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Abstract 

Background Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical 
approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed 
to develop an explainable analysis of DM by combining sociodemographic and clinical data with statistical and artifi-
cial intelligence (AI) techniques.

Methods Leveraging a small dataset that includes sociodemographic and clinical profiles of diabetic and non-
diabetic individuals, we employed a diverse set of statistical and AI models for predictive purposes and assessment 
of DM risk factors. The statistical tests used were Student’s t-test and Chi-square, while the AI techniques were fuzzy 
cognitive maps (FCM), artificial neural networks (ANN), support vector machines (SVM), and XGBoost.

Results Our statistical models facilitated an in-depth exploration of variable associations, while the resulting AI 
models demonstrated exceptional efficacy in DM classification. In particular, the XGBoost model showed superior per-
formance in accuracy, sensitivity and specificity with values of 1 for each of these metrics. On the other hand, the FCM 
stood out for its explainability capabilities by allowing an analysis of the variables involved in the prediction using 
scenario-based simulations.

Conclusions An integrated analysis of DM using a variety of methodologies is critical for timely detection of the dis-
ease and informed clinical decision-making.

Keywords Diabetes mellitus, Predictive models, Explainability, Artificial intelligence, Statistics

Background
Diabetes mellitus (DM) is a chronic metabolic disor-
der characterized by an increase in blood glucose levels 
because the body is unable to produce or use the hor-
mone insulin, which is responsible for the regulation of 
glucose in the bloodstream [1, 2]. It has been associated 
with various disabling complications that increase the 
risk of mortality, such as kidney disease, cardiovascular 
disease, neuropathy, retinopathy, diabetic foot, and lower 
limb amputation [3].

According to the World Health Organization (WHO), 
the prevalence and mortality of diabetic patients have 
been progressively increasing in recent years [4]. By 
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2021, there was a population of 529 million diagnosed 
with diabetes [5], estimating that by 2045 there will be 
an increase of 48% [6], with expected prevalence rates of 
10% in several regions in the world such as North Africa, 
Middle East, Latin America, and the Caribbean [1, 5]. By 
2021, an estimated 6.7 million adults aged 29–79 years 
died from DM or its complications, corresponding to 
12.2% of deaths worldwide [1]. Each year, DM generates 
large economic losses, both for patients (loss of produc-
tivity, reduced quality of life, premature mortality) and 
health systems due to the high costs of care, diagnosis, 
and treatment [7]. The International Diabetes Federation 
estimates that health expenditures for 2021 resulted in 
US$966 billion worldwide, forecast to reach more than 
$1054 billion by 2045 [1]. Symptoms of type 2 DM can 
develop over years, people can live without realizing their 
health status [2], finding that about 50% of the population 
suffering from DM are not diagnosed in time [8]. Late 
diagnosis leads to numerous health problems and a large 
number of deaths each year, so the development of meth-
ods for early diagnosis and initiation of timely treatment 
is essential to improve the quality of life of patients and 
reduce the loss of productivity and healthcare costs.

In general, healthcare institutions are large generators 
of data, as led to an increase in research in the field of 
healthcare in recent years using computational tech-
niques that exploit said data [9–12]. Specifically, several 
studies have been conducted to predict DM, involving 
artificial intelligence (AI) techniques, and datasets that 
include patients’ clinical and sociodemographic infor-
mation. For instance, Islam et  al. [8] developed several 
models such as Naive Bayes, Decision Tree, Logistic 
Regression, Random Forest (RF), and Artificial Neural 
Networks (ANN). The results showed that ANN was the 
best model classifying 99% of the instances correctly. 
Ergün et  al. [13] used eight AI techniques, where the 
highest accuracy rate was obtained by using Convolu-
tional Neural Network (CNN) with 99.04%, followed by 
XGBoost and RF with accuracies of 97.89% and 97.69%, 
respectively. Chaves et  al. [14] developed a model for 
early diagnosis of DM and they found in their results 
that ANN represented the best model with a correct pre-
diction of 510 out of 520 instances, with an accuracy of 
98.08%. García-Ordás et al. [15] used deep learning com-
bined with augmentation techniques to address DM pre-
diction, and compared the original PIMA dataset with an 
oversampled dataset with a variational automatic encoder 
(VAE); the best single classical model corresponded to 
multilayer perceptron on the VAE set with an accuracy of 
79.22%. On the other hand, Reddy et al. [16] reported the 
use of genetic learning and chaotic features for non-inva-
sive diagnosis of DM. In addition, they reported the use 
of an improved hybrid version of the Extreme Learning 

Machine algorithm combined with an improved ver-
sion of Particle Swarm Optimization (ELM-PSO) [17]. 
The results of these works showed good performance in 
detecting or diagnosing diabetes noninvasively. Finally, 
Swaroop et  al. [18] used ensemble methods such as 
Ant Colony Optimization with Xgboost and Gray Wolf 
Optimization with Adaboost. The performance metrics 
showed that Ant Colony Optimization with Xgboost out-
performed the other combinations tested.

Despite the great variety of articles reported in the 
literature on DM prediction, the works present some 
limitations. On one side, some studies did not use pre-
processing techniques to improve data quality such as 
oversampling to balance classes; the use of unbalanced 
data can affect the quality of model results. On the other 
hand, several studies focus on the development of poorly 
understandable and complex models, which affect the 
interpretation by health professionals, who are the most 
interested in performing clinical follow-up of patients. 
The diagnosis of diseases such as DM is a complex pro-
cess because it is a multifactorial problem where a pro-
fessional must analyze all the factors to detect the disease 
early. The works reported in the literature focus on 
developing complex models that improve the accuracy 
to predict the disease sometimes sacrificing the inter-
pretability of the results. The sole prediction of whether 
or not the patient has DM is insufficient for such a com-
plex problem. Medical professionals are interested not 
only in tools that allow them to detect the disease with 
excellent predictive ability but also, in assessing the 
impact of each predictor variable on the presence of DM. 
In addition, the development of models that allow the 
behavior of each variable to be evaluated through simu-
lated iterations is more useful for early detection of the 
disease. Also, another limitation of the studies reported 
in the literature is that they do not integrate different 
approaches of different nature for disease analysis. Using 
different modeling approaches could help to extract more 
complete information about the disease than if only one 
approach is used. The generation of knowledge from the 
data may be more complete when different approaches 
of different natures are integrated for the analysis of DM. 
Classical statistical techniques are excellent for analyzing 
linear relationships and simple patterns. However, DM 
is a complex disease with multiple interrelated factors. 
AI techniques can identify nonlinear and complex pat-
terns in large datasets, providing a deeper understanding 
of the relationship between various variables. Nonethe-
less, a final limitation is that these approaches are data 
intensive. Thus, it is important to develop models on 
small datasets, because in many parts of the world data 
availability is low for this disease. Combining these two 
approaches on datasets with few or many data, depending 
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on the context, can provide a more complete and accu-
rate view of the variables related to DM, which is crucial 
for informed health and medical decision-making.

