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Abstract
Background  Dissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human 
communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity 
of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan.

Results  We report the experimental design, methods, and practical execution of a highly interdisciplinary 
project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, 
among others. We explain in detail how we technically validated all our EEG procedures (e.g., via impedance 
value monitoring) and minimized potential artifacts in our recordings (e.g., via electrooculography and inertial 
measurement units). We also describe the engineering details and hardware that enabled us to achieve 
synchronization between signals recorded at different sampling frequencies, along with a signal preprocessing and 
denoising pipeline that we used for data re-sampling and power line noise removal. As our experiment culminated 
in a live performance, where we generated a real-time visualization of the dancers’ interbrain synchrony on a screen 
via an artistic brain-computer interface, we outline all the methodology (e.g., filtering, time-windows, equation) we 
used for online bispectrum estimations. Additionally, we provide access to all the raw EEG data and codes we used in 
our recordings. We, lastly, discuss how we envision that the data could be used to address several hypotheses, such as 
that of interbrain synchrony or the motor theory of vocal learning.

Conclusions  Being, to our knowledge, the first study to report synchronous and simultaneous recording from 
five dancers, we expect that our findings will inform future art-science collaborations, as well as dance-movement 
therapies.
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Background
Background information on the brain architecture of dance
In the past two decades, there has been a mounting inter-
est in identifying the neural underpinnings of artistic 
expression, and of dance, in particular. The first endeav-
ors towards this direction have focused on studying the 
brain responses during dance observation, namely while 
dancers, or non-dancers, perceive videos of dance move-
ments of themselves or others. Brain perception signals 
have been studied for a variety of dance genres, includ-
ing but not limited to jazz [1], ballet [2, 3], and tango [4], 
using either electroencephalography (EEG) [1, 3, 4] or 
functional magnetic resonance imaging (fMRI) [2]. Over-
all, their findings underscore the power of both tech-
niques to capture distinct patterns that distinguish dance 
perception, in an array of settings, such as dance percep-
tion by expert dancers vs. non-dancers.

Identifying the neural basis of dance performance, 
involving the actual production of dance movements, has 
proven challenging, considering the limitations of neu-
roimaging techniques that render natural movement in 
space impractical. Still, researchers have come up with 
creative ideas to address this question. For instance, 
Brown et al. [5]. used an inclined surface in front of the 
leg room of a positron emission tomography (PET) scan-
ner, where amateur dancers performed small-scale, cyclic 
leg tango steps while in a supine position. The same 
group used fMRI to study bimanual partnered move-
ments, with the experimenter sitting next to the reclined 
subject holding hands, and alternating between “leading” 
and “following” joint movements, similar to those used in 
tango or salsa [6]. In turn, mobile EEG techniques, com-
plemented with motion sensing, have enabled research-
ers to study brain activity while subjects are dancing 
freely in the space with the EEG caps on. For example, 
mobile EEG studies on Laban movement analysis (LMA) 
dancing [7] demonstrated the feasibility of classifying 
specific movements and LABAN effort qualities from 
distinct EEG signals, and proposed a framework for elim-
inating motion artifacts from dance analysis. EEG has 
also proven effective in picking up not only sex-specific 
effects during contemplation of jazz dancing but also sex-
independent effects during physically dancing jazz [8].

It is in this context that we decided to study the brain 
activity of five experienced dancers while dancing butoh 
via mobile EEG, recorded simultaneously and synchro-
nously (a process known as hyperscanning). To our 
knowledge, this study marked the first time that both this 
type of dance (butoh) and this number of dancers (five) 
were studied. Moreover, this art-science collaboration 
allowed us to monitor the creative process through EEG 
recordings during rehearsals culminating in a theater 
performance in front of an audience. In this paper, we 
aim to explain the background, design, neuroengineering 

methods, and technical validation of our EEG, EOG 
(electrooculography), and IMU (inertial measurement 
units) procedures. We report in detail the methodology 
(e.g., bispectrum estimation, filtering, time-windows, 
equation) that enabled us to generate a real-time visual-
ization of the dancers’ interbrain synchrony on a screen, 
while we also propose and demonstrate a signal prepro-
cessing and denoising pipeline that can be used for future 
offline analyses. Importantly, we openly share all the raw 
data and code resulting from this experiment. Lastly, we 
discuss specific objectives and hypotheses that our data 
can address, and how we envision that this interdisciplin-
ary work can inform future art-science collaborations 
and therapeutic practices, using dance as a therapeutic 
modality for improving wellness and motor deficits.

Background information on butoh
Butoh is a Japanese avant-garde dance originated by Tat-
sumi Hijikata and Kazuo Ohno at the height of the coun-
terculture movement in Japan in 1959 [9, 10]. Although 
it defies a precise definition, butoh has been described as 
a type of dance that allows the exteriorization of bodily 
reactions, otherwise suppressed in social settings, such 
as spasms, involuntary jerks, tremor, facial or bodily dis-
tortions, falling, stamping, and rolling on the floor [10]. 
Unlike in other dance styles (e.g., ballet), butoh danc-
ers do not pursue high jumping or fast spinning, they 
rather focus on their breath and subtle body reactions 
[10]. Butoh has also been seen as a “meditational dance”, 
due to being a contemplative movement practice that 
includes deep relaxation and meditative calmness [9]. In 
this, it is similar to other meditative practices, such as Tai 
Chi or yoga, although, according to Kasai [9], meditation 
does not picture the essence of butoh as a whole, since 
the calmness can be interrupted by explosive movements.

These descriptions considered, there are several char-
acteristics that make butoh fall out of the narrow and 
Western definition of dance [9]. One example that dis-
tinguishes butoh from other dances is that butoh danc-
ers must be able to execute movements with a modified 
use of vision; visual stimuli are often shut down, thus the 
dancer learns to enhance other senses and focus their 
receptivity to sound stimuli. Another example is that 
movements in butoh do not tend to be entrained to a 
periodic metered rhythm, as is the case for most Western 
dances. Still, the dancers respond to sounds and musical 
cues similarly to how ballet, contemporary dance, tango, 
or hip-hop dancers follow the beat. In the choreography 
performed for this experiment, half of the soundscape 
was organized rhythmically, and oftentimes, the dancers 
were counting, much like in other dance forms. Another 
section included nature sounds, where the dancers fol-
lowed sound cues (e.g., pouring rain, bleating of a goat, 
owl hoot) to inform their movements. There were even 
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parts where the dancers were using the intensity/loud-
ness of the sound as a cue to guide their movements. 
Thus, while the music and choreography may not be 
organized in a traditional rhythmic manner, the dancers 
entrain their movements to other aspects of the sound.

