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Abstract
Background The objective of this study was to establish a predictive model utilizing machine learning techniques 
to anticipate the likelihood of thrombolysis resistance (TR) in acute ischaemic stroke (AIS) patients undergoing 
recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis, given that nearly half of such patients 
exhibit poor clinical outcomes.

Methods Retrospective clinical data were collected from AIS patients who underwent intravenous thrombolysis with 
rt-PA at the First Affiliated Hospital of Bengbu Medical University. Thrombolysis resistance was defined as ([National 
Institutes of Health Stroke Scale (NIHSS) at admission − 24-hour NIHSS] × 100％/ NIHSS at admission) ≤ 30%. In this 
study, we developed five machine learning models: logistic regression (LR), extreme gradient boosting (XGBoost), 
support vector machine (SVM), the least absolute shrinkage and selection operator (LASSO), and random forest (RF). 
We assessed the model’s performance by using receiver operating characteristic (ROC) curve, calibration curve, and 
decision curve analysis (DCA), and presented the results through a nomogram.

Results This study included a total of 218 patients with AIS who were treated with intravenous thrombolysis, 88 
patients experienced TR. Among the five machine learning models, the LASSO model performed the best. The area 
under the curve (AUC) on the testing group was 0.765 (sensitivity: 0.767, specificity: 0.694, accuracy: 0.727). The 
apparent curve in the calibration curve was similar to the ideal curve, and DCA showed a positive net benefit. Key 
features associated with TR included NIHSS at admission, blood glucose, white blood cell count, neutrophil count, and 
blood urea nitrogen.

Conclusion Machine learning methods with multiple clinical variables can help in early screening of patients at high 
risk of thrombolysis resistance, particularly in contexts where healthcare resources are limited.
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Background
Ischemic stroke ranks as the second most prevalent 
cause of disability and mortality on a global scale, lead-
ing to significant financial burdens in healthcare expen-
ditures, as well as productivity and economic setbacks [1, 
2]. Approximately 17.8  million adults in China are esti-
mated to have suffered a stroke in 2020 [3]. The utiliza-
tion of recombinant tissue plasminogen activator (rt-PA) 
has substantially enhanced the effectiveness of treating 
acute ischemic stroke (AIS) [4]. However, a consider-
able portion of patients continue to experience unfavor-
able functional outcomes or mortality [5], commonly 
referred to as “thrombolysis resistance (TR)”, also known 
as “non-response to thrombolysis”, or “ineffective throm-
bolysis” or “poor response to thrombolytic therapy”. TR 
is a complex clinical phenomenon characterized by the 
persistence of thrombus despite standard thrombolytic 
therapy. It has been shown that platelet-rich thrombi had 
TR [6]. Extracellular traps of neutrophils are expected to 
be a new targeting measure for TR [7]. Addressing the 
TR necessitates a thorough examination of multiple fac-
tors and the implementation of personalized treatment 
strategies. However, TR is one of the factors that affect 
the prognosis of AIS, with other factors including blood 
pressure and subsequent severe brain damage, etc. [8, 9].
Therefore, the development of clinical prediction models 
is of paramount importance in optimizing patient selec-
tion and outcomes in intravenous thrombolysis  (IVT) 
treatment.  Currently, there is no uniformity in judging 
the effectiveness of thrombolysis, and previous studies 
have focused on the use of multimodal imaging tech-
niques [10], However, due to the strict treatment time 
window and relatively complex equipment requirements, 
it is difficult to promote and popularise it in primary hos-
pitals. It is particularly important to find a scientific and 
convenient method to predict the effect of thrombolysis 
and prepare the bridging treatment after thrombolysis 
failure in advance.

Machine learning (ML) algorithms, known for their 
ability to optimize information for enhanced predic-
tion accuracy, are becoming more prevalent in the field 
of medicine for quantifying risk, identifying predictors, 
and creating precise predictive models for diagnosis and 
prognosis [11, 12]. In this research, a predictive model 
for the risk of thrombosis was developed using machine 
learning techniques, aiding clinicians in timely prepara-
tion of high-risk patients for bridging endovascular treat-
ment (EVT) and ultimately improving patient outcomes.