Based on this context, the aim of our research was to 
carry out an explainable analysis of DM using statistical 
and AI models. The novelty of our work lies in the use of 
two different approaches, such as conventional statistics 
and AI, to develop a comprehensive in-depth analysis of 
diabetes. To this end, in this work we carry out a descrip-
tive analysis, an analysis of associations between variables 
of interest, predictive models to classify individuals with 
and without diabetes; and finally, an explanatory analy-
sis using AI techniques. Specifically, the contributions of 
our research to the state of the art are: i) an explainable 
analysis of DM that integrates several approaches, such 
as statistical tests and AI techniques in a small dataset; 
ii) several AI models that predict with high accuracy 
the presence of DM using sociodemographic and clini-
cal information; iii) an analysis of the explainability and 
interpretability of all the models developed; iv) a quan-
titative comparison to evaluate the capacity of our pro-
posed models and compare them with those reported in 
the literature.

The remainder of the paper is organized as follows: 
Material and methods  section details the materials 
and methods, describing the dataset, preprocessing 
techniques, model development, and evaluation met-
rics. Results  section shows the experimental results. 

Discussion  section discusses the results and compares 
them with related work. Finally, Conclusions section con-
cludes the paper, identifies limitations, and recommends 
future work.

Material and methods
This section describes the methodological framework 
of the research to meet the proposed objective. Figure 1 
represents the outline of the main stages of the pro-
cess from data collection to the evaluation of the pro-
posed predictive models. We conducted a quantitative 
cross-sectional study, in which, we initially performed 
a descriptive analysis to analyze the distribution of the 
data [19]. Then, we performed an association analysis to 
find dependencies between each predictor variable and 
the presence of DM [12]. Subsequently, we used four AI 
techniques to develop DM prediction models with subse-
quent evaluation of the performance of each one. Finally, 
we performed an explainability analysis for each model 
using different methodologies such as SHAP (SHapley 
Additive exPlanations) values, feature importance, and 
scenario-based computational simulations.

Data source
An open-access dataset was used to develop several mod-
els to detect and analyze DM. We used the early stage 
DM risk prediction dataset, which is licensed under 
Creative Commons Attribution 4.0 International license 

Fig. 1 Methodological framework of the research
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[8]. This dataset contains signs and symptoms informa-
tion of 520 patients from Sylhet Diabetes Hospital, Bang-
ladesh, which was collected by direct survey application 
to patients under medical supervision. This group of 
individuals consisted of 320 diabetic patients and 200 
individuals without DM. Table 1 shows the set of the 17 
variables, including a class variable corresponding to the 
presence or absence of DM. All variables, with the excep-
tion of age, are binary variables (Yes/No). We chose this 
dataset because we wanted to develop predictive mod-
els on a small DM dataset using statistical and AI tech-
niques. The goal was to demonstrate that AI models can 
recognize patterns in small datasets.

Descriptive analysis
A descriptive analysis of the dataset was performed to 
evaluate its distribution. Descriptive analysis was used 
to determine statistical values that later are used in the 
following analyses (for example, the frequency of cate-
gorical variables was used in dependence analysis). It was 
also used to assess the quality of the dataset (for exam-
ple, whether it had outliers, among other things). For 
numeric variables, we used measures of central tendency 
such as the mean, and measures of dispersion such as the 
standard deviation. For categorical variables, we used 
the distribution of absolute and relative frequencies with 
respect to class (absence/presence of DM).

Association or dependence analysis
Dependence analysis allows determining the association 
of each predictor variable in the dataset with the presence 

of diabetes. In particular, variables associated with dia-
betes are identified using statistical tests. To verify the 
dependence of age on DM, we used Student’s t-test [20] 
to analyze significant differences between diabetics and 
non-diabetics. Previously, the Lilliefors test [21] was used 
to verify the normality of the data. For the comparison of 
age between the two study groups, we used the following 
hypotheses:

• H0 : ēdiabetes = ēnon−diabetes

• H1 : ēdiabetes �= ēnon−diabetes

The previous hypothesis was used to evaluate whether 
the means of individuals with diabetes and those without 
diabetes are significantly different. For this, we used the 
p-value of the test and a significance level of 0.05. If the 
p-value is less than the significance level, the null hypoth-
esis is rejected, which shows that there is evidence to say 
that the ages of the two groups are different. Otherwise, 
there are no significant differences between the two study 
groups.