Universal aspects of dance in butoh that are similar 
to Western dance styles include synchronized move-
ment and coordination among dancers, turn-taking for 
sequential movement execution, synchronization of 
movements across various body parts, real-time self-
correction within a choreography, and the integration 
of spatial and temporal parameters (e.g., propriocep-
tion). When it comes to learning butoh or other chore-
ographies, they all require basic mechanisms of motor, 
auditory, and sequence learning, as well as short- and 
long-term memory to learn a sequence of movements 
in sync with musical or sound cues. Our choreography 
and dataset provide avenues for investigating universal 
aspects of dance, including the analysis of synchronized 
and distinct movements among the five dancers, facilitat-
ing the examination of interbrain synchrony during both 
similar and disparate motor executions while controlling 
for acoustic stimuli. Another universal element of dance 
conducive to study with our dataset is, in a turn-taking 
context, the exploration of connectivity patterns that 
evolve from premotor preparation to movement execu-
tion. In summary, butoh was considered ideal for this 
experiment since it offers a great balance: allowing us to 
study specific characteristics that make butoh unique, 
while also tapping into common processes employed in a 
variety of dances.

Methods
Participants
Five healthy female adults with no history of neurologi-
cal disorder, or movement difficulties participated in this 
study. The experimental protocol and informed consent 
(reviewed and signed by each participant) were approved 
by the Institutional Review Board (IRB) at the University 
of Houston. All experiments were performed in accor-
dance with the 45 Code of Federal Regulations (CFR) 
part 46 (“The Common Rule”), specifically addressing 
the protection of human study subjects as promulgated 
by the U.S. Department of Health and Human Services 
(DHHS).

Throughout the experiment, the pregnancy of one of 
the butoh dancers gave us the opportunity to study brain 
activity during butoh dancing in a pregnant woman. 
Concerning the safety of dancing during pregnancy, 
there is published evidence that dancing can actually be 
beneficial in pregnancy, as long as it does not include 
lifting other dancers, or high-impact activities such as 
jumping and back flips [11, 12]. For the purpose of the 
experiment, the choreography was specifically altered to 

suit the movement abilities and safety of the pregnant 
woman, and the performance was expressly allowed by 
a doctor. Regarding the use of EEG during pregnancy, 
there are already published reports on the safety of this 
technology in pregnancy [13].

Instrumentation & Data collection
To record the dancers’ brain activity via EEG, while con-
trolling simultaneously for eye movements via electro-
oculography (EOG), both at a sampling frequency of 
1000  Hz, we used two different systems: one 128-chan-
nel EEG system (BrainAmpDC with Acticap active elec-
trodes; Brain Products GmbH, Munich, Germany) split 
into four 32-channel systems with a Wi-Fi transmit-
ter, and one 32-channel system (Nautilus, Gtec medical 
engineering GmbH, Austria) with Bluetooth commu-
nications. We distributed the electrodes following the 
international 10–20 system (Fig. 1a) with slight modifica-
tions that allowed for some channels to be used for EOG. 
Specifically, channels TPO9 and TP10 were removed 
from the cap and placed on the right and left temples, 
respectively, to record horizontal eye movement, whereas 
channels PO9 and PO10 were placed above and below the 
right eye, respectively, to record vertical eye movements 
(Fig.  1a, b). The remaining 28 channels were arranged 
according to the 10–20 system (Fp1, Fp2, F7, F3, F4, F8, 
FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, 
P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10), with ground and 
reference electrodes placed on the earlobes.

Head motion signals were simultaneously recorded 
using a distributed system of inertial measurement units 
(IMU; Opals, APDM Wearable Technologies Inc, Port-
land, OR) to track the dancers’ head motions. The IMU 
Opal sensors were placed on the forehead of each dancer, 
acquiring data at a sampling rate of 128 Hz. The data was 
stored on an onboard micro-SD card and simultaneously 
streamed to a PC for visualization and data monitor-
ing using the Biometrics Analysis Software (Biometrics 
Ltd, Newport, UK). The recording sites were cleaned 
with an alcohol solution and allowed to dry. The sensors 
were then fixed to the skin using a double-sided adhesive 
tape (designed specifically for Opal sensors, so as not 
to obstruct electrodes). The signals were calibrated and 
checked for quality while the subjects stood in a neutral 
posture with their hands by their side, or while moving 
their head/neck.

Artifact minimization procedures
The EEG setup was rigorously prepared to minimize 
potential artifacts that typically contaminate the raw 
EEG measurements [14, 15]. A frequent source of noise 
in the signal comes from electrode artifacts that can 
occur when there is a disruption in the contact of the 
electrode with the scalp. In our experiment, for example, 
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this could be driven by the dancer’s sweat while danc-
ing, something further magnified by possible changes 
in ambient temperature. In the case of the butoh chore-
ography we tested, electromyographic (EMG) artifacts 
would be expected during movements that include head 
contact with the floor (e.g., while rolling on the floor). 
All these artifacts would lead to changes in electrical 
impedance, and, hence, would affect the quality of the 
recording. Dancing itself might also generate EMG arti-
facts originating from the head and neck musculature 
recruited during head/face and neck movements, which 
can increase the noise and add artifacts, particularly in 
frequencies above 12–20 Hz, including beta and gamma 
waves [16]. Lastly, although eye movements and eye 
blinks also typically contaminate raw EEG recordings, 
there are several methods already published with work-
ing protocols to remove ocular artifacts, both offline and 
online [17], so this artifact did not pose a novel challenge.

To minimize the types of artifacts we mentioned, we 
followed a set of standard procedures: (a) we measured 

each participant’s head circumference to allow for 
selection of an appropriately sized EEG, which would 
guarantee the right fit of the EEG cap; (b) we asked the 
participants to refrain from using products in their hair 
that may increase the impedance at the scalp/electrode 
interface (e.g., conditioner, hair gel, etc.); (c) before don-
ning the cap, the skin on the face around the eyes, the 
temples, and the earlobes were gently cleaned with 
alcohol wipes to remove any dirt and skin oils; (d) we 
applied viscous hypoallergenic conductive electrolyte gel 
between the electrode tips and the scalp to further secure 
the electrodes in place and reduce electrode impedance; 
(e) we aligned the cap on the head such that the FP1 
and FP2 were 10% of the distance from the nasion to the 
union along the midsaggital plane, and electrode Cz was 
at the vertex of the head; (f ) we used a stretchable netting 
(e.g., medical grade tubular elastic net dressing) to secure 
the location of all electrodes on the scalp, as well as the 
electrode cables that otherwise may pull down electrodes 
during head movements.

