk and highlight the need 
to adopt a comprehensive approach that considers both 
kidney-specific and systemic factors when developing 
predictive models.

Some RPMs initially use all available predictors to build 
a comprehensive model, followed by feature selection to 
create a reduced model containing only the most signifi-
cant predictors. While a full model includes all potential 
predictors relevant to AKI prediction, this often results 
in a complex model that may be challenging for clinicians 
to use in practice. Therefore, reducing the number of 
predictors helps balance model performance and usabil-
ity, ensuring the model remains clinically applicable. For 
example, a study by Li et al. [52] developed a full model 
using 134 predictors. However, gathering such a large 
number of clinical variables in real-life practice can be 
impractical and time-consuming. To address this, the 
authors developed a reduced model with only 15 pre-
dictors, which performed similarly to the full model but 
was easier to apply in clinical settings with less computa-
tional power required. Reduced models often offer com-
parable performance to full models while being easier to 
interpret and use, which supports findings from previous 
studies. Future RPMs for AKI should focus on readily and 
routinely available factors to provide timely interventions 
and enhance clinical usability. The SHAP method was 
frequently utilized to illustrate the influence of the key 
indicators on the risk of AKI. It was observed that cer-
tain variables have a greater impact on the model’s ability 
to predict AKI. Our findings suggest that ML tools can 
accurately predict AKI by considering the complex inter-
active relationship between several important variables.

Internal validation was conducted by randomly parti-
tioning the dataset, but this approach is limited since the 
derivation and validation datasets share substantial simi-
larities. In contrast, other studies used more robust tech-
niques such as bootstrapping and cross-validation (CV), 
which are preferred due to their use of the entire dataset 
during model development and their reduced likelihood 
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of overfitting [77]. Although internal validation demon-
strated good performance, these results may be overly 
optimistic. This issue is commonly encountered when 
predictive models, particularly RPMs, are applied to dif-
ferent samples from those used for model development, 
leading to a decline in prediction accuracy.

External validation was rarely performed in the 
reviewed studies, and when done, it revealed decreased 
model accuracy, limiting the generalizability of these 
models across diverse medical centers and settings [78, 
79]. The lack of external validation could be due to chal-
lenges in accessing external datasets, including patient 
privacy concerns, data-sharing restrictions, and logisti-
cal issues. Differences in data collection methods, patient 
populations, and healthcare environments also compli-
cate external validation without significant adjustments 
to the original model. To enhance confidence in the appli-
cability of these models across various hospital settings 
and geographic regions, future studies should prioritize 
external validation to thoroughly assess their efficacy.

AKI prediction models are typically developed using 
retrospective data of individuals at risk for AKI, incor-
porating known baseline and follow-up kidney function 
information. While retrospective data can provide valu-
able insights into past events, it may face limitations such 
as missing data and selection bias. Appropriate statisti-
cal methods should be used to address these biases and 
improve the generalizability of the models. Recent stud-
ies have shown that combining retrospective and pro-
spective data can improve the quality of the information 
available [63]. Nevertheless, further prospective studies 
are essential to validate the findings derived from retro-
spective analyses. Another limitation of existing models 
is the use of single-center data, which may not be rep-
resentative of larger populations and could lead to poor 
model performance when applied to other cohorts [80]. 
To overcome these limitations, incorporating data from 
multiple centers can increase sample size and improve 
model generalizability, as demonstrated in several studies 
[49, 52, 53, 68].

Overall, gradient boosting models were the most effec-
tive in predicting AKI, with XGB exhibiting superior per-
formance compared to other ML tools. XGB is decision 
tree ensemble method that uses a gradient framework 
to enhance the effectiveness of decision trees. It can be 
applied to both classification and regression problems 
and is known for handling complex datasets with numer-
ous predictors and missing data. Due to its strong per-
formance, XGB is increasingly used to predict adverse 
clinical outcomes, and its results have been shown to 
outperform models such as K-nearest neighbors, logistic 
regression, decision trees, random forest, and neural net-
works [81, 82]. Based on these findings, extreme gradi-
ent boosting is an efficient and reliable ML algorithm for 

building prediction models. In contrast, traditional logis-
tics regression may show lower accuracy because it relies 
on handling linear combinations of variables. This can 
lead to oversimplification of complex non-linear relation-
ships in clinical RPMs. LR is also affected by multicol-
linearity, which may result in the omission of important 
associations and limit the model’s predictive capacity.