To perform the analysis of the association between 
the categorical variables (sex, polyuria, polydipsia, etc.) 
and the target variable (diagnosis of DM), the chi-square 
test was used [22]. For example, if we want to assess the 
association between sex and DM, we first constructed a 
contingency table that stores the observed frequencies 
of individuals classified by sex and the absence/pres-
ence of DM. Subsequently, the expected frequencies 
are calculated under the null hypothesis that there is no 
association between sex and the presence of DM. Thus, 

Table 1 Description of the variables included in the dataset

Variable Type of variable Concept ID Brief description

Age Sociodemographic C1 Length of life since birth

Sex Sociodemographic C2 Male or female

Polyuria Clinic C3 Abnormal increase in the volume of urine eliminated

Polydipsia Clinic C4 Excessive thirst

Sudden weight loss Clinic C5 Decrease in body weight, when not seeking weight loss

Weakness Clinic C6 Lack of physical or muscular strength

Polyfagia Clinic C7 Imperious and uncontrollable sensation of hunger

Genital thrush Clinic C8 Genital infection caused by fungi

Visual blurring Clinic C9 Loss of visual acuity

Itching Clinic C10 Sensation causing desire to scratch the skin

Irritabilidad Clinic C11 Exacerbated reaction to negative changes in environment

Delayed healing Clinic C12 Alteration of the natural mechanisms of skin and tissue regeneration

Partial paresis Clinic C13 Mild to moderate loss of voluntary muscle movement anywhere in the body

Muscle stiffness Clinic C14 Muscle tension, which may produce spasms and jerky movements

Alopecia Clinic C15 Abnormal loss of part or all of the hair

Obesity Clinic C16 Condition characterized by excessive accumulation of fat in the body

Class Diagnosis C17 Presence or absence of DM
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the Chi-square statistic is calculated using Eq. 1. Finally, 
statistical significance (p-value) was obtained, establish-
ing the value of 0.05 as significant for the association 
between qualitative variables and the presence of DM. 
This same procedure was performed for each of the cat-
egorical variables in the dataset described in Table 1.

Where Xi is the observed frequency, Ei is the expected 
frequency and n is the number of categories in the con-
tingency table. The hypotheses to be tested in the Chi-
square test are as follows:

• H0 : There is no dependence or association between 
the evaluated variables.

• H1 : There is some kind of dependence or association 
between the evaluated variables.

Data preprocessing
Data preprocessing is an essential stage in data min-
ing because different methods such as normalization or 
oversampling could improve data quality [23]. In this 
research, we used min-max normalization on the age 
variable (the only numerical variable) to sort the data 
between values of 0 and 1, in order to ensure faster model 
training. The formula for min-max normalization is 
expressed by the following equation [24]:

(1)X2 =

n

i=1

(Xi − Ei)
2

Ei

where enorm is the normalized age, ei is the age of each 
individual, emin is the minimum age and emax the maxi-
mum age.

In the dataset, the distribution of classes was unbal-
anced, initially containing 61.53% records of patients 
with DM and 38.47% records without DM. The use of 
unbalanced data can bias the performance of the classi-
fiers toward the majority class, affecting the accuracy of 
the minorities. Faced with this problem, we used the syn-
thetic minority oversampling technique (SMOTE) [26], 
which consists of generating new instances from data 
of the minority class. SMOTE consists of a 4-stage pro-
cess. First, the identification of instances of the minor-
ity class in the dataset is performed. Second, an instance 
and its nearest neighbors are selected using the Euclidean 
distance. Third, the algorithm generates new instances 
somewhere in the line connecting the identified instance 
and its selected neighbors. Finally, the fourth stage con-
sists of adding the newly generated instances to the 
dataset. Figure  2 shows a schematic representation of 
the process performed by SMOTE. The instances of the 
minority class are represented by green circles. The cir-
cle with X1 represents the selected instance and X3 is the 
nearest neighbor. The red circle with Xn represents the 
new data generated. Thus, we increased the number of 
data for the minor label using SMOTE, obtaining a data-
set with 640 records: 320 for DM and 320 without DM.

(2)enorm =
ei − emin

emax − emin

Fig. 2 Schematic representation of SMOTE. Green circles indicate the minority class. X1 and X3 represent the selected instance and the nearest 
neighbor, respectively. The red circle with Xn represents the new data generated (adapted from [25])
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AI techniques
Fuzzy cognitive map
A Fuzzy Cognitive Map (FCM) is an AI technique that 
simulates human reasoning, through the graphical 
representation or modeling of complex systems, using 
their concepts and the interrelation between them [27]. 
FCMs are effective in modeling the uncertainty and 
imprecision present in many datasets. In the context of 
structured data, where ambiguity can arise, FCMs can 
better capture complexity. In addition, FCMs allow for 
clearer interpretation and explanation of model deci-
sions. This is crucial in applications where understand-
ing the reasoning behind a prediction is as important, 
especially in medical environments. Figure 3 illustrates 
in a simple way the representation of an FCM, a graphi-
cal structure with five concepts ( C1 to C5 ). Each concept 
(C) represents a variable or characteristic of the system 
under study, for example, symptoms of a disease or lab-
oratory tests. The influence of one concept on another 
is represented by a weight (W) on a directed edge [28].

Mathematically, the FCM in Fig. 3 can be represented 
by a matrix (see Eq.  3 [29]), called adjacency matrix 
[29], which contains information on the influences 
between concepts of an FCM:

FCM models can be constructed in three ways [30]. 
In the first one, a group of experts select the concepts of 
interest and assign relationships between those concepts. 
In the second one, the relationships between concepts are 
determined using datasets and optimization algorithms 
[28]. Finally, the third option is a combination of the 
first two options, where experts define the concepts with 
their relationships, and the weights are optimized using 
data and algorithms for this purpose [24]. The resulting 
FCM models can be used for the description, prediction, 
or evaluation of the behavior of variables using computa-
tional simulations. In the present work, we used the third 
option, where first, three experts assigned relationships 
between concepts, and using a dataset we optimized the 
matrix with the available data. For this objective, we used 
the Particle Swarm Optimization (PSO) algorithm. This 
algorithm can be modeled with two equations, which 
represent the update of the velocity of a particle i and the 
position of the particle. Equation 4 allows the update of 
the velocity of particle i, which for our case is an FCM 
candidate, while Eq. 5 updates its position, which repre-
sents an optimal weight matrix for each FCM [24]:

where vi is the particle velocity; r1 and r2 are random val-
ues with uniform distribution; s1 is the cognitive coeffi-
cient, responsible for the particle tending to move toward 
the position where it has obtained the best results so 
far; s2 is the social component, also known as collective 
behavior, responsible for the particle tending to move 
toward the best position found by the swarm so far; Wbest

i  
is the best position obtained by a particular particle, 
while Wgbest

i  is the best position obtained by any particle 
in the swarm. Recall that each particle is an FCM candi-
date, while the position is a weight matrix to construct 
each FCM [28].