Fig. 1  EEG, EOG, IMU locations and impedance values. a, EEG-channel montage according to a modified 10–20 system, with ground and reference elec-
trodes placed on the earlobes, channels TPO9 and TP10 on the right and left temples, channels PO9 and PO10 above and below the right eye, and IMU 
Opal sensors on the forehead. b, Close-up image of active EEG electrodes, and location of EOG and IMUs. c, Impedance values (kΩ) of the 32-channel EEG 
for each of five subjects (A-E) at the beginning and the end of the experiment. Impedance values > 60 kΩ are considered low quality, and < 25 kΩ, of high 
quality. Subject E was the only participant who used different EEG equipment, with Bluetooth transmission vs. Wi-Fi.
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Alongside these commonly employed methods, we 
implemented a tailored set of measures to address the 
requirements of our study, which included: (a) incor-
porating the use of a hybrid gel-based pin electrode to 
enhance electrical conduction in Subject E, the only par-
ticipant with a Bluetooth-based device, as previous stud-
ies [18] have indicated that dry electrodes may lead to 
suboptimal impedance values; (b) recording the experi-
ment in a climate-controlled venue; (c) carefully choreo-
graphing a piece that was composed to a great extent of 
slow movements, which helped to minimize motion arti-
facts; (d) recording head movements using a distributed 
system of inertial measurement units (IMUs) to track the 
dancers’ head motions, so as to later be able to remove 
motion artifacts from our EEG measurements (Fig. 1a, b); 
(e) designing (i) shock absorbing caps for electrode pro-
tection during head contact with the floor and (ii) travel 
pillows for neck protection, which we emptied and cus-
tomized with zippers, to place in the EEG WiFi or Blue-
tooth transmitters, instead of attaching the transmitters 
at the back of the head, where the device would be dam-
aged during head contact with the floor (Fig. 2a, b); and 
f ) recording EOG signals to be able to later remove ocu-
lar artifacts and eye movements off-line (Fig. 1a, b). All 
these protection constructs were tested to protect the 
equipment and were also individually adjusted for the 
dancers’ comfort. A period of acclimatization was nec-
essary to allow for the dancers to become familiar with 
the equipment, and its proposed setup, so as to minimize 
interference with their dance (Fig. 2a, b).

Technical validation of artifact minimization procedures
To assess potential changes or drifts in impedance val-
ues, we recorded impedances twice, at the beginning 
and the end of the EEG recording, using the Brain Vision 
Recorder software, which allows for visualization of the 
topographic position of each electrode with a color-
coded display of its impedance value (Fig. 1c). According 
to this software, impedance values > 60 kΩ are consid-
ered low quality, and < 25 kΩ, of high quality. To ensure 
that our data quality would not be meaningfully reduced 
by high electrode impedance, before starting the experi-
ment, we strived to maintain all impedance values < 60 
kΩ for all participants.

Experimental protocol
The experiments were conducted over a series of 4 days, 
with each day differing in the data collected. The first 
recording (Day 1: 12/9/22) consisted of a rehearsal only 
with subject C, where we were able to test the fit of the 
equipment and several of the technical procedures we 
followed. On Day 2 (2/6/23) we recorded both the cho-
reography and all control tasks from all subjects (A-E). 
On Day 3 (2/7/23), we recorded a subset of control tasks 
with all subjects (A, B, C, D, and E). Days 4 (2/8/23), 5 
(2/9/23) and 6 (2/10/2023) involved calibration, rehearsal 
and control tasks with all subjects. Day 6 additionally 
included the recording of a final performance in front of 
an audience. On Day 4, data recording for Subject D was 
hindered by a technical issue in data transmission. All the 
experiments were conducted at the University of Hous-
ton Student Center South Theatre.

Fig. 2  Customized head and neck protectors used in the experiment. a, Shown are scientists carefully placing the electrode caps, processing units, 
and Wi-Fi transmitters into a neck pillow we customized with zippers (left and right images), as well as three dancers (right image) with custom caps 
on, which we used as shock absorbing caps to protect the equipment. b, Shown are the dancers while dancing in standing (left image) and lying (right 
image) positions, with their equipment, and head and neck protectors on. (Dancers’ names: Azumi Oe, Kelsey Strauch, Margherita Tisato, Sindy Butz, and 
Vangeline Gand)
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Before starting the control tasks, 1  min of EEG and 
EOG were recorded to establish a baseline period of 
brain and muscle activity. Afterwards, the control tasks 
included a resting state at both the beginning and the 
end (1 min); walking (2 min); vocalizations (10 min) that 
included (a) reading a list of words (“snake, wind, mist, 
hitch, brief, vent, throat, click, jeeps, mouse”), (b) read-
ing a list of nonwords (“brant, pipso, brab, blave, filt, golk, 
raint, tane, praine, shaty”), (c) reading a list of “Jabber-
wocky” words/sentences (“The blay florped the plenty 
mogg”; “The Gou twuped the vag all lus rall”; “The heaf-
est dropding deak is rhaph phemes away”), (d) produc-
ing sentences (“My name is Vangeline. I live in New York. 
Butoh is great, isn’t it?”), and (e) producing volitionally 
vocalizations that are typically produced spontaneously 
(laughter, sneezing, and yawning); seated meditation 
(5  min); butoh movements done mechanically, without 
“dancing” them, without being into the butoh mood, and 
with no music (7  min); and simple movements, such as 
raising right/left arms and legs, doing cyclical wrist/ankle 
movements, tongue protrusions, lip movements (e.g. lip 
rounding), nostril movements, finger/toe movements, 
and opening and closing the jaw (completed in sequences 
of 10 movements for each task; 10 min).

The 60-minute butoh choreography the dancers per-
formed was choreographed by Vangeline Gand under a 
series of specified parameters. These parameters included 
variations in speed (e.g., no movement, motor prepara-
tion, very slow movements not detectable to the eye, 
slow movements detectable to the eye, pedestrian/walk-
ing speed), type of muscle contraction, butoh technique 
used, choreography type, imagery, gravity (e.g., working 
against gravity involved muscle tension, while the oppo-
site, muscle relaxation), and emotion.

Interbrain synchrony
The quantitative measurement of interbrain synchrony 
that was used for the BCI visualization was achieved by 
calculating the bispectrum between dancer-dyads of 
EEG data obtained while performing butoh. Specifically, 
bispectrum combinations were generated (1 Hz) between 
the following dyads: subjects C-A, C-B, and C-D. Data 
from Subject E were excluded because of the possible dif-
ferences in quality due to using a g.tec device.