Methods
Patient cohorts
Patients diagnosed with AIS at our institution between 
January 2021 and December 2022 were selected for 
this study. All patients received rt-PA intravenous 

thrombolysis within 4.5 h of the onset of symptoms, and 
were not bridged for endovascular treatment. The inclu-
sion criteria were as follows:1. The clinical manifestations 
and imaging data of the patient were consistent with 
acute ischemic stroke [13]; 2.Age ≥ 18 years; 3.Complete 
clinical data and signed the informed consent for intrave-
nous thrombolytic therapy and enrollment;4. The Ethics 
Committee of our hospital has approved this study, and 
followed the Declaration of Helsinki. The exclusion crite-
ria were as follows: 1.Haemorrhagic cerebrovascular dis-
ease, mixed cerebral infarction; 2.Other organic diseases 
of the nervous system, such as encephalitis, tumour, trau-
matic brain injury, etc.; 3.Accompanied by other serious 
systemic diseases, such as recent serious infections, pre-
vious diseases of the haematological system, etc.; 4.Men-
tal disorders or consciousness disorder after the onset of 
the disease and unable to cooperate with the examination 
(Fig. 1).

Data preprocessing
The variables identified by the box plot that contain out-
liers are excluded.In addition, for variables with a miss-
ing rate of less than 5%, we will impute the missing values 
using the mode for the median for continuous variables. 
For the sensitivity analyses, we pursued multiple imputa-
tion using the multivariate imputation by chained equa-
tions method.

Data collection and variable selection
Given the limitations of the sample size, univariate logis-
tic regression was initially performed on the collected 
variables. Any variables exhibiting non-statistically sig-
nificant differences were subsequently excluded.

Clinical data: gender, age, hypertension (receiving 
medications for hypertension or blood pressure ≥ 140/90 
mmHg on repeated measurements) [14]; diabetes melli-
tus (receiving medications for diabetes mellitus, fasting 
blood sugar ≥ 126  mg/dL or HbA1c ≥ 6.5%, or a casual 
plasma glucose > 200 mg/dL) [14]; atrial fibrillation (AF ): 
receiving medication for the treatment of AF or sustained 
episodes of AF heart rate > 30 s recorded by 12-lead elec-
trocardiogram (ECG), single-lead ECG, or Holter moni-
tor [15]; Systolic blood pressure (SBP), diastolic blood 
pressure (DBP), and door-needle time (DNT) were col-
lected at admission. National Institutes of Health Stroke 
Scale (NIHSS) [16] at admission and 24-hours NIHSS 
after thrombolysis. Note: NIHSS at admission and 
24-hour NIHSS were assessed by the same physician.

Laboratory data were pre-thrombolytic indicators, 
including blood glucose (Glu), white blood cell count 
(WBC), neutrophil count (Neu), lymphocyte count 
(Lym), monocyte count (Mon), platelet count (PLT), 
D-dimer, fibrinogen (FIB), creatinine (Cr), blood urea 
nitrogen (BUN), total cholesterol (TC).
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Definition of functional outcome.
Thrombolysis resistance was defined as ([NIHSS at 

admission − 24-hour NIHSS] × 100％/ NIHSS at admis-
sion) ≤ 30% [17].

Model development and evaluation
The data were randomly divided into training and testing 
groups of 70% and 30%. We utilize the training group to 
ascertain the suitable parameters of the model and assess 
their efficacy by employing the testing group. There exist 
numerous approaches to machine learning, yet a defini-
tive conclusion regarding the most effective one remains 
elusive.  Five machine learning algorithms were used 
in this study: logistic regression (LR), the least absolute 
shrinkage and selection operator (LASSO), extreme 
gradient boosting (XGBoost), support vector machine 
(SVM), and random forest (RF), similar with previ-
ous study [18, 19]. This study employs a 10-fold cross-
validation approach for model derivation, and utilizes a 
combination of the grid search algorithm to optimize the 
model hyperparameters. To evaluate the performance 
of each model, the features derived from the training 
group are applied to the testing group. In this study, the 
receiver operating characteristic (ROC) curves of the five 

models were plotted and the performance of the models 
was evaluated based on the area under the curve (AUC), 
specificity, sensitivity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), precision, recall, 
and F1 value. Constructing a nomogram based on the 
output of the most influential variables from the best 
model. Finally, the accuracy, calibration, and clinical 
applicability of the model were evaluated in the testing 
group using ROC curves, calibration curves, and deci-
sion curve analysis (DCA) (Fig. 1).