For the construction of the FCM model, we first 
selected the variables described in Table 1. These vari-
ables define concepts within the FCM (e.g., C1: age; 
C2: sex, C3: Polyuria, etc.), which must be connected 
by arrows indicating the influence of one concept to 

(3)

(4)
vi(t + 1) = vi(t)+ s1 × r1 · (W

best
i −Wi(t))+ s2 × r2 · (W

gbest
i −Wi(t))

(5)Wi(t + 1) = Wi(t)+ vi(t)

Fig. 3 Example of an FCM with five concepts and six relationships. 
Adapted from [28]
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another. Three experts then proposed a preliminary 
connection of the concepts. Subsequently, using the 
PSO algorithm (see Eqs.  4 and 5), the relationships 
between the concepts are optimized from the data 
through a training process. In the case of PSO, a par-
ticle position is a weight matrix to build an FCM, such 
that it seeks to find the weight matrix that optimizes 
the learning error. After the FCM is built, it can be used 
to perform scenario-based simulations and thus evalu-
ate the behavior of the variables used in the predic-
tion. A grid search-based hyperparameter tuning was 
used to find the best combination of hyperparameters 
to generate the FCM with the best predictive perfor-
mance. For each configured combination, the model 
was implemented and evaluated. In this way, the evalu-
ation metrics were obtained allowing us to choose the 
model with the highest accuracy. Table  2 describes 
the different parameters, and their values, used in 
the adjustment of the hyperparameters in each of the 
developed models according to the technique used for 
their development.

To give more details, in the case of FCM, there are two 
types of parameters to optimize. Those linked to PSO, 
which is used in the learning phase of the FCM weights 
(in this case, the values of r1 , r2 ; s1 , s2 and the initial 
population are required to be determined), and those 
related to the behavior of the FCM (the activation func-
tion that determines the activation level of each concept 
and the inference function that describes its reasoning 
process). All these parameters were tuned using a grid 

search-based hyperparameter optimization approach to 
find their best combination.

ANN
An ANN is an AI technique that aims to mimic the func-
tions of the human brain to solve complex problems. 
ANNs are especially effective for modeling nonlinear 
relationships in structured data. They can learn complex 
patterns and hierarchical representations, which is ben-
eficial when interactions between variables are not sim-
ple or straightforward. In more complex problems, deep 
learning architectures, such as deep neural networks, can 
automatically extract features and patterns from struc-
tured data, improving the predictive capability of the 
model. ANNs have the ability to generalize well from lim-
ited training data, making them suitable for predicting 
structured datasets of different sizes and complexities. 
Their applications are focused mainly on image and voice 
recognition and automatic translation [31]. The first neu-
ral model developed was the Perceptron, which consists 
of a fully interconnected direct-feed neural network, in 
which data are transmitted from the input to the hidden 
layer and from there to the output layer [32].

Figure 4 shows an example of an ANN. This neural net-
work (MLP) integrates an input layer (visible layer) with 
n neurons ( x1, . . . xn ), a hidden layer ( h1, . . . ho ), and an 
output layer, which are the output variables of the model 
[33]. To define the final output, the model uses the fitted 
values of weights and biases, thus achieving a relation-
ship between inputs and outputs [34]. We used an MLP 

Table 2 Configuration of hyperparameters to tune in the developed models

Technique Hyperparameter Options to configure

PSO-FCM Initial population 50, 100 ,150 , 200, 250, 300

Activation function Sigmoid, tanh

Inference function Standard-Kosko, Modified-Kosko, Rescaled

ANN (MLP) Hidden units 16, 32, 64, 128, 256

Learning rate 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5

Activation function Tanh, ReLU

Optimizer Stochastic gradient descent, Adam

Type of learning Constant, adaptive

SVM Kernel Lineal, radial, sigmoid

C 0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000

Gamma 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

XGBoost Predictors choose at random Random values between 1 and 20

Number of trees 10, 100, 1000

Minimun node size 2, 5, 7, 11, 15, 20, 25, 30

Depth of trees 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25

Learning rate Random values between 0 and 1

Minimum loss reduction Random values between 0 and 0.01

Percentage of sample Random values between 0 and 1
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with different numbers of neurons in the hidden layer 
and learning of two types, constant and adaptive. All the 
hyperparameters used for optimization can be seen in 
Table 2.

SVM
The Support Vector Machine (SVM) is an AI tech-
nique that is suitable for relatively small datasets with 
few outliers [35]. SVMs are particularly useful in envi-
ronments with high-dimensional structured data, as 
they can efficiently handle datasets with many predic-
tor variables. SVMs are less prone to overfitting, mak-
ing them suitable for problems where relatively small 
datasets are available. This is relevant in many real-
world scenarios where data may be limited. SVMs tend 
to generalize well, providing robust predictions even 
on unseen data. This is crucial for the practical appli-
cability of predictive models in real-world situations. 
Figure  5 shows a schematic representation of an SVM 
to classify instances. This strategy defines a cutting 
hyperplane, a line that separates categories of data and 
will divide the space into different domains containing 
each category of data [36]. This model was built using 
multiple combinations of the parameters to identify the 

best configuration for addressing the DM classification 
problem. The hyperparameter configurations used for 
this technique are shown in Table 2.

XGBoost
XGBoost, or EXtreme Gradient Boosting, is a very 
effective AI technique, which is an end-to-end scalable 
gradient-boosted tree system modified from the Gradi-
ent Boosting Machine (GBM) technique [38]. XGBoost 
is widely used for prediction, classification, and regres-
sion [39]. Figure 6 shows the schematic representation 
of XGBoost, which is an iterative algorithm with mul-
tiple decision trees. Each tree learns from the residu-
als of all previous trees ( fk ). In the end, the predicted 
output of XGBoost is the sum of all the results ( ̂y ) [39].

The XGBoost algorithm was used in the present study 
because of its performance characteristics. Initially, 
we can say that it is a fast classifier, with a high degree 
of learning and training speed, because of its paral-
lel processing capability and optimization of new trees 
each time they are attached, it is effective in solving 
classification and data preprocessing problems, which 
increases accuracy [40]. The hyperparameters used to 
tune this model can be seen in Table 2.