Bispectrum was estimated across the EEG recordings 
using 4-second windows with 75% (one-second) over-
lap. The bispectrum at each time window was estimated 
using Eq. 1:

	B(fi, fj)Pca = log(| X(fi )X( fj )X∗( fi + fj) |)

(1) where subscripts Pca are for the data used from Par-
ticipants “C” and “A”, in this example, and fi the frequency 
vector for the signal of Pc, and fj the frequency vector 

for the signal of Pa. X(fi) and X(fj) represent the Fourier 
transform of window l at frequencies fi and fj respectively. 
The term X∗(fi + fj) represents the complex conjugate of 
the Fourier transform of the sum of both frequencies fi 
and fj [19]. The quantity B for bispectrum is obtained by 
taking the logarithm of the absolute value of the product 
of the Fourier transforms and their complex conjugates at 
frequencies fi, fj and fi + fj. Using this method, bispectrum 
was estimated for all fi = fj, in 50 frequency bins between 
1 and 50 Hz.

The 32 raw channels for each of the 4 subjects (A, B, 
C, and D) were filtered into 8 channels using a Lapla-
cian spatial filter. Then bispectrum between Subject 
C and each of the other Subjects for gamma frequency 
was calculated using the formula (Eq.  1), yielding an 8 
by 8 matrix comparing each of the 8 channels between 
two subjects for the three dyads/combinations we tested 
(subjects C-A, C-B, and C-D).

Artistic brain-computer interface
The visualization was designed by TouchDesigner (TD, 
Derivative, Toronto, CA), a visual programming environ-
ment aimed at real-time 3D rendering, combined with 
high-resolution real-time compositing (https://deriva-
tive.ca/). MaxMsp, a visual programming language for 
music and multimedia developed and maintained by 
San Francisco-based software company Cycling ‘74 was 
used in this project for data filterings and mathematical 
operations such as normalizing, scaling, averaging, and 
calculating min. and max. of input data. Additionally, 
MaxMsp was used for optimizing the computation and 
construction of the user interface for the change of the 
visual scenes.

To establish a mechanism to translate the EEG data 
to artistic visualization (BCI), the science team and 
multimedia artist established a communication sys-
tem between MATLAB (The Mathworks Inc., Natick, 
MA) and TD. Two data packets were transferred from 
MATLAB to TD using the networking protocol TCP/
IP (https://docs.derivative.ca/index.php?title=TCP/IP_
DAT) via a direct Ethernet connection. The first packet of 
data is the raw EEG data of the dancers with a frequency 
of 100 Hz. The second packet is the interbrain synchrony 
with a frequency of 1 Hz. The received data transfers to 
MaxMsp via Open Sound Control (OSC), a protocol for 
network communication among computers, sound syn-
thesizers, and other multimedia devices (https://www.
cnmat.berkeley.edu/opensoundcontrol). MaxMsp filters/
calculates the data and sends them back to TD via OSC.

Signal preprocessing
EEG signals were pre-processed utilizing MATLAB 
R2023a (MathWorks, MA), and functions from the open-
access toolbox EEGLAB. The EEG and EOG raw data 

https://derivative.ca/
https://derivative.ca/
https://docs.derivative.ca/index.php?title=TCP/IP_DAT
https://docs.derivative.ca/index.php?title=TCP/IP_DAT
https://www.cnmat.berkeley.edu/opensoundcontrol
https://www.cnmat.berkeley.edu/opensoundcontrol
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were filtered with the Adaptive Noise Canceling (ANC) 
H ∞ filter. For this step the parameters γ = 1.15, q = 1e-10, 
and Po = 0.5 were utilized. Following ANC H ∞ 28 (EOG-
denoised) EEG signals were obtained. For each EEG 
session data, frequency peaks from (1–15 Hz) of gravity-
compensated acceleration signals were identified and 
removed from the 28 EEG channels via motion artifact 
removal. Motion artifact denoised EEG data was further 
cleaned using line noise removal (60 Hz), with Cleanline, 
Zapline, EEGLAB plug-ins, or Notch filter (60  Hz). In 
the Artifact Subspace Reconstruction (ASR) algorithm 
(EEGLAB), the parameter κ = 15 was applied.

Results
In this experiment, we used mobile EEG recordings to 
study the brain activity of five experienced dancers while 
dancing butoh simultaneously. For this purpose, we 
recruited five female participants (age: 42.6 ± 5.21 years) 
with no history of neurological disorder. By the time the 
experiment took place, the participants had on average 
15 ± 3.16 years of experience practicing butoh dance.

Impedance values
Our comprehensive artifact minimization strategies, 
encompassing both conventional techniques and innova-
tive measures (Methods; Figs. 1a, b and 2a), including the 
strategic placement of data transmitters in a customized 
neck pillow, were designed to mitigate potential imped-
ance changes inherent in experiments involving move-
ment. While our impedance measurements for Subjects 
A-D before and after the experiment indicated generally 
high-quality impedances (< 25 kΩ), Subject E exhibited 
predominantly elevated values (> 60 kΩ), particularly in 
recordings preceding the experiment initiation (Fig. 1c). 
This discrepancy aligns with the fact that Subject E was 
the sole participant employing distinct EEG equipment, 
with Bluetooth transmission vs. Wi-Fi (Fig.  1c). Despite 
our use of a hybrid gel-based pin electrode (Methods), 
which was designed to address the common issue of poor 
impedance values coming from dry electrodes in most 
Bluetooth-based g.tech devices [18], we still observed 
lower impedance quality compared to the BrainAmpDC 
devices.

Data synchronization between different EEG measurement 
modalities and IMU equipment
In our experiment, achieving synchronization at a milli-
second range between different measurement modalities 
and equipment was crucial for ensuring synchroniza-
tion across different data streams. To address this issue, 
we implemented hardware synchronization via a custom 
cable for the wired transmission of Transistor-Transistor 
Logic (TTL) signals between devices. In this TTL cir-
cuit, transistors served as electronic switches, controlling 

current flow based on the input signals. In detail, as 
shown in Fig.  3, Brain Products’s ActiCAP headsets for 
Subjects A-D were wired individually to a MOVE EEG 
transmitter that wirelessly sent their brain activity data 
to its corresponding receiver via Wi-Fi (Brain Product’s 
MOVE wireless system). The MOVE receivers then sent 
the data, via a fiber optic cable, to a USB 2 adapter capa-
ble of translating the information to a USB cable. The 
latter was then readable to the EEG personal computer 
hosting the Brain Products’s BrainVision Recorder soft-
ware. The g.tec Nautilus headset of Subject E was also 
wired similarly to its respective g.tec transmitter but sent 
data to the g.tec computer via Bluetooth instead. In all 
Subjects, IMU sensors -attached to their foreheads- sent 
data to a receiver. This data being directly transmitted, 
via USB cable, to the BrainVision and the g.tec EEG per-
sonal computers.

