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Abstract 

Background  Pathogenic variants in Gap junction protein beta 1 (GJB1), which encodes Connexin 32, are known 
to cause X-linked Charcot-Marie-Tooth disease (CMTX), the second most common form of CMT. CMTX presents 
with the following five central nervous systems (CNS) phenotypes: subclinical electrophysiological abnormalities, mild 
fixed abnormalities on neurological examination and/or imaging, transient CNS dysfunction, cognitive impairment, 
and persistent CNS manifestations.

Case presentation  A 40-year-old Japanese male showed CNS symptoms, including nystagmus, prominent spastic 
paraplegia, and mild cerebellar ataxia, accompanied by subclinical peripheral neuropathy. Brain magnetic resonance 
imaging revealed hyperintensities in diffusion-weighted images of the white matter, particularly along the pyramidal 
tract, which had persisted since childhood. Nerve conduction assessment showed a mild decrease in motor con-
duction velocity, and auditory brainstem responses beyond wave II were absent. Peripheral and central conduction 
times in somatosensory evoked potentials elicited by stimulation of the median nerve were prolonged. Genetic analy-
sis identified a hemizygous GJB1 variant, NM_000166.6:c.520C > T p.Pro174Ser.

Conclusions  The patient in the case described here, with a GJB1 p.Pro174Ser variant, presented with a unique 
CNS-dominant phenotype, characterized by spastic paraplegia and persistent extensive leukoencephalopathy, 
rather than CMTX. Similar phenotypes have also been observed in patients with GJC2 and CLCN2 variants, likely 
because of the common function of these genes in regulating ion and water balance, which is essential for maintain-
ing white matter function. CMTX should be considered within the spectrum of GJB1-related disorders, which can 
include patients with predominant CNS symptoms, some of which can potentially be classified as a new type of spas-
tic paraplegia.
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Background
Pathogenic variants in Gap junction protein, beta 1 
(GJB1), a gap junction family gene located at Xq13.1 
cause X-linked Charcot-Marie-Tooth disease (CMTX) 
[1]. Connexin 32 (Cx32), encoded by GJB1, is expressed 
in the myelinating Schwann cells of peripheral nerves, 
which are primarily affected in CMTX. Cx32 is also 
widely localized in outer oligodendrocyte membranes 
in the central nervous system (CNS) [2]. Reflecting this, 
five CNS phenotypes are recognized in CMTX [3]: (1) 
subclinical abnormalities of visual- and auditory-evoked 
responses, (2) overt mild fixed abnormalities on neuro-
logical examination and/or CNS imaging that may or 
may not be accompanied by clinical manifestations, (3) 
severe transient CNS dysfunction accompanied by white 
matter changes observed by magnetic resonance imag-
ing (MRI), (4) mild to severe cognitive impairment, and 
(5) persistent central nervous manifestations. The third 
phenotype, of severe, transient CNS symptoms, such as 
aphasia, dysarthria, ataxia, monoparesis, hemiparesis, 
paraparesis, or tetraparesis [2, 4], lasting from hours to 
weeks, is particularly well documented. The second and 
fifth phenotypes include persistent symptoms that are 
often associated with mild, persistent abnormalities on 
CNS imaging [5–7].

Here, we report a Japanese patient with the GJB1 vari-
ant, NM_000166.6:c.520C > T p.Pro174Ser, character-
ized by spastic paraplegia associated with persistent and 
extensive leukoencephalopathy involving the pyramidal 
tracts. Clinically, this patient could potentially be diag-
nosed with hereditary spastic paraplegia rather than 
CMTX. Notably, this case features long-term MRI fol-
low-up over 16  years and the first electrophysiological 
results associated with this GJB1 variant. We also pre-
sent positive MRI and electrophysiological findings in a 
female carrier of this variant. The phenotype observed in 
this patient is similar to those seen in patients with vari-
ants of GJC2 and CLCN2, suggesting that these genes and 
GJB1 contribute to a common phenotype through their 
role in regulating ion and water homeostasis in the brain 
[8].

Case presentation
The patient was a 40-year-old male (Fig. 1A). His birth 
was unremarkable. He began rolling over at 4  months 
and was able to crawl by 8  months. By age 2, he had 
not yet started walking, and during a health check-up 
at that age, a pediatrician noted delayed motor devel-
opment and gaze-evoked horizontal nystagmus. He 
experienced several febrile convulsions starting at age 
1 and began anti-epileptic medications at age 4. At 
that time, a pediatric neurologist observed nystagmus, 
ataxia, and lower limb spasticity. Although he was able 