Fig. 4 Schematic representation of an ANN, specifically an MLP. Source: own elaboration
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Experimental configuration
Training, validation and testing
For training, validation and testing, we have used the 
DM dataset described in the previous sections. We have 
used a 5-fold cross-validation method for training and 
validation of our AI models [14]. This method was exe-
cuted using three subsets of data for training, validation, 
and testing of the model. 70% of the data was used for 
training and validation, and 30% for testing the model. 

Figure 7 shows a schematic representation of the 5-fold 
cross-validation. First, we divided the training and valida-
tion data (70%) into five subsets, of which four were used 
for training and one for validation. The validation phase 
consists of applying the trained model on the validation 
set. Next, the process was repeated with a different subset 
from the previous one, and in the same proportion, i.e., 
four for training and the remaining subset for validation. 
After five-fold, the best model and its hyperparameters 

Fig. 5 Schematic representation of an SVM with a hyperplane of separation. Adapted from [37]

Fig. 6 Schematic representation of an XGBoost algorithm. Adapted from [39]
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are selected to evaluate its performance by applying it to 
30 percent of the test dataset.

Evaluation metrics
The developed models were evaluated using metrics to 
determine the ability to detect DM. Below, we briefly 
describe the estimation of each of these metrics:

• Accuracy: percentage of correctly classified examples 
among the total number of classified examples [41]. 

 where TP are the true positives, FN are false nega-
tives, FP are false positives and TN are true negatives.

• Sensitivity: measures the ability of the classifier to 
predict positive cases from those really positive [41]. 

• Specificity: measures the ability of the classifier to 
predict negative cases from those really negative [41]. 

(6)Accuracy =
TP + TN

TP + FN + FP + TN

(7)Sensitivity :
TP

TP + FN

Explainability analysis
To analyze the interpretability of the models, we used 
different methodologies. For the FCM-based model, 
computational simulations allow us to explore how cer-
tain changes in variables might affect the prediction of 
DM. This is crucial for assessing the impact of potential 
interventions. Additionally, since DM can be influenced 
by a variety of factors, the simulations allow to consider 
diverse scenarios and to evaluate personalized preven-
tion strategies. For ANN and SVM-based models, we 
use Shapley values, which provide a measure of the indi-
vidual contribution of each variable to the prediction. In 
the case of DM, this could help identify which specific 
factors are influencing the prediction of a particular risk. 
In addition, Shapley values not only allow an understand-
ing of the overall impact of variables but also how they 
affect the prediction for individual cases. This is cru-
cial for tailoring treatment strategies to specific patient 
needs. Finally, for XGBoost-based models, we use feature 
importance, which helps to identify the most influential 

(8)Specificity :
TN

TN + FP

Fig. 7 Schematic representation of 5-fold cross-validation. Adapted from [24]
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variables in DM prediction. This is essential for prioritiz-
ing efforts in disease management and prevention.

The importance of using different approaches for DM 
explainability analysis lies in the complementarity of their 
strengths. While Shapley values and feature importance 
provide a detailed understanding of the importance of 
variables, computational simulations allow the explo-
ration of model behavior in hypothetical situations. By 
combining these approaches, a comprehensive analysis 
is achieved that not only highlights key variables but also 
provides valuable information on how the model reacts to 
changes in the environment and specific scenarios. This 
is essential to ensure that AI models applied to DM are 
not only accurate but also interpretable and useful in a 
clinical and decision-making context. The analysis of the 
variables in each model is shown in Discussion section.

Finally, we have carried out an ablation study to ana-
lyze the most important variables in the prediction of 
diabetes. This sensitivity analysis allows knowing the 
importance of each of the variables in the diagnosis by 
eliminating one by one the most important variables 
according to the previously performed explainability 
analysis. After the elimination of each variable, the per-
formance of the model is observed. In this way, the 
impact of each characteristic on the performance of the 
model is evaluated.

Results
In this section, we present the results of exploratory data 
analysis, association tests, and the implementation of 
four AI techniques on the DM dataset described in the 
previous section.

Descriptive analysis
Table  3 shows the distribution of absolute and relative 
frequencies (percentages) for the characteristics concern-
ing diagnosis. Regarding sex, it was observed that the 
frequency of DM is higher in women at 33.3%, while in 
non-diabetic patients men are found in higher frequency. 
Age was the only numerical variable within the dataset. 
The results showed that individuals ranged in age from 16 
to 90 years. The mean age of all individuals was 48 years 
with a standard deviation of 12 years. About the study 
group, patients with DM had a higher mean age (mean = 
49.1±12.1) than patients without DM (mean =46.4±12.1). 
Of all the clinical variables included in the dataset, we 
found that polyuria, polydipsia, sudden weight loss, 
weakness, polyphagia, visual blurring, and partial paresis 
were more frequent in individuals with DM.

Association results
To analyze the association between the predictor vari-
ables and the diagnosis of DM, we used the Chi-square 

test. Table  3 shows the statistical significance (p-value) 
for the dependence between the characteristics and the 
presence of the disease. The results show that there is a 
dependence between all variables and the presence of 
DM, except itching, delayed healing, and obesity with 
p-values of 0.829, 0.326, and 0.127, respectively. Regard-
ing age, there were significant differences between the 
ages of patients with DM and those without DM (p = 
0.013). In this case, the average age of diabetics is higher 
than in non-diabetics.