Synchronizing the Brain Products and g.tec EEG sys-
tems, as well as IMU sensors, required the input of a 
manual trigger box that had three Transistor-Transistor 
Logic output connectors (Fig.  3): the first one was con-
nected to the Access Point antenna to mark IMU data, 
the second to the BrainAmpsDC through the USB 2 
Adapter to mark WiFi EEG data, and the third to the Base 
Station to mark the Bluetooth EEG data. The latter was 
made possible via a modified dual-pin cable connection. 
Critical points in the performance and control tasks were 
marked simultaneously via the trigger in all three sys-
tems. These stored timestamps can be used to align the 
signals offline for subsequent analysis. Figure 4 depicts an 
example of a time-synchronized subset of the recorded 
raw EOG and EEG signals obtained during 1  s of sit-
ting, speaking, walking, and dancing, with both signals 
sampled at 1000 Hz. To align signals sampled at different 
rates, such as those from the IMUs (128 Hz), in the “Sig-
nal preprocessing and denoising pipeline” section below, 
we explain how this can be achieved by upsampling the 
IMU data to match the EEG data by interpolating the 
timestamps at 1000 Hz (Fig. 5).

Signal preprocessing and denoising pipeline
Artifact identification, minimization, and noise removal 
are critical steps in data preprocessing, laying the 
groundwork for subsequent functional analysis or neu-
ral decoding. For comprehensive offline analyses using 
our data, we propose a signal pre-processing pipeline 
(specific steps outlined in Fig. 5a; see Methods for more 
details), which ensures the removal of physiological and 
non-physiological artifacts, including power line noise, 
as well as achieves a “true” average reference of the sig-
nals. To illustrate this pipeline, we offer a demo using a 
fraction of our data (Fig.  5b). As a first step, since EEG 
and EOG signals were collected at a sampling rate of 
1000 Hz, and the IMU signals at 128 Hz, IMU data was 
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first gravity-compensated and re-sampled to 1000 Hz in 
order to synchronize it, as well as use it as source noise 
signal to identify potential motion artifacts in the EEG 
data in further filtering steps. Following this approach, 
three-dimensional, gravity-compensated acceleration sig-
nals were obtained.

The EEG and EOG raw data were then filtered (H ∞ fil-
ter [17]) to allow for the removal of eye-related artifacts 
such as eye blinks, eye motion drifts, and recording 
biases. These signals were further filtered using an adap-
tive, non-linear motion artifact removal algorithm in 
order to preserve the neural content of the EEG signal 
while increasing the signal-to-noise ratio by removing 

Fig. 4  Time-synchronized subset of EOG and EEG during sitting, speaking, walking and dancing conditions. The timeseries EOGh (horizontal) and EOGv 
(vertical) are computed as bipolar signals for the horizontal and vertical EOG channels, respectively

 

Fig. 3  Diagram of the physical configuration of the EEG system in our experimental setup, including hardware elements, connections, and the direction 
of signal flow. Each box with a name represents an individual device: EEG Wi-Fi-based devices are in blue, EEG Bluetooth-based devices are in green, 
IMU devices in red, and computer-related devices and other peripherals are in gray. Solid lines connecting boxes represent cable connections between 
devices. Arrows indicate the direction of signal flow
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motion artifacts [20]. The motion artifact-denoised EEG 
data underwent additional cleaning through line noise 
removal. Following these steps, a robust re-referenc-
ing using the PREP pipeline and a band pass filter were 
applied to further refine the EEG data. These obtained 
signals were further conditioned using the Artifact Sub-
space Reconstruction (ASR) algorithm from EEGLAB, 
automatically removing transient or large amplitude arti-
facts that contaminated the EEG data. The next step con-
sisted of Independent Component Analysis (ICA), which 
was utilized to retain brain-related and exclude artifact-
related ICs (e.g., residual eye, muscle, electrode popping). 
In the example comparison we showcase (Fig.  5b), we 
estimated the Average Power Spectral Density of Sub-
ject’s A raw data across all 28 EEG channels (1000  Hz) 
over the first 20 min of the choreography with 95% inter-
vals and band-pass filtering between 0.01 Hz and 50 Hz, 
highlighting the differences identified after applying 
H ∞ and ASR. Importantly, we emphasize the differences 
in the lower frequencies identified, where after H ∞ appli-
cation, peaks emerge at 10  Hz, 25  Hz, 30  Hz, and near 
50 Hz, while after ASR, all peaks fall below 20 Hz.

Real-time interbrain synchronization and EEG-based brain-
computer interface visualization
Leveraging mobile EEG and brain-computer interface 
(BCI) techniques, we artistically visualized the interbrain 
synchrony of the dancers “in action and in context”, dur-
ing a live dance performance in front of an audience. The 
artistic design focused on exploring new ways of project-
ing real-time interactive animated visualizations of EEG 

data that are both accessible to a diverse audience and 
informative to for those with a scientific background.

This required that the dancers’ interbrain synchrony 
be measured in real-time, while dancing butoh, which 
implies a continuous computation of a synchrony metric 
across multiple combinations of electrodes of different 
subjects. The computational load of this process increases 
with the number of electrodes and participants [20]. 
Therefore, to make this online calculation as efficient as 
possible, we used a Laplacian spatial filter, which filtered 
the 32 raw channels/Subject into 8 channels (Methods). 
This filter acts as a spatial high-pass filter applied to the 
data, which attenuates low-spatial-frequency signals 
that are broadly distributed across the scalp while pre-
serving more localized higher-spatial-frequency signals. 
Using these filtered 8 channels/Subject, we calculated the 
bispectrum between dyads across the gamma frequency 
band (between 30 and 50 Hz), yielding blocks of 8 by 8 
matrixes that were instrumental in generating the BCI 
visualization.

The BCI visualization of the resulting data drew inspi-
ration from the structure of the music composed for the 
purpose of the study, the choreography, and the concept 
of interbrain synchrony. Since butoh is often made up 
of slow movements, and in contrast, the music for the 
project is active and repetitive, the visualization aspired 
to find a middle ground between the physical and sonic 
rhythms. Overall, the visualization had no identifiable 
regular pulse but flowed freely in terms of texture, move-
ment, color, and spatialization. It was structured in three 
sections: (a) abstract scenic monochromatic images, (b) 

Fig. 5  Proposed signal preprocessing and denoising pipeline. a, A methodology flowchart showing the basic steps of our proposed pipeline. b, Average 
Power Spectral Density of Subject’s A raw data, data after H-infinity (green arrow) and after the application of ASR (pink arrow) on the interval [0:00–20:00]. 
Dotted circles highlight the main differences between the graphs, e.g., in peak frequencies
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five 3D brains and brain connections portraying inter-
brain synchrony, and (c) five abstract circles producing a 
colorful texture (Fig. 6).