Statistical analysis
Values are presented as the mean ± standard deviation, 
median(interquartile range) for continuous variables, or 
as the number (%) of subjects for categorical variables, as 
appropriate. Comparisonsof the characteristics between 
the two groups were performed by the t-test, chi-square 
test, Mann-Whitney U parametric test according to 
the type of the variable.  The statistical significance was 
defined as a two-tailed P-value of < 0.05. Analyses were 
performed in SPSS (version 26, IBM, New York, NY, 
USA) and R (version 3.3.2; R Project for Statistical Com-
puting) using the Caret ML library.

Fig. 1 Flowchart of the study population and process. LR, logistic regression; LASSO, the least absolute shrinkage and selection operator; SVM, support 
vector machine; XGBoost, extreme gradient boosting; RF, random forest; ML, machine learning
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Results
Characteristics of study population
According to the inclusion criteria 232 patients with AIS 
treated with intravenous thrombolysis were selected 
and finally 218 patients were included after excluding 14 
patients according to the exclusion criteria (Fig.  1). The 
median age was 68 years, 149 (68.3%) were male, 135 
(61.9%) had hypertension, 46 (21.1%) had DM, 19 (8.7%) 
had AF, and 88 (40.4%) developed thrombolysis resis-
tance. The study population was randomly divided into 
training (n = 152) and testing (n = 66) groups on 7:3 basis, 
and there was no statistical difference in the data charac-
teristics between the two groups (P > 0.05) (Table 1).

Prediction model performance
In this study, five models, including LR, LASSO, SVM, 
XGBoost and RF, were established, and the ROC curves 
of the five models were constructed (Fig. 2). In the train-
ing group, it can be seen that the LASSO model has the 
largest AUC (0.789), and its specificity of 0.777, PPV of 
0.672, accuracy of 0.763, precision of 0.672, and F1 value 
of 0.705 are better than the other models; In the testing 
group, the LASSO model exhibited superior performance 
compared to other models in terms of AUC (0.765), spec-
ificity of 0.694, PPV of 0.676, accuracy of 0.727, and pre-
cision of 0.676. Consequently, LASSO is considered to 

have good overall performance and selected as the best 
model (Fig. 2 and Table 2).

Figure 3A shows a plot of the coefficients of the LASSO 
variables. Each curve in the graph represents the trajec-
tory of the coefficient of an independent variable. The 
vertical coordinate is the value of the coefficient. The 
lower horizontal coordinate λ is the parameter control-
ling the severity of the penalty. The upper horizontal 
coordinate is the number of non-zero coefficients in the 
model under the penalty parameter. Figure 3B shows 
the tuning parameters in the LASSO model, filtered by 
10-fold cross-validation. Vertical dashed lines are plotted 
at 1 standard error(SE) of the minimum and maximum 
criteria (1-SE criterion) to select the optimal λ value for 
the lASSO model. The 20 features were reduced to 5 
potential predictors of the occurrence of thrombolysis 
resistance according to the LASSO method.

Nomogram
A nomogram of thrombolysis resistance was constructed 
by screening the five optimal predictor variables, includ-
ing NIHSS at admission, GLu, WBC, Neu, and BUN 
(Fig. 4). Each predictor variable was represented by a ver-
tical line on the value axis, with the intersection of the 
line and scoring axis indicating the variable’s score. The 
predicted probability of thrombolysis resistance was 
determined by summing the scores of each risk factor 

Table 1 Clinical characteristics of the training and testing groups
Overall Training group Testing group t/χ2/Z P value