Good calibration was reported for most models. 
Besides assessing discrimination, calibration is an impor-
tant measure of a risk prediction model’s validity, as 
it indicates the level of agreement between predicted 
and observed probabilities of developing AKI, which is 
essential for effectively communicating risk to patients 
and care providers. Furthermore, most studies did not 
demonstrate clinical usefulness, which limits the abil-
ity to recommend one model over another. Although 
the potential of ML tools and RPMs to enhance AKI 
predictions is promising, further research is required to 
validate and optimize these models for diverse patient 
populations.

Our review emphasizes the need for further research 
to develop reliable and accurate risk prediction models 
for AKI that can be applied to the general population. 
Although one model developed by Hsu et al. using a large 
dataset and common risk factors may serve as a founda-
tion for such efforts, further refinements are required 
for broader applicability [64]. Importantly, RPMs are not 
necessarily designed to directly enhance decision-mak-
ing for AKI management; rather, they assist clinicians in 
selecting the most appropriate model for their specific 
clinical settings and intended use.

Gaps and potential solutions for AKI management
ML has shown significant promise in healthcare, par-
ticularly in predicting AKI, improving patient outcomes 
and reducing healthcare costs. Developing accurate and 
reliable RPMs is essential to identify individuals at high 
risk of AKI and enable early intervention. However, as 
illustrated in Fig. 7, several obstacles affect the accurate 
prediction of AKI incidences. These barriers fall into 
five categories: study-related, data-related, technology-
related, modeling-related, and implementation-related 
gaps.

Study-related gaps include insufficient data on com-
munity-acquired AKI, which leads to underestimating its 
occurrence and limits prevention strategies. Variations 
in the time frames used for reporting AKI incidence also 
make it difficult to assess the true burden of the condi-
tion. Additionally, using single-center data limits model 
performance across diverse populations. To address these 
gaps, systems should be established to link data from 
multiple healthcare facilities, providing a more compre-
hensive view of AKI cases, including both community-
acquired and hospital-acquired AKI. Defining consistent 
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time frames for measuring and reporting AKI incidence 
is also necessary for comparability across studies.

Data-related challenges encompass variability in clini-
cal settings, patient characteristics, cohort regions, and 
statistical methods. Retrospective data issues, such as 
missing information and selection bias, also affect model 
robustness. Standardized protocols for data collection 
across different settings should be established to mini-
mize variations and enhance generalizability. Incorporat-
ing prospective data collection can further validate and 
improve findings from retrospective analyses.

Technology-related gaps are primarily due to insuf-
ficient external validation of RPMs in diverse healthcare 
settings, which limits generalizability. Some ML mod-
els also oversimplify complex non-linear relationships, 
reducing predictive accuracy. Validating models across 
multiple healthcare settings, including hospitals and clin-
ics in different regions, is essential for assessing their 
transportability. Transfer learning techniques can further 
improve generalizability by adapting models trained on 
one dataset to perform well on others.

Modeling-related challenges include variability in the 
choice of candidate predictors across different mod-
els and the difficulty in balancing the trade-off between 
model performance and clinical usability due to the 
inclusion of too many predictors. Developing standard-
ized sets of candidate predictors that are recommended 
for use in models can help overcome these issues. These 
sets can be periodically updated based on new evidence 
and expert consensus. Involving clinicians and domain 
experts in the predictor selection process is also impor-
tant to prioritize predictors that are clinically meaningful 

and relevant, ensuring that the final model is both accu-
rate and practical for real-world application.

Implementation-related gaps involve the limited dem-
onstration of clinical usefulness, making it challenging 
to recommend one model over another, and the lack of 
comprehensive assessment of cross-site transportability 
of the models. Conducting prospective studies to vali-
date the performance and clinical usefulness of predictive 
models in real-world clinical settings helps assess how 
well the models perform when implemented in prac-
tice and their impact on patient outcomes. Integrating 
domain knowledge and expert insights into the model-
ing process can provide valuable guidance on the poten-
tial non-linear relationships that should be explored and 
incorporated into the models.

Given the methodological limitations identified in pre-
vious systematic reviews of AKI RPMs and their external 
validation, large datasets collected from multiple centers 
using consensus AKI criteria are necessary to derive and 
validate accurate AKI outcome prediction models. By 
addressing these challenges and implementing the pro-
posed solutions, the accuracy, generalizability, clinical 
utility, and value of AKI risk prediction models can be 
significantly enhanced, ultimately leading to improved 
patient outcomes.