In detail, at the beginning of the music and for the first 
20  min, the visualization was meant to depict the pre-
vailing sounds of nature with abstract scenic monochro-
matic images with additive textural visual noise. This 
noise’s amplitude was the result of mapping normalized 
raw EEG data of the dance leader (Fig.  6a). The second 
visualization featured five 3D brains and their connec-
tions, aligning with the dancers’ positions on stage to 
help the audience associate the brain visuals with each 
dancer. The brain synchrony value was mapped in real-
time with the particle flow level between brains, forming 
a line between them, so that the higher the value of syn-
chrony, the higher the opacity and thickness of the line 
(Fig. 6b). The third visualization showcased five abstract 
circles representing the interbrain synchrony between 
the accompanying dancers and the dance leader. Their 
interbrain synchrony was mapped to the position of the 
four circles relative to the central circle, so that the higher 
the value of interbrain synchrony, the more concentric 
the circles appeared (Fig. 6c). This visualization was cru-
cial in communicating the essence of this collaboration, 
right at the intersection of art and science.

Discussion
In this experiment, we used mobile EEG recordings to 
study the neural dynamics of dance with exquisite tem-
poral resolution (millisecond range) and in ecological 
settings (i.e., a theater) that are not possible to test with 
other techniques, such as with fMRI, where the subject 
is constrained to lay down within the confines of the 
bore of a scanner in a neuroimaging facility. Still, even 
with mobile EEG recording, there are important techni-
cal challenges that we had to overcome, as such we pro-
vided here a comprehensive account of the experimental 
design, methods, technical validation, and practical 
execution of a highly interdisciplinary project, intend-
ing to offer valuable insights for future endeavors. We 
detailed the best practices and steps taken to achieve 
high-quality impedance values, along with observations 
and suggestions regarding the most effective devices. We 
also shared our practices in recording different types of 
artifacts (via EOG and IMU) to maximize the signal-to-
noise ratio. Additionally, we explained how we synchro-
nized different EEG devices, via TTL triggers, and how 
we ran interbrain synchrony analysis in real time that 
we then used for the BCI visualization. For future refer-
ence, we put forward a signal preprocessing and denois-
ing pipeline that could be used to analyze our data offline, 
by showcasing how a fraction of our data looks before 
and after going through the pipeline. Lastly, we shared 
our raw data and code, both for the live recordings and 

Fig. 6  Real-time interbrain synchrony visualization via brain-computer interface. a, Abstract scenic monochromatic images, with additive noise, whose 
amplitude was the result of the leading dancer’s normalized raw EEG data. b, Five 3D brains and their connections reflecting real-time brain synchrony. c, 
Five abstract circles showing the interbrain synchrony between the accompanying dancers and the dance leader. In all cases, top images show computer 
examples from the type of visualization described, and bottom images show real instances of how these visualizations unfolded during a live perfor-
mance. (Dancers’ names: Azumi Oe, Kelsey Strauch, Margherita Tisato, Sindy Butz, and Vangeline Gand)
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the live visualization of brain activity on a screen, via an 
artistic brain-computer interface (BCI) while the dancers 
were dancing. We believe that this data holds potential 
for addressing different hypotheses, several of which are 
outlined in the following sections.

Hypotheses to test
Interbrain synchrony
Dance has been posited to have evolved as a form of 
interpersonal coordination and social communication, 
which is based on both imitation (matching of move-
ment) and synchrony (matching of time) skills [21]. 
Different kinds of dances rely on different aspects of 
interpersonal coordination, including touch, eye gaze, 
sensory-motor interactions, facial expressions, or even 
synchronization with other physiological parameters, 
such as breathing, heartbeat, and sympathetic tone [22]. 
Thus, EEG recording from different dancers, dancing 
the same choreography simultaneously, is expected to 
unravel interbrain neural synchrony in the dance aspects 
that require interpersonal coordination.

Previous experiments [23] where we examined EEG 
signals of two dancers while dancing a ballet duet 
showed high interbrain synchrony in the gamma band 
of visual brain regions (Broadman area 18) of the danc-
ers. Interestingly, the leading dancer exhibited inter-
brain synchrony between her visual (BA18) cortex and 
her partner’s cognitive (BA31) and premotor/supple-
mentary motor areas (BA6). The butoh choreography 
that we investigated was focused on auditory cues from 
the music, with dancers transitioning from one move to 
the next in response to specific auditory cues, such as a 
sound that resembles an owl hooting announcing a spe-
cific move. Throughout most of the choreography, the 
dancers performed with their eyes closed or half-closed 
with a soft focus [24], something that gives us the unique 
opportunity to study interbrain synchrony in a dance 
form where vision is not expected to be the basis of coor-
dination, reported as the most common form of inter-
brain synchrony [25]. Lastly, since we recorded both the 
rehearsals and the final performance, it will be possible 
for us to assay changes in interbrain synchrony as a func-
tion of learning, practice, or the scenic context (e.g., pres-
ence or absence of an audience).

Beyond the online estimation methods of interbrain 
synchrony that we reported in this study, we further rec-
ommend specific practices for offline analyses that can 
address the above questions. For example, in offline anal-
yses, we suggest using more complex and computation-
ally expensive filters, such as robust referencing, Artifact 
Subspace Reconstruction (ASR), and Independent Com-
ponent Analysis (ICA), to remove unwanted artifacts 
from different sources. We also suggest that component 
space, instead of channel (sensor) space, be used for 

bispectrum estimations, which allows us to ask ques-
tions by zooming in on specific Brodmann areas, as we 
have previously shown [23]. Another interesting practice 
would be to use differing time windows and overlaps to 
yield more fluid changes in interbrain synchrony, such as 
2-second windows with 50% overlap and 4-second win-
dows with 75% overlap.

Finally, based on our observation of stronger imped-
ance values with the WiFi-BrainAmpDC devices with gel 
electrodes compared to the Bluetooth-g.tech device with 
dry electrodes, we recommend prioritizing BrainAmpDC 
or a similar device for future experiments akin to the one 
presented here. Although we utilized a hybrid gel-based 
pin electrode with the Bluetooth device to address this 
issue, we still encountered lower impedance quality com-
pared to the BrainAmpDC device. We acknowledge the 
ongoing debate about the reliability of Bluetooth-based 
devices, with some studies suggesting interpretable sig-
nals and a good signal-to-noise ratio in the frequency 
domain [18]. While there was an improvement in imped-
ance by the end of the experiment, we assume that the 
challenge of maintaining low impedance during the ini-
tial headset setup may have influenced the signal quality 
and potentially affected the results. Thus, based on the 
impedance values we reported in this study, we recom-
mend using EEG devices with gel electrodes.