N, n(%) 218 152(70.0) 66(30.0)
Outcome, n(%) 88 (40.4) 58 (38.2) 30 (45.5) 0.737 0.391
Age, years 68.00 [58.00, 76.00] 68.00 [58.00, 75.00] 67.00 [58.00, 76.00] -0.138 0.890
Gender, Mele, n(%) 149 (68.3) 100 (65.8) 49 (74.2) 1.154 0.283
Hypertension, n(%) 135 (61.9) 97 (63.8) 38 (57.6) 0.518 0.472
Diabetes mellitus, n(%) 46 (21.1) 30 (19.7) 16 (24.2) 0.323 0.570
Atrial fibrillation, n(%) 19 ( 8.7) 12 ( 7.9) 7 (10.6) 0.153 0.696
NIHSS at admission 6.00 [4.00, 11.75] 5.50 [3.00, 12.00] 6.50 [4.00, 10.75] -0.748 0.455
Glucose, mmol/L 7.10 [6.10, 9.04] 7.08 [6.08, 8.23] 7.36 [6.10, 10.10] -0.989 0.323
SBP, mmHg 146.50 [135.00,164.75] 147.50 [135.00, 164.50] 142.50 [133.00, 164.75] -0.624 0.533
DBP, mmHg 86.00 [78.00, 95.00] 86.00 [78.00, 95.00] 85.00 [78.50, 91.75] -0.220 0.826
DNT, h 0.62 [0.50, 0.78] 0.60 [0.50, 0.80] 0.65 [0.50, 0.78] -0.230 0.818
WBC,10^9/L 7.84 [6.02, 9.76] 7.94 [6.07, 9.71] 7.50 [6.00, 9.80] -0.818 0.413
Neu,10^9/L 5.10 [3.77, 7.27] 5.10 [3.78, 7.52] 5.14 [3.76, 6.54] -0.650 0.516
Lym,10^9/L 1.56 [1.15, 2.24] 1.55 [1.17, 2.20] 1.57 [1.12, 2.25] -0.108 0.914
Mon,10^9/L 0.44 [0.36, 0.59] 0.44 [0.36, 0.59] 0.43 [0.33, 0.60] -0.727 0.467
PLT,10^9/L 198.00 [161.00, 233.75] 194.50 [160.00, 233.50] 204.50 [167.75, 233.50] -0.630 0.529
D-dimer, ug/ml 0.50 [0.25, 1.01] 0.49 [0.26, 1.06] 0.51 [0.22, 0.94] -0.797 0.425
FIB, g/L 3.49 [2.82, 3.95] 3.45 [2.85, 3.90] 3.52 [2.78, 4.05] -0.008 0.993
Cr, umol/L 66.00 [55.00, 77.75] 66.00 [54.00, 77.25] 65.00 [57.25, 77.50] -0.212 0.832
BUN, mmol/L 6.34 [5.37, 7.64] 6.34 [5.34, 7.70] 6.36 [5.57, 7.19] -0.050 0.996
TC, mmol/L 3.79 [3.32, 4.69] 3.92 [3.48, 4.69] 3.69 [3.16, 4.60] -1.191 0.234
Abbreviations NIHSS, national institutes of health stroke scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; DNT, door-needle time; WBC, white blood 
cell count; Neu, neutrophil count; Lym, lymphocyte count; Mon, monocyte count; PLT, platelet count; FIB, fibrinogen; Cr, creatinine; BUN, blood urea nitrogen; TC, 
total cholesterol
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and projecting the total on the predictive probability axis. 
As the values of the 5 variables increase, the total score 
will become higher, the 5 variables are positively associ-
ated with a high risk of thrombolysis resistance.

Internal validation of the predictive model
The AUC values for the training and testing groups were 
0.789 and 0.765, respectively. This suggests that the 
model has a reasonable ability to discriminate between 
subjects with thrombolysis resistance and those without 
it (Fig. 5A). DeLong’s test was used to statistically com-
pare the AUCs of the training and testing groups. The 
P-value of 0.725 is greater than the significance level of 

0.05, indicating that the difference in AUCs between the 
two groups is not statistically significant. This suggests 
that the model’s predictive accuracy is consistent across 
different datasets. The performance of the Calibration 
curve was internally validated by Bootstrap resampling 
(1000 times) analysis, The Hosmer-Lemeshow goodness-
of-fit test was used to assess how well the model fits the 
observed data. P-values of 0.1225 for the training group 
and 0.4124 for the testing group, both greater than 0.05, 
indicate that the model fits the data well in both groups, 
which showed that the nomogram predicted the prob-
ability of thrombolysis resistance in good agreement 
with the actual probability. (Figure 5B and C). DCA were 