to walk unaided during his teenage years, his trunk bal-
ance remained unstable. His motor function progres-
sively worsened, leading him to use a walking stick by 
age 28 and a wheelchair for outdoor activities. MRI 
revealed increased T2 signal in the white matter. At 
age 30, anti-epileptic medications were discontinued 
after 26  years of remission. At age 40, during a clini-
cal examination at our hospital, the patient exhibited 
slight impairments in retrograde memory, visuospatial 
ability, motor programming, sensitivity to interference, 
and word retrieval, as indicated by his scores on several 
cognitive assessments: Montreal Cognitive Assessment 
[9] (21/30, with specific deficits in visuospatial ability: 
-3, attention: -2, language: -2. abstraction: -1, and retro-
grade memory: -1), Revised Hasegawa Dementia Scale 
[10] (30/30), Addenbrooke’s Cognitive Examination-
Revised [11] [96/100, with specific deficits in retrograde 
memory: -2 and visuospatial ability (clock drawing): 
-2], and Frontal Assessment Battery [12] (16/18, with 
specific deficits in motor programming: -1 and sensitiv-
ity to interference: -1). He displayed impaired smooth 
pursuit eye movement and gaze-evoked horizontal nys-
tagmus. Muscle tone in the lower extremities showed 
marked spasticity. Although there was pes equinovarus 
in the lower extremities, muscle atrophy was minimal 
or very mild (Fig. 1B). Manual muscle test scores (right/
left) revealed a pyramidal pattern of weakness in the 
lower limbs: iliopsoas 4-/3 + , quadriceps 5-/5-, ham-
strings 3/3, tibialis anterior 2/2, gastrocnemius 2/2, toe 
extension 1/1, and toe flexion 4/4. Muscle strength in 
the upper limbs remained preserved. Tendon reflexes 
in the lower limbs were markedly increased, with posi-
tive Babinski sign and Chaddock pathological reflexes, 
while those in the upper limbs were normal. No abnor-
malities were noted in the sensory nervous system, 
including touch, pain, vibration, and position senses. 
The finger-to-nose and heel-to-knee test demonstrated 
mild cerebellar ataxia. Laboratory tests showed nor-
mal levels of creatinine kinase, lactate, pyruvic acid, 
and thyroid hormones, along with a negative result 
for anti-HTLV1 antibody. Anti-HIV antibody, fluo-
ride, and very long-chain fatty acid levels were not 
tested. Cerebral spinal fluid analysis revealed a slightly 
elevated protein level (57  mg/dl) without pleocytosis. 
Brain MRI by T2 fluid-attenuated inversion recovery 
and diffusion-weighted imaging showed diffuse hyper-
intensity in the white matter, particularly along the 
pyramidal tract from the posterior limb of the inter-
nal capsule to the cerebral peduncle, with additional 
involvement in the occipital lobe and cerebellar pedun-
cles, medial lemniscus, and corpus callosum (Fig. 1D). 
Mildly low apparent diffusion coefficient values were 
present in the same lesion (Fig. 1D), indicating myelin 
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microvacuolation instead of hypomyelination [13]. 
These signal abnormalities have remained stable from 
age 24 to 40 (Fig.  1E). Nerve conduction assessment 
indicated a moderate decrease in sensory nerve action 
potentials of the median, ulnar, and sural nerves, and 
a mild decrease in motor conduction velocities of the 
median, ulnar and tibial nerves (36–44 m/sec), indicat-
ing subclinical polyneuropathy (Table  1A). Electroen-
cephalography yielded normal results, while brainstem 
auditory-evoked responses beyond wave II were absent. 
Prolonged peripheral and central conduction times 

were observed in somatosensory evoked potentials elic-
ited by left median nerve stimulation (N9o-P13/14o 
latency: 6.4 ms; P13/14o-N20o latency: 9.4 ms).

Given the patient’s predominant symptoms of spastic 
paraplegia, early onset, and gradual progression, exome 
sequencing was performed for both the patient and his 
parents. This analysis identified a hemizygous missense 
variant in GJB1 (NM_000166.6:c.520C > T p.Pro174Ser) 
in the patient and heterozygosity for this variant in his 
mother, which were confirmed by Sanger sequencing 
(Fig.  1C). In accordance with the guidelines from the 

Fig. 1  A Family pedigree of the patients in the present case. B Pes equinovarus and minimal atrophy of the lower limbs. C Sanger sequencing 
of the GJB1:(c.520C > T, p.Pro174Ser) variant in family members. Arrows indicate the position of the variant. D Apparent diffusion coefficient (ADC) 
map and diffusion-weighted images (DWI) of the brain of the paatient acquired at age 40. E Temporal change of T2-weighted imaging (T2WI) 
in the patient from age 24 to 40
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American College of Medical Genetics and Genomics 
[14], this variant was classified as pathogenic (PS1 + PM2 
+ PP1 + PP2 + PP3 + PP4).