Motor hypothesis of vocal learning
There is a hypothesis [26] that links the evolution of the 
neural circuit that is responsible for rhythmic body mus-
cle movement (e.g., head, arm, and leg muscles) to the 
evolution of the neural circuit that is responsible for the 
movement of the muscles of the vocal organ during vocal 
communication (e.g., laryngeal muscles in humans). This 
hypothesis is built on findings [26] showing that in vocal 
learning birds, all their cerebral nuclei that are devoted 
to song learning are adjacent to discrete brain areas 
active during limb and body movements. Essentially, the 
hypothesis states that our ability to move in time with an 
auditory beat (or, dance, in humans) originated from the 
neural circuitry for complex vocal learning (or, speech 
learning, in humans).

This prediction became even more pertinent after the 
finding that only species that communicate with complex 
vocalizations (i.e., humans and parrots) are able to dance 
(i.e., to entrain their body movements to a beat) [27], 
pointing to a common neural substrate in both abilities. 
Although this hypothesis has not been directly tested in 
humans, meaning that no one has compared in the same 
subjects the neural pathways underlying speech (i.e., 
laryngeal movements) and dance movements (e.g., rhyth-
mic arm movements), cross-studies’ comparison points 
to an overlap between several of the regions controlling 
body movements in the primary motor cortex with the 



Page 12 of 16Theofanopoulou et al. BMC Neuroscience           (2024) 25:62 

regions that control laryngeal movements in the primary 
motor cortex [28–30]. Further, dance has been found to 
increase network connectivity between the basal ganglia 
and premotor cortices [31], both of which are co-acti-
vated during speech [32, 33].

To explore possible parallels in speech and dance, in 
our control tasks, we instructed our dancers to produce 
speech and speech-like vocalizations (e.g., Jabberwocky 
words), as well as other non-speech vocalizations (e.g., 
sneeze, laughter, yawn), with the aim to compare their 
EEG patterns during laryngeal movements vs. move-
ments of other body parts. For a nuanced comparison 
of these two types of movements, we suggest examining 
both short (e.g., 1  s) and long (e.g., 4  s) time windows, 
recognizing that each serves different purposes; longer 
windows would capture all relevant activity, but might 
include more artifacts, compared to shorter windows. 
To mitigate artifacts from activities that further engage 
laryngeal muscles, such as heavy breathing, we suggest 
selecting dance movements that do not require a lot of 
physical strength. One way to control for the laryngeal 
movements of breathing would be to subtract the brain 
activity during resting state, when the subjects were 
seated and breathing, from both the speaking and danc-
ing activities.

For a targeted analysis of neural patterns during speech 
and dance, we propose specific EEG analyses that are fea-
sible with our shared dataset. Firstly, one example would 
be to run a topographical analysis to explore potential 
similarities in EEG signal topographical patterns during 
speech and dance movements. Secondly, with a func-
tional connectivity analysis, commonalities in functional 
connectivity patterns during speech and dance could be 
investigated using a seed analysis on electrodes associ-
ated with primary motor cortex activation (e.g., “C3” 
[34]). Lastly, frequency bands displaying similar modu-
lations during both speech and dance, as well as their 
interactions, could be identified with a power spectral 
analysis and cross-frequency coupling analysis. These 
specific EEG analyses aim to provide a comprehensive 
understanding of the neural dynamics underlying both 
speech and dance, shedding light on potential similarities 
in topographical patterns, functional connectivity, and 
spectral modulations.

Butoh vs. other meditative practices
As aforementioned, butoh embraces in its practice con-
templation and meditation [9], suggesting it may tap 
into similar processes as those involved in, for example, 
seated meditation, such as attention mechanisms that 
guide concentration. Other embodied meditative prac-
tices, such as yoga and tai-chi, also share similarities with 
butoh, in that they all include varying degrees of move-
ment while maintaining focused attention, with some 

incorporating auditory attention to external stimuli. As 
such, our butoh EEG recordings offer a comparandum 
with other meditative practices, where there are already 
published data on their associated brain activity.

For example, Banquet [35] used spectral analysis of 
EEG data during transcendental meditation in the early 
1970s, a method described as a mental repetition of a 
special sound or mantra, and showed that meditative 
states could be distinguished from other states of con-
sciousness based on sequential changes in the alpha, 
theta, and beta waves in relation to their topographical 
alterations across the scalp. More recently, EEG record-
ing during meditation in Buddhist practitioners revealed 
self-induced and sustained high-amplitude gamma-band 
oscillations [36]. In a different study, meditation training 
gave rise to increased theta activity in the frontal midline 
electrodes, which was sustained even during the rest-
ing state following meditation training [37]. Xue et al. 
[38] in a similar experiment on short-term meditation 
training, found increased theta (and some alpha) activ-
ity in the anterior cingulate cortex and adjacent prefron-
tal cortex, which correlated with improved performance 
on tasks of attention, working memory, creativity, and 
problem-solving.

All these studies provide a fertile ground for compari-
son with the hypothesized meditative aspects of butoh. 
To make the comparison between butoh and meditation 
readily possible in our experiment, we included a seated 
meditation task in our control tasks, allowing us to com-
pare whether the brain activity during seated meditation 
bears any resemblance to the contemplative practices 
employed during specific segments of the butoh chore-
ography. Regardless of whether the signatures will be the 
same or different, given the documented health benefits 
associated with meditation-like [39], we anticipate that 
our experiment will shed light on the patterns of brain 
activity underlying these practices.

Butoh in pregnancy
Throughout the experiment, the pregnancy of one of the 
butoh dancers gave us the opportunity to study brain 
activity during butoh dancing in a pregnant woman. To 
our knowledge, this is the first time to run mobile EEG 
with a pregnant woman dancing butoh, or dancing, in 
general [11, 12], offering a potential avenue to uncover 
butoh’s untapped role as a beneficial practice in preg-
nancy. In principle, the pregnancy itself could be con-
sidered a limitation, since studying dance in pregnant 
women was not one of the initial goals of our study, and 
pregnancy might introduce several confounding factors, 
such as alterations in bodily properties. Nevertheless, we 
prefer to view this as an opportunity to both record the 
brain activity of a pregnant woman while dancing and 
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to extend our methodological approach to populations 
underrepresented in the research realm.