Table 2 Statistical comparison of machine learning models for the occurrence of thrombolysis resistance
Model AUC(95%CI) sensitivity specificity PPV NPV Accuracy Precision Recall F1 value
Training group
LR 0.778(0.704–0.852) 0.724 0.745 0.636 0.814 0.737 0.636 0.724 0.677
LASSO 0.789(0.717–0.862) 0.741 0.777 0.672 0.830 0.763 0.672 0.741 0.705
SVM 0.760(0.683–0.837) 0.862 0.585 0.562 0.873 0.691 0.562 0.862 0.680
XGBoost 0.783(0.710–0.855) 0.897 0.585 0.571 0.902 0.704 0.571 0.897 0.698
RF 0.782(0.707–0.856) 0.741 0.766 0.662 0.828 0.757 0.662 0.741 0.699
Testing group
LR 0.664(0.532–0.796) 0.767 0.528 0.575 0.731 0.636 0.575 0.767 0.657
LASSO 0.765(0.649–0.881) 0.767 0.694 0.676 0.781 0.727 0.676 0.767 0.717
SVM 0.756(0.638–0.874) 0.933 0.500 0.609 0.900 0.697 0.609 0.933 0.737
XGBoost 0.721(0.599–0.844) 0.800 0.583 0.615 0.778 0.682 0.615 0.800 0.695
RF 0.693(0.566–0.819) 0.800 0.528 0.585 0.760 0.652 0.585 0.800 0.558
Abbreviations LR, logistic regression; LASSO, the least absolute shrinkage and selection operator; XGBoost, extreme gradient boosting; SVM, support vector machine; 
RF, random forest; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value

Fig. 2 Comparison of the receiver operating characteristic (ROC) curves for machine learning models in which thrombolysis resistance occurs. (A) Train-
ing group. (B) Testing group.LR, logistic regression; LASSO, the least absolute shrinkage and selection operator; XGBoost, extreme gradient boosting; SVM, 
support vector machine; RF, random forest; AUC, area under the curve
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plotted to evaluate the clinical applicability of the model 
by comparing the net benefit of the model’s predictions 
against a range of threshold probabilities. The posi-
tive net benefit in both the training and testing groups 
(Fig. 5D) indicates that the model’s predictions provide a 
clinical advantage over a strategy of not using the model, 
suggesting that the model has good clinical utility.

Important variables of the machine learning models
After evaluating the significance of each feature, the 5 
machine learning algorithms have ranked the top 5 vari-
ables based on their discriminatory performance. LR, 
LASSO, RF,SVM and XGBoost can estimate the contri-
bution of each feature to the model by calculating the 
absolute value of the standardized regression coefficient, 
Gini coefficient, weight coefficient, and Gain value ( 
Table  3). NIHSS at admission and Glu were among the 
top 5 variables in all models simultaneously, with Neu 

Fig. 4 Proposed nomogram for thrombolysis resistance. NIHSS, national institutes of health stroke scale; Glu, glucose; WBC, white blood cell count; Neu, 
neutrophil count; BUN, blood urea nitrogen

 

Fig. 3 Feature selection based on LASSO model. (A) Identification of the optimal penalization coefficient lambda (λ) in the LASSO model. (B) Cross-
validation for tuning parameter selection in the LASSO model. LASSO, the least absolute shrinkage and selection operator
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appearing in 4 models. The results of LASSO and RF 
were comparable, but only 1 variable differed, and WBC 
was identified as an important variable in both. Blood 
pressure-related indicators were found to be significant 
characteristics in LR and SVM. FIB was identified in 
XGBoost, RF, while BUN only appeared in LASSO.

Discussion
Currently, numerous studies have referenced about 
thrombolytic effect, but there is no precise definition 
or specific machine prediction model research for TR. 
In this study, the term “TR” was proposed based on the 
early thrombolysis effect in AIS patients, and presents a 
risk prediction model for identifying patients at risk for 
thrombolysis resistance by integrating easily accessible 
clinical variables with machine learning algorithms.