His 73-year-old mother (Fig.  1A) also presented with 
subclinical neuropathy, as evidenced by a mild decrease 
in nerve conduction velocity, and mild abnormal intensity 
in corticospinal tract diffusion-weighted images (Fig. 2A, 
Table  1B). She exhibited severe sensory aphasia with 
semantic jargon attributable to atrophy and decreased 
blood flow in the left temporal lobe, extending from the 
temporal pole to the temporoparietal region (Fig.  2B). 
On the Revised Hasegawa Dementia Scale, she was una-
ble to understand the meaning of tasks and scored only 
1/30, comprehending only her age. No known variants 

associated with semantic dementia were identified in the 
mother by exome sequencing.

Discussion and conclusions
The patient in our case, who carries a GJB1 variant that 
is primarily recognized as a causative gene for CMTX, 
is notable for the predominance of progressive spastic 
paraplegia, minimal peripheral nervous system (PNS) 
involvement, and the presence of persistent extensive 
white matter abnormalities, including those affect-
ing the corticospinal tract. Clinically, hereditary spas-
tic paraplegia was strongly suspected over CMT, while 
radiologically, leukoencephalopathy was a notable con-
sideration. Indeed, a previously reported case with the 

Table 1  Nerve conduction studies of the patient (A) and the mother (B)

Nerve conduction studies were performed on the left side median, ulnar, tibial, fibular, and sural nerves

A Motor nerves

Nerve Latency (ms) Amplitude (mV) Conduction velocity (m/s)

Median Wrist 4.3 11.6

Elbow 9.8 11.1 36.0

Ulnar Wrist 3.2 16.6

Below elbow 7.9 16.1 40.4

Above elbow 9.3 15.4 35.7

Tibial Ankle 3.4 11.4

Knee 11.7 6.7 37.3

Fibular Ankle 5.2 0.8

Below knee 14.2 1.0 36.1

Knee 15.5 1.0 50.0

Orthodromic sensory nerves

  Nerve Latency (ms) Amplitude (µV) Conduction velocity (m/s)

  Median 2.8 1.8 44.2

  Ulnar 2.7 2.9 38.9

  Sural 4.2 1.4 35.9

B Motor nerves

Nerve Latency (ms) Amplitude (mV) Conduction velocity (m/s)

Median Wrist 5.4 4.67

Elbow 9.5 3.62 41.5

Ulnar Wrist 2.9 13.82

Below elbow 6.3 12.64 54.4

Above elbow 7.8 12.55 33.3

Tibial Ankle 3.9 16.25

Knee 12.5 9.79 40.1

Fibular Ankle 6.2 0.4

Below knee 13.8 0.51 37.5

Knee 16.5 0.55 31.5

Orthodromic sensory nerves

  Nerve Latency (ms) Amplitude (µV) Conduction velocity (m/s)

  Median 3.2 5.9 37.5

  Ulnar 2.12 5.1 47.2

  Sural 4.32 0.7 34.7
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GJB1 p.Pro174Ser variant was described within the 
context of leukoencephalopathy, not CMT [8]. Their 
clinical features closely mirror those observed in our 
case (Table  2). The p.Pro174Ser variant may therefore 
represent a distinct phenotype characterized by spas-
tic paraplegia and persistent extensive white matter 
abnormalities involving the pyramidal tract and mid-
dle cerebellar peduncles. The 16-year MRI follow-up of 
the patient provided clear evidence of the persistence of 
white matter abnormalities. Additionally, while a previ-
ous study had not observed MRI abnormalities in female 

carriers of this gene variant [8], the mother of the present 
patient exhibited notable findings, including mild MRI 
changes in the pyramidal tract and reduced nerve con-
duction velocities. The differences in phenotypes among 
female carriers may be partially explained by the biased 
pattern of X-chromosome inactivation in individual mye-
linating glial cells [15].

The reason for only certain GJB1 variants resulting 
in persistent CNS symptoms that significantly devi-
ate from the typical CMT phenotype remain unclear. 
An analysis of structural domains in Cx32 variants 

Fig. 2  A diffusion-weighted images (DWI) of the patient’s mother’s brain. B 123I-N-isopropyl-p-iodoamphetamine single-photon emission 
computed tomography (SPECT) imaging of the mother. The Z-score maps displayed on an anatomically standardized MRI template are shown

Table 2  Clinical manifestations of patients with the GJB1 p.Pro174Ser variant

Patient Patient’s mother Depienne et al., 2013

Sex/ancestry male/Asian female/Asian male/European

Consanguineous parents No No No

Affected family members Yes Yes Yes

Early psychomotor development Normal, but has never walked without support

Age at first sign 1 year and 9 months 12 months

Disease course Slowly progressive Slowly progressive

Motor development delay normal delay

Age requiring wheelchair use 28 independent N/A

Cognitive level Mild, word-finding difficulties Severely impaired Mild learning disability