Performance of the developed models
We applied four AI techniques to predict DM using soci-
odemographic and clinical information. Table  4 shows 
the performance results of each model expressed in 

Table 3 Distribution of absolute and relative frequencies (%) of 
the characteristics present in the dataset

Characteristic Category Absolute frequency (%) p

Non-DM DM

Sex Female 19(3.7) 173(33.2) <0.001

Male 181(34.8) 147(28.3)

Polyuria Absence 185(35.6) 77(14.8) <0.001

Presence 15(2.9) 243(46.7)

Polydipsia Absence 192(36.9) 95(18.3) <0.001

Presence 8(1.5) 225(43.3)

Sudden weight loss Absence 171(32.9) 132(25.3) <0.001

Presence 29(5.6) 188(36.2)

Weakness Absence 113(21.7) 102(19.3) <0.001

Presence 87(17.7) 218(41.3)

Polyfagia Absence 152(29.2) 131(25.2) <0.001

Presence 48(9.2) 189(36.4)

Genital thrush Absence 167(32.1) 237(45.6) 0.016

Presence 33(6.3) 83(16.0)

Visual blurring Absence 142(27.3) 145(27.9) <0.001

Presence 58(11.2) 175(33.6)

Itching Absence 101(19.4) 166(31.9) 0.829

Presence 99(19.1) 154(29.6)

Irritability Absence 184(35.4) 210(40.3) <0.001

Presence 16(3.1) 110(21.2)

Delayed healing Absence 114(21.9) 167(32.2) 0.326

Presence 86(16.5) 153(29.4)

Partial paresis Absence 168(32.3) 128(24.6) <0.001

Presence 32(6.2) 192(36.9)

Muscle stiffness Absence 140(26.9) 185(35.6) 0.007

Presence 60(11.5) 135(26.0)

Alopecia Absence 99(19.0) 242(46.5) <0.001

Presence 101(19.5) 78(15.0)

Obesity Absence 173(33.3) 259(49.8) 0.127

Presence 27(5.2) 61(11.7)
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terms of accuracy, sensitivity, and specificity. The model 
built with XGBoost presented the best predictive per-
formance with an accuracy, sensitivity, and specificity 
of 1.00. Of the four models developed, the FCM-based 
model is the only one that can be visualized due to its 
simplicity. Figure 8 shows a schematic representation of 
the FCM-based model for prediction. The FCM allows 
visualization of the influence of the concepts or predictor 
variables on the presence of DM.

Discussion
Characterization of the individuals included in the dataset
DM has increased in recent decades and has become 
one of the leading causes of mortality worldwide [1], 
due to reasons that include inadequate dietary hab-
its due to unhealthy food consumption and sedentary 
lifestyle [2, 14]. In the present study, it was observed 
that variables such as age, polyuria, polydipsia, sudden 
weight loss, weakness, polyphagia, visual blurring, and 
partial paresis occurred more frequently in people with 
a positive diagnosis of DM. This finding is consistent 
with the frequencies reported by other authors for the 
variables in the dataset [8, 34]. In relation to the study 
group, patients with DM presented a higher average age. 
According to Nurjahan et al. [42], DM and other chronic 
diseases are very frequent and widespread, especially 
among the elderly. This may be associated with the fact 
that advanced age predisposes to the development of 
DM due to factors such as, decreased physical activity, 
increased adipose tissue, and increased insulin resistance 

[1]. Indeed, the numbers of the aging population have 
increased in recent years [43], and several studies have 
related the risk of advanced age and associated compli-
cations [44, 45]. On the other hand, we have observed 
that there was a higher frequency of women with DM, 
according to Nipa et al. [34], gender, and other symptoms 
such as visual blurring, ictus, partial paresis, alopecia and 
weakness can be considered minor risk factors for DM, 
which increase if the person has a family history of the 
disease and habits such as, smoking [2]. Timely identifi-
cation of these specific symptoms in patients can help the 
physician to detect DM more effectively.

Association analysis
Predicting the early onset of DM is a task that can be dif-
ficult due to the number of signs and symptoms to evalu-
ate in each patient so that about 50% of these individuals 
are not diagnosed promptly [46]. The results showed that 
sex, polyuria, polydipsia, sudden weight loss, weak-
ness, polyphagia, visual blurring, irritability, and partial 
paresis, presented significant statistical differences with 
respect to DM (p<0.001). Laila et  al. [23] have stated 
that polyuria is the main indicator of DM risk. On the 
other hand, frequent urination during DM is generated 
because high blood sugar puts pressure on the kidneys, 
causing them to produce more urine to buffer the excess 
sugar, causing dehydration and a constant thirst signal 
[47]. Over time, these organs weaken moving towards 
progressive deterioration of their function, contributing 
to poor water and electrolyte compensation, given the 

Table 4 Performance results of the models developed in this research

Model Optimal hyperparameters Accuracy Sensitivity Specificity

PSO-FCM Initial population = 200 0.95 0.96 0.94

Activation function = sigmoid

Inference function = modified-Kosko

ANN Hidden layer units = 256 0.99 0.99 0.99

Learning rate = 0.0001

Activation function = ReLU

Optimizer = Adam

Learning type = constant

SVM Kernel = radial 0.99 1.00 0.99

C = 1.0

gamma = 1.0

XGBoost Randomly Selected Predictors = 5 1.00 1.00 1.00

Trees = 1000

Minimal node size = 2

Tree depth = 10

Learning rate = 0.08321

Loss reduction = 7 x 10-9

Proportion observations sampled = 0.8852
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sensitive losses during the disease and other over-aggra-
vated causes (temperature, excessive sweating, diarrhea, 
fever, among others) [44]. For these reasons, Le et al. [33] 
have affirmed that polyuria and polydipsia are related 
characteristics, very important among patients with 
early manifestations of DM. Besides, symptoms such as 
sudden weight loss could also constitute an early signal 
for the onset of DM. This process is accompanied by an 
irrepressible and uncontrollable feeling of hunger (poly-
phagia) with a progressive reduction or gain of total body 
weight [48]. In this case, insulin insufficiency prevents 
glucose from reaching the body’s cells through the blood-
stream, so the body has to start burning fat and muscle 
to meet the daily energy demand. During this phenom-
enon, there may also be episodes characterized by muscle 
weakness or paralysis of any part of the body [34]. Other 
authors have also considered irritability and alopecia as 
early indicators of DM [8, 33].

In our study, characteristics such as delayed healing 
(p=0.326), genital thrush (p=0.016), itching (p=0.829), 
muscle stiffness (p=0.007), and obesity (p=0.127) did 
not present significant statistical differences concerning 

DM. Observing the behavior of these variables, we can-
not directly relate them to DM, especially when the 
appearance of several of these symptoms can be attrib-
utable to other conditions, such as the environment [49, 
50], heredity [51], hormonal regulation [52] or related to 
sex [53]. However, Lai et  al. found a strong association 
between body mass index (BMI) and the prediction of 
DM [54].