Currently, our understanding of how brain activity pat-
terns differ between pregnant and non-pregnant women, 
particularly in tasks involving auditory-to-motor inte-
gration like dance, remains limited. Interestingly, Plam-
berger et al. [13] conducted a study using a visuospatial 
attention task, involving pregnant and non-pregnant par-
ticipants. In the task, an auditory cue directed the atten-
tion of the participants either to the left or to the right 
visual hemifield, where, following a variable time inter-
val, they had to discriminate between a “p” or “q” sound 
on the cued hemifield. Both non-pregnant and pregnant 
women showed a decrease in the alpha amplitude in the 
fronto-parietal network, which correlated positively with 
accurate discrimination, with no significant differences 
in the cases of pregnancy vs. non-pregnancy. Since our 
butoh choreography is based on correctly perceiving 
auditory cues in the music, it is tempting to hypothesize 
that an alpha band desynchronization, leading to the 
expected cue and right after the cue is perceived, could 
underlie accurate choreography performance. Consid-
ering the alterations in bodily properties during preg-
nancy, such as increased body mass and slower motion, 
an additional hypothesis could be that pregnant women 
may allocate more time to motor preparation after per-
ceiving an auditory cue. In general, there is a need for 
more detailed investigations involving pregnant subjects 
to inform specific hypothesis-driven analyses of our data.

Live test for interdisciplinarity
As a collaboration studying butoh in the brain, both the 
art -butoh- and the science -EEG recording- were equally 
important towards success [40, 41]. This live test for 
interdisciplinarity allowed exploration into understand-
ing the unique opportunities and challenges for such a 
collaboration, including needs for dancers as athletes and 
subjects, technical requirements for protecting equip-
ment without inhibiting movement, and for synchro-
nizing brain waves across all five dancers, implications 
for providing education and working with students, and 
determination of visual projection based on BCI.

The condition of sound was a critical component, not 
only for live visualization via BCI but also because audi-
tory cues were often the only signals upon which to coor-
dinate motor movements. Thus, any discrepancies or 
failures in sound quality would greatly impede the danc-
ers’ performance, and potentially relatedly, EEG record-
ings based on the ability to enter into anticipated parts 
of the choreography and synchronize with each other. 
As a result, this would percolate down to the real-time 
interbrain synchrony calculated and to the BCI-visual 
projections.

This collaboration further highlighted that bringing 
various fields together requires clear communication to 
understand the various needs and expectations of each 
discipline [42, 43]. For example, for dancers, who are 
highly skilled athletes [44], a controlled environment, 
considering aspects of stage size, noise level, tempera-
ture, and other factors that may affect the dancers’ per-
formance, must be considered to minimize stress, and 
maximize their ability to perform. For scientists, it is 
also critical to factor in human fatigue in EEG record-
ings; simply recording data, if the question at hand is as 
specific as that we are asking about butoh dancing, will 
not suffice, and errors in sound production, unnecessary 
delays lengthening the time of preparation for study, and 
any other factors that may impede the dancers’ ability to 
perform butoh may lead to poorer data outcomes.

Given that the dancers are the subjects of interest, this 
collaboration also showed that creative solutions may lie 
in another’s lived experience. One example was that the 
solution for how to best don the EEG caps, which are 
sensitive both for capturing brain waves and as a piece 
of equipment, was found by one of the dancers. Another 
example comes from a dancer who reported that the 
control tasks are better to be recorded before any butoh 
dancing takes place, since the butoh (meditative-like) 
state may linger after the performance and confound 
results from control conditions. These situations are 
great examples of the benefits of this multidisciplinary 
collaboration, in which the perspectives from experts in 
different fields came into play and merged into a highly 
unique project.

Ultimately, the project navigated seemingly competing 
interests in data needs, considering reporting require-
ments to meet funder expectations and secure future 
funding: for dancers, a high-quality video; for scientists, 
robust data collection; for students, time and attention 
for hands-on learning. The reader is referred to a recently 
edited book on Mobile Brain–Body Imaging and the 
Neuroscience of Art, Innovation and Creativity [45] that 
addresses the challenges and transdisciplinary opportu-
nities for transformational and innovative research and 
performance at the nexus of art and science enabled by 
emergent technologies.

Dance -and butoh- as movement therapy
Dance-movement therapy utilizes creative movement 
[46] as a healing tool rooted in the inseparable connec-
tion between the body and the mind. Rooted in concepts 
of embodiment and attunement, this approach has an 
impact on several aspects of human behavior–psycho-
logically, physically, and socially [47]. The therapeutic 
effect of dance extends across the lifespan, influencing 
motor development in various populations, including 
children in general [48], those with Down syndrome [49], 
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cerebral palsy [50], and developmental cerebellar anom-
alies [51]. In the elderly dance contributes to successful 
aging, for markers including fitness, functional balance, 
mobility control [49–51], and cognition [52]. Overall, 
dance-movement therapy and dance leads to psychologi-
cal health outcomes including decreasing depression and 
anxiety, increasing quality of life, and expanding interper-
sonal and cognitive skills [53].

Among patients with Parkinson’s Disease, music, 
and dance proved to be simple, non-invasive treat-
ment options that promote balance, gait, and cognition 
[54–57], decrease psychological symptoms, and improve 
quality of life [58, 59]. For other conditions, such as 
schizophrenia and psychotic disorders, many studies 
tend to have small samples, no randomization, and no 
adequate control [60]. Yet, there is some support that 
body-centered interventions do alleviate stress, depres-
sion, and anxiety as well as facilitate pain reduction in 
physical and psychological pathologies via a bidirectional 
pathway between the brain and body [61]. As one cre-
ative therapy, dance has been shown to be effective for 
severe mental illnesses such as trauma-related disorders, 
major depression, and bipolar disorder [62, 63].

Because butoh dance is a psychosomatic exploration 
method [9], this study holds implications for further 
understanding the healing effects of dance, particularly 
how dance-movement can be prescribed as a form of 
therapy by selecting the emotional or physical level of 
involvement, or dose response, based on the patient’s 
condition. For example, there may be a relationship 
between some mental aspects of schizophrenia and 
butoh performance in terms of the state of consciousness 
and body-mind vulnerability [64].

Conclusions
The art-science collaboration that we reported here was 
a unique, complex, multidisciplinary experiment that 
required the coordination, management, and execution 
of a diverse team, including dancers, engineers, neuro-
scientists, musicians, multimedia artists, logistic person-
nel, facility management crew, and students. In addition, 
securing funding for the travel expenses and artists’ fees 
was critical to the success of the project. Last but not 
least, trust and respect for each other were essential 
to conduct the project in an accelerated timeline. The 
resulting data, best practices, approach, code, and audio-
visuals present a unique opportunity for the scientific and 
artistic communities to harness the data, knowledge, and 
lessons learned from this project, to answer novel ques-
tions, deploy new algorithms or computational methods, 
and create new art-science works.
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