Nystagmus Yes No Yes

Hearing Normal Normal Normal

Spasticity Yes, prominent No Yes, prominent

Ataxia Yes No Yes, severe

Peripheral polyneuropathy No clinical signs: mildly decreased 
motor NCV

No clinical signs: mildly 
decreased motor NCV

No clinical signs: mildly decreased motor NCV
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indicates a genotype–phenotype correlation in CMTX, 
with variants in the intracellular cytoplasmic domain 
showing less severe phenotypes compared with vari-
ants in other domains [16]. p.Pro174Ser is located in 
the second transmembrane domain, but variants asso-
ciated with chronic corticospinal tract dysfunction, 
such as p.Ala39Val [17], p.Thr55Ile [18], p.Met93Val 
[19], p.Arg164Gln [18], p.Arg183His [20], p.Thr191 
frameshift [21], and p.Leu143Pro [22], are not situ-
ated in the intracellular cytoplasmic domain and do not 
cluster in any specific domain.

The spastic paraplegia and white matter abnormali-
ties seen in our patient are primary characteristics of 
several disorders, making differential diagnosis crucial 
[23]. One such disorder is caused by certain variants of 
GJC2, which encodes Cx47, a gap junction protein fam-
ily member primarily expressed in oligodendrocytes 
[24]. The symptoms and imaging findings associated 
with this variant are similar to those observed in our 
case [24]. While most pathogenic GJC2 variants lead to 
Pelizaeus-Merzbacher-like disease type 1 (PMLD1) or 
hypomyelinating leukodystrophy 2 (HLD2) [25], a rare 
type characterized by prominent spastic paraplegia is 
classified as autosomal recessive spastic paraplegia type 
44 (SPG44) [26]. Despite the presence of white mat-
ter abnormalities, severe cognitive impairment is rare 
in SPG44 [24], and was not observed in a patient with 
the Cx32 p.Pro174Ser variant [8]. Similarly, cognitive 
function was generally preserved in our patient. The 
mother of our patient showed severe cognitive decline 
consistent with semantic dementia, yet her white mat-
ter abnormalities were milder than those observed in 
the patient, indicating no relationship with the GJB1 
p.Pro174Ser variant.

Another example is that loss-of-function CLCN2C 
variants cause similar phenotypes to those observed in 
our patient [8], suggesting that GJB1, GJC2, and CLCN2C 
may have related functions. The white matter of the brain 
is primarily composed of axons with myelin sheaths, and 
its most crucial physiological function, impulse conduc-
tion, depends on the movement of ions and water. A 
loss-of-function variant of CLCN2, which encodes the 
ClC-2 chloride channel involved in ion and water home-
ostasis in the brain, can cause leukoencephalopathy [8]. 
Similarly, Cx32 forms channels between opposing mem-
branes of adjacent cells to create gap junctions between 
axons and myelinating Schwann cells or oligodendro-
cytes, which facilitate the movement of small molecules 
and ions between myelin and axons [19]. Given the 
channel function of Cx32 and CIC-2, it is reasonable to 
assume that loss of channel function leads to demyeli-
nation, resulting in a common CNS phenotype of spas-
tic paralysis and white matter abnormalities. Similarly, 

abnormalities in Cx47, which, like Cx32, belongs to the 
connexin family are thought to produce comparable 
effects.

By contrast, patients with total GJB1 deletion show 
typical CMT1-like symptoms without CNS involvement 
[27]. In this scenario, the impact of Cx32 loss of function 
is limited to the PNS, while compensatory mechanisms 
by other oligodendrocyte gap junction proteins, includ-
ing Cx47, may operate in the CNS [27]. Considering this, 
the Cx32 p.Pro174Ser variant is speculated to act in a 
dominant-negative manner in the CNS to reduce the 
function of not only Cx32 but all oligodendrocyte gap 
junction proteins. Conversely, in the PNS, the loss-of-
function effect of this variant on Cx32 is estimated to be 
relatively mild.

Furthermore, although the genetics and pathomecha-
nisms differ, X-linked adrenoleukodystrophy also shows 
high signal intensity along white matter tracts on MRI 
and causes demyelination in both the CNS and PNS [28, 
29]. Therefore, in hereditary diseases that present with 
demyelinating lesions, such as in the patient case, it is 
important to focus on both the CNS and PNS during 
clinical evaluation.

In some patients with GJB1 variants, including the case 
presented here, the clinical diagnosis may be hereditary 
spastic paraplegia or leukoencephalopathy rather than 
CMT. Therefore, just as PMLD1/HLD2 and SPG44 are 
regarded as part of the spectrum of GJC2-related neu-
rological disorders [24], CMTX should be recognized 
as part of the spectrum of GJB1-related disorders. This 
spectrum may include patients with predominant CNS 
phenotypes, as well as those that could potentially be 
classified as a novel type of spastic paraplegia.
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