Analysis of performance of the developed models
In this study, four AI techniques were used to build pre-
dictive models of DM: FCM, ANN, SVM, and XGBoost. 
The results showed excellent performance in all models; 
however, XGBoost achieved a perfect accuracy of 1.0; 
ANN and SVM achieved an accuracy of 0.99, and FCM 
obtained a slightly lower, but still significant, accuracy of 
0.95.

The high accuracy achieved by the prediction models 
in this study can be attributed to several reasons. First, 
the AI techniques used, such as FCM, ANN, SVM, and 
XGBoost, are known for their ability to extract com-
plex patterns and capture nonlinear relationships in the 

Fig. 8 The FCM-based model developed to predict DM
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data allowing for excellent predictive performance and 
higher generalizability [55]. Second, the normalization 
technique applied before model training may have con-
tributed to better comparability of the data and thus 
an improvement in overall accuracy. In addition, the 
SMOTE technique used to balance the classes may have 
been instrumental in improving the predictive ability of 
the models. Class imbalance in medical datasets, as in the 
case of DM, can negatively affect the model’s ability to 
correctly recognize instances of the minority class.

On the other hand, the superior performance of 
XGBoost compared to the other techniques evaluated 
may be due to its ability to build deeper and more com-
plex decision trees, as well as its ability to effectively han-
dle nonlinear features and complex relationships in the 
data. Particularly, XGBoost is a boosting algorithm that 
focuses on iteratively improving model performance and 
can combine multiple weak models into a stronger one. 
This may have led to a better capture of the relationships 
between the most relevant variables/features, leading to 
improved prediction accuracy. This flexibility and supe-
rior predictive power may explain why XGBoost achieved 
perfect accuracy in this study. In terms of sensitivity and 
specificity, consistent performance was observed across 
all models, although again the XGBoost model showed 
the best results. This suggests that XGBoost was able 
to detect both positive and negative cases more accu-
rately compared to the other models. Due to the very 
good results of XGBoost, we evaluated the ability of the 
XGBoost model to generalize and avoid overfitting by 
examining the training and validation losses. Training 
loss evaluates how well the model fits the training data-
set. In contrast, validation loss evaluates the model’s per-
formance on the validation dataset. These two losses are 
usually visualized using curves to analyze the dynamics 

of these two metrics. Figure  9 illustrates the behavior 
of the training loss and validation loss, where we can 
observe a remarkable decrease in the losses as the epochs 
increase. This behavior is observed for both subsets, indi-
cating that there is no overfitting to the training dataset 
and the model can generalize to unseen data. This find-
ing is important for DM detection because it strengthens 
the ability of our model to detect disease in previously 
unseen data.

Explanability analysis of the developed models
Model based on FCM
The results show that FCM can predict correctly DM 
in 95% of the cases. Despite the accuracy obtained by 
FCM, this model is simple to build, visualize and inter-
pret. Additionally, it allows an evaluation of the variables 
involved in the prediction using scenario-based com-
putational simulations. Figure  8 shows a graphical rep-
resentation of the FCM developed where the predictor 
variables can be observed with their respective weights 
or influences on the class (presence or absence of DM). 
Due to the high complexity of the other models, it is not 
so easy to visualize them for the medical professional to 
analyze and interpret. In this case, FCM has an advantage 
over the other models.

Regarding the evaluation of factors over time, Fig.  10 
shows an example of FCM simulations. The x-axis shows 
the simulated iterations and the y-axis shows the value 
of the variables or concepts. The simulation in Fig.  10 
corresponds to a patient with polyuria, polydipsia, and 
polyphagia. After several simulated iterations, the sys-
tem achieves an equilibrium state indicating that the 
concepts do not change value after iteration 72 (orange 
dotted line). In this plot, we can see how the model 
activates non-active variables from the beginning such 

Fig. 9 Training and validation losses for the Xgboost model to predict DM
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as genital thrush, visual blurring and delayed healing 
(purple curve). On the other hand, we can see that the 
concept related to the diagnosis of DM (red curve) is 
activated from the first iteration, which indicates that 
the symptoms are characteristic of the disease. In this 
way, the FCM model not only makes a prediction but 
also shows the behavior of the variables that lead to that 
prediction. In this way, FCM allows building models in a 
simple and explainable way that allows medical profes-
sionals to have an overview of the problem and not only 
a prediction. Although XGBoost allows the evaluation of 
the importance of the features on the prediction, it does 
not allow an evaluation of factors over time (simulated 
iterations).

ANN and SVM‑based models
To evaluate the impact of features on prediction for 
both ANN and SVM we use Shapley values. The objec-
tive of this methodology is to explain the prediction of 
an instance x by calculating the contribution of each fea-
ture to the prediction. Figure 11 shows a scatter plot of 
the SHAP values for ANN (see Fig.  11a) and SVM (see 
Fig. 11b), respectively. The X-axis of the plot represents 
the SHAP value; if the value moves to the right (positive 
value), then it indicates that it increases the final predic-
tion, while if the value moves to the left (negative value), 
then it decreases the final prediction. Each SHAP value 
is color-coded: red represents the highest value of the 
attributes while blue represents the lowest. These two 

figures show that the variables that most influence the 
prediction of DM are polyuria, polydipsia, and sex. Spe-
cifically, high values of polyuria, polydipsia, polyphagia, 
delayed healing, and blurred vision increase the predic-
tion value, so these variables increase the risk of DM. On 
the other hand, the female sex (sex = 0) has a higher risk 
of presenting DM. Of the variables that have the least 
impact on the prediction of DM are genital thrush and 
obesity, perhaps because these are generated after pre-
senting the disease.