Practical implications for clinicians
While the development of RPMs using ML has dem-
onstrated significant potential in identifying AKI risks, 
implementing these models in clinical practice presents 
several challenges for clinicians. One key challenge is the 
complexity of certain models, which makes them difficult 

Fig. 7  Gaps and potential solutions for AKI prediction models
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to interpret and use in time-sensitive situations. Clini-
cians are often unfamiliar with how ML algorithms arrive 
at predictions, which may lead to aversion in adopting 
these tools without a clear understanding of their func-
tionality. This highlights the importance of explainable 
AI (XAI) tools that can provide transparent reasoning for 
predictions and help improve trust and usability among 
clinicians [62]. By offering insights into why certain fea-
tures contribute to the predicted outcomes, XAI can 
help bridge the gap between AI and clinical decision-
making, making models more acceptable for real-world 
application.

Another important aspect for practical clinical adop-
tion is the balance between model complexity and usabil-
ity [83]. Several of the studies reviewed used reduced 
models that prioritized fewer but clinically relevant pre-
dictors, maintaining predictive power while simplifying 
practical implementation. Reduced models are benefi-
cial because they maintain similar accuracy levels to 
full models but require fewer clinical variables, which 
makes them easier to apply in a real-world healthcare 
setting. This approach can save valuable time, reduce 
computational requirements, and enhance the clinician’s 
experience when applying the model in a busy clinical 
environment. Thus, future efforts should continue focus-
ing on developing RPMs that prioritize clinical relevance 
and simplicity to maximize their practical usability with-
out sacrificing predictive performance.

Limitation and future research
Our research presents a comprehensive review of AKI 
RPMs, based on the KDIGO consensus published in 
2012. This review identifies risk variables, examines pre-
diction models, and compiles a list for future validation. 
It highlights the utility of AKI risk factors in accurately 
predicting AKI. However, practical application requires 
focusing on clinically available variables, as not all iden-
tified predictors are suitable for routine use in clinical 
practice.

Despite the strengths of this review, our findings must 
be interpreted considering several limitations. Most 
studies were conducted in developed countries, limiting 
broader applicability to low-resource settings. Includ-
ing data from underrepresented regions and focusing 
on community-acquired AKI will improve generaliz-
ability. First, the reviewed studies often lacked external 
validation, limiting the generalizability of the models 
across diverse healthcare settings. The absence of exter-
nal validation means that the consistency and reliability 
of model performance in different clinical environments 
remain uncertain. Another limitation is the reliance on 
retrospective data in most studies, which can introduce 
biases such as selection bias and missing data, thereby 
affecting the robustness of the findings. Prospective data 

collection would provide a more reliable basis for model 
development and validation by reducing the impact of 
these biases.

Additionally, the heterogeneity of the included stud-
ies—with variations in study design, populations, data 
sources, and predictors—posed a challenge for com-
parison and synthesis. This lack of uniformity prevented 
a quantitative meta-analysis and necessitated a more 
descriptive approach, limiting the ability to draw strong 
statistical conclusions.

In summary, while our review offers valuable insights 
into the development and validation of AKI RPMs, the 
findings emphasize the need for further research that 
focuses on external validation, prospective data, stan-
dardized methodologies, and simpler, clinically feasible 
models. Addressing these limitations will improve the 
reliability and generalizability of AKI prediction mod-
els, ultimately enhancing their practical application in 
diverse healthcare settings.

Conclusion
AKI is a major global health issue, with serious con-
sequences including longer hospital stays and rising 
healthcare costs. The use of ML-based RPMs presents 
an opportunity to improve patient care by identifying 
those at high risk of developing AKI. However, the wide 
range of patient types and healthcare settings makes it 
difficult to establish a standard approach for managing 
these high-risk individuals. Although some models show 
potential, their impact on patient outcomes has not yet 
been fully demonstrated, and there is no agreement on 
the most effective models due to existing limitations. To 
address these challenges, it is essential to gather detailed 
clinical data in a consistent format, covering relevant risk 
factors for AKI. Developing reliable and practical mod-
els requires efforts to include clinical details that current 
medical records may not easily capture. Standardizing 
data collection across healthcare facilities could help cre-
ate broadly applicable AKI risk prediction models. Addi-
tional research is needed to enhance the precision and 
relevance of these models for a variety of medical con-
ditions. Testing model reliability in multiple settings is 
essential to ensure their effectiveness in real-world use 
and their true impact on patient outcomes. Progress in 
AKI risk prediction modeling will contribute signifi-
cantly to improving patient care and outcomes. There-
fore, efforts to develop improved and widely applicable 
AKI risk prediction models should remain a key focus of 
medical research.
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