Fig. 5 Internal validation diagram for the model. (A) ROC curves for the training and testing groups; (B) Calibration curve for the training group, P = 0.1225; 
(C) Calibration curve for the testing group, P = 0.4124; (D) DCA for the training and testing groups
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In clinical studies, there is a lack of standardization in 
the criteria used to evaluate the efficacy of early throm-
bolysis in patients with AIS. The modified Rankin Scale 
(mRS) scores and NIHSS score are two commonly used 
stroke assessment tools. The mRS score commonly used 
as the primary efficacy endpoint in clinical trials for its 
simplicity and ease of interpretation [20]. The mRS scores 
are typically assessed 3–6 months after thrombolysis and 
are susceptible to a number of factors, and the changes 
in 24-hour NIHSS scores were chosen in this study as a 
potentially more effective way to assess the early effects 
of thrombolysis. Some studies have used a decrease of 
≥ 4 points or an increase of ≥ 4 points in the NIHSS from 
baseline to 24 hours after intravenous thrombolytic ther-
apy to assess the early therapeutic effect of thrombolysis 
in patients [21, 22]. This study concluded that a 4-point 
decrease or increase in admission NIHSS for patients 
with different admission NIHSS does not represent the 
same degree of improvement or deterioration, and that 
the use of percentage change in NIHSS better explains 
the wide variation in patients’ admission scores and 
more accurately determines the effectiveness of throm-
bolysis [23]. A study on mechanical thrombolysis found 
that > 30% improvement in NIHSS score at the end of 
thrombolysis was a reliable prognostic predictor [24]. 
Meanwhile, data from a multicentre, prospective trial of 
intravenous alteplase for the treatment of AIS showed 
that there was no difference in the change in baseline 
versus 24-hour NIHSS difference between patients in 
the alteplase-treated group compared with the placebo 
group, whereas the change in the 24-hour NIHSS per-
centage was more pronounced, and 30% was the opti-
mal cut-off value [17]. Consequently, TR was considered 
to be defined in this study as an improvement in NIHSS 
score of ≤ 30% from the admission NIHSS 24 hours after 
thrombolysis.

A total of 218 patients were included in this study, and 
88 (40.4%) patients developed thrombolysis resistance. 

We conducted TR prediction models using ML algo-
rithms, including LR, LASSO, XGBoost, SVM, and RF. 
Among the five models, LASSO was rated as the best 
model with superior AUC, specificity, PPV, accuracy, 
and precision. LASSO is based on a regression analysis 
method that does not rely on statistical significance for 
regularisation, but rather narrows down the coefficients 
of complex experimental variables and excludes relatively 
unimportant variables [25]. A Chinese study based on the 
GEO database to screen for differential genes developed a 
LASSO regression model to better identify the prognosis 
of AIS, and the AUC of its LASSO regression model was 
0.969 [26]. A retrospective case-control study identifying 
AIS based on LASSO regression indicated that the model 
had a better identification ability (AUC = 0.916) [25]. 
The LASSO regression model in this study had an AUC 
value of 0.765, which was a good predictor of whether 
thrombolysis resistance occurred in patients with AIS, 
suggesting the potential utility of LASSO regression in 
predicting disease prognosis or diagnosis. We found 
that the sensitivity value of 0.767 in the LASSO model is 
slightly lower than that of the RF model (0.800) (Table 2). 
RF model is typically capable of handling more complex 
data patterns and possess a certain degree of resistance 
ato overfitting. Combining the AUC results, we thought 
the LASSO model is better than RF model. However, it is 
necessary to investigate this results with a large amount 
of data in the future study.

The nomogram (Fig. 4) made by the best model in this 
study showed that NIHSS at admission, Glu, WBC, Neu 
and BUN were significant predictors of the occurrence of 
TR. Several studies have confirmed that these five met-
rics are associated with poor prognosis in AIS patients 
[27–31], which is consistent with our findings, indicat-
ing that our model has scientific validity and credibility in 
real-world practice. A machine-learning based multicen-
tre retrospective study concluded that the key features 
predicting functional outcome in AIS contain NIHSS at 
admission, and white blood cell count [32]. Meanwhile, 
a predictive model examining ineffective recanalisation 
in AIS considered NIHSS score, blood glucose, c-reac-
tive protein, and creatinine as important predictors [33]. 
It suggests that inflammatory response may be a cruvial 
factor in the development of AIS [34]. Previous studies on 
Cr in the model and on BUN in the present study has pri-
marily focused on renal function, with findings indicating 
that elevated BUN levels upon admission may indicated 
haemodynamic deterioration [35], a known predictor of 
poor prognosis and death in AIS [36]. In this study, it was 
hypothesised that it might be related to the shift of blood 
to vital organs such as heart and brain during the onset 
of AIS, resulting in a decrease in blood flow to the kid-
neys. In contrast, the role of blood glucose as a predictor 
of thrombolytic prognosis may be related to the fact that 