Model based on XGBoost
One of the advantages of XGBoost is that it is a tech-
nique that allows us to identify the importance of each 
of the variables in the prediction. In Fig. 12, we observe 
the graphical representation of this importance which 
revealed that the most influential variables in the predic-
tion of DM were polydipsia, polyuria, sex, and age. These 
results are consistent with the existing medical literature, 
where it has been established that these factors are sig-
nificant indicators of the presence of DM [33, 56]. Some 
variables such as weakness, visual blurring, polyphagia, 
obesity and genital thrush, presented feature importance 
equal to 0, which may have a limited capacity to reduce 
the error in the tree partitions, perhaps due to the low 
correlation with the target variable. This behavior can 
also be explained by redundant information already 
explained by other more influential variables, such as 
polydipsia or polyuria.

Fig. 10 Behavior of the variables for the prediction of DM using an FCM. The orange dotted line indicates when the system reaches equilibrium
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Because Xgboost was the best model for predicting 
diabetes, we performed an ablation study to identify the 
most important features in the proposed classification 

model. We systematically eliminated one of the follow-
ing characteristics: polyuria, polydipsia, sex, and age. 
These variables were chosen because they were the most 

Fig. 11 SHAP values for ANN and SVM



Page 17 of 20Hoyos et al. BMC Medical Informatics and Decision Making          (2024) 24:383  

important in the results according of the explainability 
analysis. The elimination of polydipsia and polyuria sig-
nificantly reduces the accuracy of the model from 1.0 to 
0.85 and 0.78, respectively. This suggests that polydipsia 
and polyuria are critical features for the prediction of 
DM in this dataset. Particularly, it is widely known in the 
literature that the presence of excessive thirst and exces-
sive urine urination are strong indicators of the condition 
of patients with DM. On the other hand, removing sex 
and age has a moderate impact on accuracy, going from 
1.0 to 0.90 and 0.91, respectively. This suggests that sex 
and age have a moderate relationship with the prediction 
of diabetes in this dataset. This could indicate that, in this 
particular case, polyuria and polydipsia are determining 
factors in the diagnosis of diabetes, however, age and sex 
are less so.

Quantitative comparison with previous studies
In this study, four models were developed to predict 
DM, of which the XGBoost-based model obtained an 
accuracy, sensitivity, and specificity of 1. These results 
indicate an outstanding performance of the model in 
accurately classifying positive and negative cases of DM. 
However, it is important to contextualize these findings 
in comparison to other previous studies that have also 
used AI-based models to address the same issue. To be 
fair, we collected studies that used the same dataset to 
build the models.

Table  5 shows a quantitative comparison of the per-
formance of our best model with the best model from 
each study reported in the literature. This table com-
pares the performance of the XGBoost model with 
other AI approaches such as RF, ANN, and CNN. Our 
XGboost model demonstrated an excellent ability to 
predict DM with 100% accuracy, indicating that the 
model correctly classifies 100% of the instances in the 
test set (data not previously seen by the model). The 
sensitivity and specificity of the model were 100%, indi-
cating that the model generates neither false negatives 
nor false positives. Our best model outperforms mod-
els reported in the literature that used the same dataset. 
This could be because some previous studies did not 

Fig. 12 Feature importance to predict DM using XGBoost algorithm

Table 5 Quantitative comparison of the best models reported in 
the literature for DM prediction using the same dataset

Study Best model Accuracy Sensitivity Specificity

Islam et al. [8] RF 0.99 0.97 0.97

Chaves et al. [14] ANN 0.98 0.98 0.97

Laila et al. [23] RF 0.97 0.98 0.96

Ergün et al. [13] CNN 0.99 0.98 -

Oladimeji et al. [57] RF 0.98 - -

Sadhu et al. [58] RF 0.98 - -

Hennebelle et al. 
[59]

RF 0.97 - -

Our work XGBoost 1.0 1.0 1.0
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employ data preprocessing techniques such as normali-
zation and class balancing, which could have influenced 
the results and the comparison with XGBoost. Normal-
ization standardizes features to ensure similar weight in 
model learning, and class balancing, using techniques 
such as SMOTE, is essential to address imbalances in 
the dataset. These techniques are crucial to improve the 
model’s ability to correctly recognize and classify DM 
cases.

Conclusions
In this research, we set out to develop an explainability 
analysis of DM using statistical and AI techniques with 
a small dataset. We developed this analysis by combin-
ing these techniques with sociodemographic and clini-
cal information related to DM. Initially, we carried out 
a descriptive analysis that allowed us to know the main 
characteristics of the individuals. Subsequently, an asso-
ciation analysis was performed to determine the asso-
ciation or relationship between the predictor variables 
and DM. Subsequently, prediction models built using 
AI techniques, such as FCM, ANN, SVM and XGBoost, 
showed excellent results in the prediction of DM. The 
XGBoost model stood out for superior performance in 
accuracy, sensitivity, and specificity compared to other 
works published in the literature. These results support 
the efficacy of AI techniques in the field of disease pre-
diction and suggest their potential usefulness in clinical 
applications for DM. This work focused not only on dis-
ease prediction but also on a deep explainability analysis 
of the behavior of each of the variables used for predic-
tion. Specifically, the four AI techniques used for building 
the models allowed studying the impact of the variables 
on the final prediction with different approaches to 
explainability analysis. Particularly, scenario-based com-
putational simulations were used in the case of FCM, fea-
ture importance for XGboost, and SHAP values for ANN 
and SVM. In this way, we performed a deep explain-
ability analysis of the MD, where we not only considered 
descriptive and inferential statistics but also the behavior 
of the variables involved in the prediction process.

This research has some limitations. First, only one 
dataset from a specific region was used. The results can-
not be extrapolated to another region. Therefore, further 
research with larger and more varied datasets is recom-
mended to confirm and validate these results. Second, 
only sixteen predictor variables were used, and no other 
variables of interest for the diagnosis of DM, such as 
physical exercise or laboratory test results. The develop-
ment of models with these types of variables could pro-
vide a more robust analysis of DM. Finally, a limitation is 
that the data used for model construction were collected 
through a survey. Direct data collection with controlled 

measurements in patients with DM and in individuals 
without the disease would be interesting. Other future 
work derives from this work such as a deeper analysis 
of the explainability using different techniques existing 
in the literature. In addition, the development of hybrid 
models and the comparison of their performances and 
advantages with respect to the ML models used in this 
study. Of course, another future work is to use datasets 
with more data and variables as indicated above.
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