Table 3 Top 5 important features in each models
LR* LASSO SVM XGBoost RF

1 Neu NIHSS at 
admission

NIHSS at 
admission

FIB NIHSS at 
admission

2 NIHSS at 
admission

WBC Glu Neu Neu

3 Glu Glu DBP TC WBC
4 SBP BUN Hypertension NIHSS at 

admission
Glu

5 Neu SBP Glu FIB
Abbreviations LR, logistic regression; LASSO, the least absolute shrinkage and 
selection operator; XGBoost, extreme gradient boosting; SVM, support vector 
machine; RF, random forest; NIHSS, national institutes of health stroke scale; 
SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood 
cell count; Neu, neutrophil count; FIB, fibrinogen; BUN, blood urea nitrogen; 
TC, total cholesterol; Glu, glucose.* :Only 4 variables were screened out after 
stepwise logistic regression
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hyperglycaemia increases platelet mitochondrial reactive 
oxygen species production, which enhances procoagulant 
platelet formation and significantly increases infarct size 
[37]. Moreover, It is important to consider the influence 
of variables such as FIB, blood pressure-related markers, 
and TC, which have been included in other models, on 
the phenomenon of TR in this study. A predictive model 
on the prognosis of intravenous thrombolysis in patients 
with mild AIS identified higher NIHSS scores, DM, and 
deep infarcts in the middle cerebral artery (MCA) as 
potential predictors of a poor prognosis [38]. These find-
ings align with those of the present model, which incor-
porates imaging data. For healthcare institutions lacking 
magnetic resonance imaging, the variables included in 
the LASSO model are more accessible, and patients at 
high risk for thrombolysis resistance are promptly trans-
ferred to hospitals equipped for endovascular therapy for 
further treatment. Yang H et al. [39]. used LASSO regres-
sion to construct the prognosis of patients with AIS 
found that NIHSS, SBP, lymphocyte percentage (LYM%), 
neutrophil-to-lymphocyte ratio (NLR), platelet-to-neu-
trophil ratio (PNR), and platelet-to-lymphocyte ratio 
(PLR) independently predicted early neurologic deterio-
ration (END), which, after the incorporating the compos-
ite inflammatory index improved the AUC of the test set 
from 0.635 to 0.816. This study did not include the com-
posite index for modeling for the time being, which is a 
good direction for research.

All the variables considered in this model are readily 
available at the time of admission, and when the values 
of the above five variables are entered into this model, cli-
nicians will be able to quickly assess the effectiveness of 
thrombolysis in patients with AIS in advance, and decide 
whether to perform IVT/EVT or not. Limitations: There 
are numerous machine learning methods available, this 
study only focuses on 5 specific algorithms. To increase 
the stability of the model, additional machine learn-
ing algorithms could be incorporated. Additionally, The 
causes of poor functional prognosis or death after throm-
bolysis cannot be explained by a single theory, rather, 
they may be the result of a combination of factors. The 
study population could be expanded, more variables 
could be selected to build the model, and the model could 
be prospectively validated in an independent cohort. 
Furthermore, the definition of “thrombolysis resistance” 
proposed in this study has yet to be generalized to other 
studies. Additional research is necessary to verify the sci-
entific validity and effectiveness of this definition.

Conclusion
In this study, we used a machine learning approach to 
screen five optimal predictors of thrombolysis resis-
tance and constructed a nomogram to predict the risk of 
thrombolysis resistance.Among them, higher NIHSS at 

admission, WBC, Glu, Neu, and BUN were the risk fac-
tors for the occurrence of thrombolysis resistance. This 
model has the potential to assist clinicians in the formu-
lation of personalized treatment plans. Conducting exter-
nal validation to evaluate the broader applicability and to 
detect any possible biases is a crucial subsequent phase 
for this research endeavor. From our results, we advo-
cate for future investigations focusing on the applica-
tion of ML to predict thrombolysis resistance to embrace 
a multi-faceted modeling approach. This strategy will 
enhance the robustness and reliability of predictive mod-
els in this domain.
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